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These Lectures

Part 1: Multicore Programming: Concurrent algorithms (Tim
Harris, Amazon)

Concurrent programming: simple algorithms, correctness criteria,
advanced synchronisation patterns, transactional memory.

Part 2: Multicore Semantics: the concurrency of multiprocessors
and programming languages

What concurrency behaviour can you rely on? How can we specify
it precisely in semantic models? Linking to usage,
microarchitecture, experiment, and semantics. x86, IBM POWER,
ARM, Java, C/C++11



Multicore Semantics

◮ Introduction

◮ Sequential Consistency

◮ x86 and the x86-TSO abstract machine

◮ x86 spinlock example

◮ Architectures

◮ Tests and Testing

◮ ...



Implementing Simple Mutual Exclusion, Naively

Initial state: x=0 and y=0

Thread 0 Thread 1

x=1 y=1
if (y==0) { ...critical section... } if (x==0) {...critical section... }



Implementing Simple Mutual Exclusion, Naively

Initial state: x=0 and y=0

Thread 0 Thread 1

x=1 y=1
if (y==0) { ...critical section... } if (x==0) {...critical section... }

repeated use?
thread symmetry (same code on each thread)?
performance?
fairness?
deadlock, global lock ordering, compositionality?



Let’s Try...

./runSB.sh



Fundamental Question

What is the behaviour of memory?

...at the programmer abstraction

...when observed by concurrent code



The abstraction of a memory goes back some time...



The calculating part of the engine may be divided into two portions

1st The Mill in which all operations are performed

2nd The Store in which all the numbers are originally placed and to which the

numbers computed by the engine are returned.

[Dec 1837, On the Mathematical Powers of the Calculating Engine, Charles
Babbage]



The Golden Age, (1837–) 1945–1962

Memory

Processor



1962: First(?) Multiprocessor
BURROUGHS D825, 1962

“Outstanding features include truly modular hardware with

parallel processing throughout”

FUTURE PLANS The complement of compiling languages is to be

expanded.”



... with Shared-Memory Concurrency

Shared Memory

Thread1 Threadn

W R RW



Multiprocessors, 1962–now
Niche multiprocessors since 1962

IBM System 370/158MP in 1972

Mass-market since 2005 (Intel Core 2 Duo).



Multiprocessors, 2019

Intel Xeon E7-8895 v3
36 hardware threads

Commonly 8 hardware threads.

IBM Power 8 server
(up to 1536 hardware threads)



Why now?

Exponential increases in transistor counts continuing — but not
per-core performance

◮ energy efficiency (computation per Watt)

◮ limits of instruction-level parallelism

Concurrency finally mainstream — but how to understand, design,
and program concurrent systems? Still very hard.



Concurrency everywhere

At many scales:

◮ intra-core

◮ multicore processors ← our focus

◮ ...and programming languages ← our focus

◮ GPU

◮ datacenter-scale

◮ internet-scale

explicit message-passing vs shared memory abstractions



Sequential Consistency



Our first model: Sequential Consistency

Shared Memory

Thread1 Threadn

W R RW

Multiple threads acting on a sequentially consistent (SC) shared
memory:

the result of any execution is the same as if the opera-
tions of all the processors were executed in some sequen-
tial order, respecting the order specified by the program
[Lamport, 1979]



Defining an SC Semantics: SC memory

Define the state of an SC memory M to be a function from addresses x to integers n,
with M0 mapping all to 0. Let t range over thread ids.

Describe the interactions between memory and threads with labels:
label , l ::= label

| t:W x=n write
| t:R x=n read
| t:τ internal action (tau)

Define the behaviour of memory as a labelled transition system (LTS): the least set of
(M, l ,M′) triples satisfying these rules.

M
l

−→ M′ memory M does l to become M′

M(x) = n

M
t:R x=n

−−−−−→ M
M read

M
t:W x=n

−−−−−→ M ⊕ (x 7→ n)
M write



SC, said differently

In any trace ~l ∈ traces(M0) of M0, i.e. any list of read and write
events:

l1, l2, . . . lk

such that there are some M1, . . . ,Mk with

M0

l1−→ M1

l2−→ M2 . . .Mk ,

each read reads from the value of the most recent preceding write
to the same address, or from the initial state if there is no such
write.



SC, said differently

Making that precise, define an alternative SC memory state L to
be a list of labels, most recent at the head. Define lookup by:

lookup x nil = 0 initial state value
lookup x (t:W x ′=n)::L = n if x = x ′

lookup x l ::L = lookup x L otherwise

L
l
−→ L′ list memory L does l to become L′

lookup x L = n

L
t:R x=n
−−−−→ (t:R x=n)::L

Lread

L
t:W x=n
−−−−−→ (t:W x=n)::L

Lwrite

Theorem (?)

M0 and nil have the same traces



Extensional behaviour vs intensional structure

Extensionally, these models have the same behaviour

Intensionally, they have rather different structure – and neither is
structured anything like a real hardware implementation.

In defining a model, we’re principally concerned with the
extensional behaviour: we want to precisely describe the set of
allowed behaviours, as clearly as possible. But (see later)
sometimes the intensional structure matters too, and we may also
care about computability, performance, provability,...



SC, glued onto a tiny PL semantics

In those memory models:

◮ the events within the trace of each thread were implicitly
presumed to be ordered consistently with the program order
(a control-flow unfolding) of that thread, and

◮ the values of writes were implicity presumed to be consistent
with the thread-local computation specified by the program.

To make these things precise, we could combine the memory model
with a threadwise semantics for a tiny concurrent language....



Example system transitions: SC Interleaving
All threads can read and write the shared memory.

Threads execute asynchronously – the semantics allows any
interleaving of the thread transitions. Here there are two:

〈t1 : 〈x = 1, R0〉|t2 : 〈x = 2, R0〉, {x 7→ 0}〉

t1:W x=1

ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

t2:W x=2

''PP
PP

PP
PP

PP
PP

〈t1 : 〈skip, R0〉|t2 : 〈x = 2, R0〉, {x 7→ 1}〉

t2:W x=2

��

〈t1 : 〈x = 1, R0〉|t2 : 〈skip, R0〉, {x 7→ 2}〉

t1:W x=1

��
〈t1 : 〈skip, R0〉|t2 : 〈skip, R0〉, {x 7→ 2}〉 〈t1 : 〈skip, R0〉|t2 : 〈skip, R0〉, {x 7→ 1}〉

But each interleaving has a linear order of reads and writes to the
memory. C.f. Lamport’s

“the result of any execution is the same as if the opera-
tions of all the processors were executed in some sequential
order, respecting the order specified by the program”



Back to the naive mutual exclusion example

Initial state: x=0 and y=0

Thread 0 Thread 1

x=1 y=1
if (y==0) { ...critical section... } if (x==0) {...critical section... }



Back to the naive mutual exclusion example

Initial state: x=0 and y=0

Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0



Back to the naive mutual exclusion example

Initial state: x=0 and y=0

Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

In other words: is there a trace

〈t0 : 〈x = 1; r0 = y , R0〉|t1 : 〈y = 1; r1 = x , R0〉, {x 7→ 0, y 7→ 0}〉
l1−→ . . .

ln
−→

〈t0 : 〈skip, R ′
0〉|t1 : 〈skip, R ′

1〉, M
′〉

such that R ′
0(r0) = 0 and R ′

1(r1) = 0 ?
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Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0
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0(r0) = 0 and R ′

1(r1) = 0 ?

In this semantics: no



Back to the naive mutual exclusion example
Initial state: x=0 and y=0

Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

In other words: is there a trace

〈t0 : 〈x = 1; r0 = y , R0〉|t1 : 〈y = 1; r1 = x , R0〉, {x 7→ 0, y 7→ 0}〉
l1−→ . . .

ln
−→

〈t0 : 〈skip, R ′
0〉|t1 : 〈skip, R ′

1〉, M
′〉

such that R ′
0(r0) = 0 and R ′

1(r1) = 0 ?

In this semantics: no

But on x86 hardware, we saw it!



Options
1. the hardware is busted (either this instance or in general)
2. the program is bad
3. the model is wrong
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SC is not a good model of x86 (or of Power, ARM, Sparc,
Itanium...)



Options
1. the hardware is busted (either this instance or in general)
2. the program is bad
3. the model is wrong

SC is not a good model of x86 (or of Power, ARM, Sparc,
Itanium...)

Even though most work on verification, and many programmers,
assume SC...
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Similar Options
1. the hardware is busted
2. the compiler is busted
3. the program is bad
4. the model is wrong

SC is also not a good model of C, C++, Java,...



Similar Options
1. the hardware is busted
2. the compiler is busted
3. the program is bad
4. the model is wrong

SC is also not a good model of C, C++, Java,...

Even though most work on verification, and many programmers,
assume SC...



What’s going on? Relaxed Memory

Multiprocessors and compilers incorporate many performance
optimisations

(hierarchies of cache, load and store buffers, speculative execution, cache

protocols, common subexpression elimination, etc., etc.)

These are:

◮ unobservable by single-threaded code

◮ sometimes observable by concurrent code

Upshot: they provide only various relaxed (or weakly consistent)
memory models, not sequentially consistent memory.



New problem?

No: IBM System 370/158MP in 1972, already non-SC



But still a research question!

The mainstream architectures and languages are key interfaces

...but it’s been very unclear exactly how they behave.

More fundamentally: it’s been (and in significant ways still is)
unclear how we can specify that precisely.

As soon as we can do that, we can build above it:
explanation, testing, emulation, static/dynamic analysis,
model-checking, proof-based verification,....



x86



A Cautionary Tale
Intel 64/IA32 and AMD64 - before Aug. 2007 (Era of Vagueness)

‘Processor Ordering’model, informal
prose

Example: Linux Kernel mailing list,
Nov–Dec 1999 (143 posts)

Keywords: speculation, ordering,
cache, retire, causality

A one-instruction programming
question, a microarchitectural
debate!

1. spin unlock() Optimization On Intel
20 Nov 1999 - 7 Dec 1999 (143 posts) Archive Link: ”spin unlock optimization(i386)
Topics: BSD: FreeBSD, SMP
People: Linus Torvalds, Jeff V. Merkey, Erich Boleyn, Manfred Spraul, Peter Samuel-
son, Ingo Molnar
Manfred Spraul thought he’d found a way to shave spin unlock() down from
22 ticks for the ”lock; btrl $0,%0” asm code, to 1 tick for a simple ”movl
instruction, a huge gain. Later, he reported that Ingo Molnar noticed a 4% sp
in a benchmark test, making the optimization very valuable. Ingo also added that
same optimization cropped up in the FreeBSD mailing list a few days previously
Linus Torvalds poured cold water on the whole thing, saying:

It does NOT WORK!
Let the FreeBSD people use it, and let them get faster timings. They will
crash, eventually.
The window may be small, but if you do this, then suddenly spinlo
aren’t reliable any more.
The issue is not writes being issued in-order (although all the Intel CPU
books warn you NOT to assume that in-order write behaviour - I bet
won’t be the case in the long run).
The issue is that you have to have a serializing instruction in order
make sure that the processor doesn’t re-order things around the unlock.
For example, with a simple write, the CPU can legally delay a read that
happened inside the critical region (maybe it missed a cache line), and
a stale value for any of the reads that should have been serialized by
spinlock.
Note that I actually thought this was a legal optimization, and for a while
I had this in the kernel. It crashed. In random ways.
Note that the fact that it does not crash now is quite possibly because
either

◮ we have a lot less contention on our spinlocks these days. That
might hide the problem, because the spinlock will be fine (the
cache coherency still means that the spinlock itself works fine
it’s just that it no longer works reliably as an exclusion thing)



Resolved only by appeal to an
oracle:

don’t know this can bite in some cases.
Erich Boleyn, an Architect in an IA32 development group at Intel, also replied
Linus, pointing out a possible misconception in his proposed exploit. Regarding
code Linus posted, Erich replied:

It will always return 0. You don’t need ”spin unlock()” to be serializing.
The only thing you need is to make sure there is a store in ”spin unlock()”,
and that is kind of true by the fact that you’re changing something to be
observable on other processors.
The reason for this is that stores can only possibly be observed when
all prior instructions have retired (i.e. the store is not sent outside of
the processor until it is committed state, and the earlier instructions are
already committed by that time), so the any loads, stores, etc absolutely
have to have completed first, cache-miss or not.

He went on:
Since the instructions for the store in the spin unlock have to have been
externally observed for spin lock to be aquired (presuming a correctly func-
tioning spinlock, of course), then the earlier instructions to set ”b” to the
value of ”a”have to have completed first.
In general, IA32 is Processor Ordered for cacheable accesses. Speculation
doesn’t affect this. Also, stores are not observed speculatively on other
processors.

There was a long clarification discussion, resulting in a complete turnaround by
nus:

Everybody has convinced me that yes, the Intel ordering rules are strong
enough that all of this really is legal, and that’s what I wanted. I’ve
gotten sane explanations for why serialization (as opposed to just the
simple locked access) is required for the lock() side but not the unlock()
side, and that lack of symmetry was what bothered me the most.
Oliver made a strong case that the lack of symmetry can be adequately
explained by just simply the lack of symmetry wrt speculation of reads vs
writes. I feel comfortable again.
Thanks, guys, we’ll be that much faster due to this..

Erich then argued that serialization was not required for the lock() side either,
after a long and interesting discussion he apparently was unable to win people over.
In fact, as Peter Samuelson pointed out to me after KT publication (and many thanks
to him for it):

”You report that Linus was convinced to do the spinlock optimization
on Intel, but apparently someone has since changed his mind back. See
<asm-i386/spinlock.h> from 2.3.30pre5 and above:
/* * Sadly, some early PPro chips require the locked access,



IWP and AMD64, Aug. 2007/Oct. 2008 (Era of Causality)

Intel published a white paper (IWP) defining 8 informal-prose
principles, e.g.

P1. Loads are not reordered with older loads
P2. Stores are not reordered with older stores

supported by 10 litmus tests illustrating allowed or forbidden
behaviours, e.g.

Message Passing (MP)

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV EAX←[y] (read y=1)

MOV [y]←1 (write y=1) MOV EBX←[x] (read x=0)

Forbidden Final State: Thread 1:EAX=1 ∧ Thread 1:EBX=0



P3. Loads may be reordered with older stores to different locations
but not with older stores to the same location

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)

Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0



but not with older stores to the same location

Store Buffer (SB)

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)

Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

W
rite B

uffer

W
rite B

uffer

Shared Memory

ThreadThread



Litmus Test 2.4. Intra-processor forwarding is allowed
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[x] (read x=1) MOV ECX←[y] (read y=1)
MOV EBX←[y] (read y=0) MOV EDX←[x] (read x=0)

Allowed Final State: Thread 0:EBX=0 ∧ Thread 1:EDX=0
Thread 0:EAX=1 ∧ Thread 1:ECX=1



Litmus Test 2.4. Intra-processor forwarding is allowed
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[x] (read x=1) MOV ECX←[y] (read y=1)
MOV EBX←[y] (read y=0) MOV EDX←[x] (read x=0)

Allowed Final State: Thread 0:EBX=0 ∧ Thread 1:EDX=0
Thread 0:EAX=1 ∧ Thread 1:ECX=1

W
rite B

uffer

W
rite B

uffer

Shared Memory

ThreadThread



Problem 1: Weakness

Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)
(read y=0) (read x=0)

Allowed or Forbidden?



Problem 1: Weakness
Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)
(read y=0) (read x=0)

Allowed or Forbidden?

Microarchitecturally plausible? yes, e.g. with shared store buffers

W
rite B

uffer

Thread 1 Thread 3

W
rite B

uffer

Thread 0 Thread 2

Shared Memory



Problem 1: Weakness

Independent Reads of Independent Writes (IRIW)

Thread 0 Thread 1 Thread 2 Thread 3

(write x=1) (write y=1) (read x=1) (read y=1)
(read y=0) (read x=0)

Allowed or Forbidden?

◮ AMD3.14: Allowed

◮ IWP: ???

◮ Real hardware: unobserved

◮ Problem for normal programming: ?

Weakness: adding memory barriers does not recover SC, which was
assumed in a Sun implementation of the JMM



Problem 2: Ambiguity

P1–4. ...may be reordered with...

P5. Intel 64 memory ordering ensures transitive visibility of stores
— i.e. stores that are causally related appear to execute in an order
consistent with the causal relation

Write-to-Read Causality (WRC) (Litmus Test 2.5)
Thread 0 Thread 1 Thread 2

MOV [x]←1 (W x=1) MOV EAX←[x] (R x=1) MOV EBX←[y] (R y=1)

MOV [y]←1 (W y=1) MOV ECX←[x] (R x=0)

Forbidden Final State: Thread 1:EAX=1 ∧ Thread 2:EBX=1
∧ Thread 2:ECX=0



Problem 3: Unsoundness!

Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)

Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

Observed on real hardware, but not allowed by (any interpretation
we can make of) the IWP ‘principles’, if one reads ‘ordered’ as
referring to a single per-execution partial order.

(can see allowed in store-buffer microarchitecture)



Problem 3: Unsoundness!
Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)

Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

In the view of Thread 0:
a→b by P4: Reads may [...] not be reordered with older writes to the same location.
b→c by P1: Reads are not reordered with other reads.
c→d, otherwise c would read 2 from d
d→e by P3. Writes are not reordered with older reads.
so a:Wx=1 → e:Wx=2

But then that should be respected in the final state, by P6: In a multiprocessor system, stores to the same location

have a total order, and it isn’t.

(can see allowed in store-buffer microarchitecture)



Problem 3: Unsoundness!

Example from Paul Loewenstein:
n6

Thread 0 Thread 1

MOV [x]←1 (a:W x=1) MOV [y]←2 (d:W y=2)
MOV EAX←[x] (b:R x=1) MOV [x]←2 (e:W x=2)
MOV EBX←[y] (c:R y=0)

Allowed Final State: Thread 0:EAX=1 ∧ Thread 0:EBX=0 ∧ x=1

Observed on real hardware, but not allowed by (any interpretation
we can make of) the IWP ‘principles’.

(can see allowed in store-buffer microarchitecture)

So spec unsound (and also our POPL09 model based on it).



Intel SDM and AMD64, Nov. 2008 – Oct. 2015

Intel SDM rev. 29–55 and AMD 3.17–3.25

Not unsound in the previous sense

Explicitly exclude IRIW, so not weak in that sense. New principle:

Any two stores are seen in a consistent order by
processors other than those performing the stores

But, still ambiguous, and the view by those processors is left
entirely unspecified



Intel:
https://software.intel.com/sites/default/files/managed/7c/f1/253668-sdm-vol-3a.pdf

(rev. 35 on 6/10/2010, rev. 55 on 3/10/2015, rev. 70 on
1/11/2019).
See especially SDM Vol. 3A, Ch. 8, Sections 8.1–8.3

AMD:
http://support.amd.com/TechDocs/24593.pdf

(rev. 3.17 on 6/10/2010, rev. 3.25 on 3/10/2015, rev. 3.32 on
1/11/2019).
See especially APM Vol. 2, Ch. 7, Sections 7.1–7.2

https://software.intel.com/sites/default/files/managed/7c/f1/253668-sdm-vol-3a.pdf
http://support.amd.com/TechDocs/24593.pdf


Inventing a Usable Abstraction

Have to be:

◮ Unambiguous

◮ Sound w.r.t. experimentally observable behaviour

◮ Easy to understand

◮ Consistent with what we know of vendors intentions

◮ Consistent with expert-programmer reasoning

Key facts:

◮ Store buffering (with forwarding) is observable

◮ IRIW is not observable, and is forbidden by the recent docs

◮ Various other reorderings are not observable and are forbidden

These suggest that x86 is, in practice, like SPARC TSO.



x86-TSO Abstract Machine

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread



x86-TSO Abstract Machine

As for Sequential Consistency, we separate the programming
language (here, really the instruction semantics) and the x86-TSO
memory model.

(the memory model describes the behaviour of the stuff in the
dotted box)

Put the instruction semantics and abstract machine in parallel,
exchanging read and write messages (and lock/unlock messages).



x86-TSO Abstract Machine: Interface

Labels
l ::= t:W x=v a write of value v to address x by thread t

| t:R x=v a read of v from x by t
| t:τ an internal action of the thread
| t:τ x=v an internal action of the abstract machine,

moving x = v from the write buffer on t to
shared memory

| t:B an MFENCE memory barrier by t
| t:L start of an instruction with LOCK prefix by t
| t:U end of an instruction with LOCK prefix by t

where

◮ t is a hardware thread id, of type tid,

◮ x and y are memory addresses, of type addr

◮ v and w are machine words, of type value



x86-TSO Abstract Machine: Machine States

An x86-TSO abstract machine state m is a record

m : 〈[ M : addr→ value;
B : tid→ (addr× value) list;
L : tid option]〉

Here:

◮ m.M is the shared memory, mapping addresses to values

◮ m.B gives the store buffer for each thread, most recent at the
head

◮ m.L is the global machine lock indicating when a thread has
exclusive access to memory

Write m0 for the initial state with m.M = M0, s.B empty for all
threads, and m.L = None (lock not taken).



x86-TSO Abstract Machine: Auxiliary Definitions

Say there are no pending writes in t’s buffer m.B(t) for address x
if there are no (x , v) elements in m.B(t).

Say t is not blocked in machine state s if either it holds the lock
(m.L = Some t) or the lock is not held (m.L = None).



x86-TSO Abstract Machine: Behaviour

RM: Read from memory

not blocked(m, t)
m.M(x) = v
no pending(m.B(t), x)

m
t:R x=v
−−−−−−→ m

Thread t can read v from memory at address x if t is not blocked,
the memory does contain v at x , and there are no writes to x in
t’s store buffer.



x86-TSO Abstract Machine: Behaviour

RB: Read from write buffer

not blocked(m, t)
∃b1 b2. m.B(t) = b1 ++[(x , v)] ++b2
no pending(b1, x)

m
t:R x=v
−−−−−−→ m

Thread t can read v from its store buffer for address x if t is not
blocked and has v as the newest write to x in its buffer;



x86-TSO Abstract Machine: Behaviour

WB: Write to write buffer

m
t:W x=v
−−−−−−−→ m ⊕ 〈[B :=m.B ⊕ (t 7→ ([(x , v)] ++m.B(t)))]〉

Thread t can write v to its store buffer for address x at any time;



x86-TSO Abstract Machine: Behaviour

WM: Write from write buffer to memory

not blocked(m, t)
m.B(t) = b ++[(x , v)]

m
t:τ x=v−−−−−→ m ⊕ 〈[M :=m.M ⊕ (x 7→ v)]〉 ⊕ 〈[B :=m.B ⊕ (t 7→ b)]〉

If t is not blocked, it can silently dequeue the oldest write from its
store buffer and place the value in memory at the given address,
without coordinating with any hardware thread



x86-TSO Abstract Machine: Behaviour

...rules for lock, unlock, and mfence later



Notation Reference

Some and None construct optional values

(·, ·) builds tuples

[ ] builds lists

++ appends lists

· ⊕ 〈[· := ·]〉 updates records

·(· 7→ ·) updates functions.
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First Example, Revisited
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MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
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Lock
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Strengthening the model: the MFENCE memory barrier

MFENCE: an x86 assembly instruction

...waits for local write buffer to drain (or forces it – is that an
observable distinction?)

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MFENCE MFENCE
MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)

Forbidden Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

NB: no inter-thread synchronisation



x86-TSO Abstract Machine: Behaviour

B: Barrier

m.B(t) = [ ]

m
t:B
−−→ m

If t’s store buffer is empty, it can execute an MFENCE (otherwise
the MFENCE blocks until that becomes true).



Does MFENCE restore SC?

For any process P, define insert fences(P) to be the process with
all s1; s2 replaced by s1; mfence; s2 (formally define this recursively
over statements, threads, and processes).

For any trace l1, . . . , lk of an x86-TSO system state, define
erase flushes(l1, . . . , lk) to be the trace with all t:τ x=v labels
erased (formally define this recursively over the list of labels).

Theorem (?)

For all processes P,

traces(〈P, m0〉) = erase flushes(traces(〈insert fences(P), mtso0〉))



Adding Read-Modify-Write instructions

x86 is not RISC – there are many instructions that read and write
memory, e.g.

Thread 0 Thread 1

INC x INC x



Adding Read-Modify-Write instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)

Allowed Final State: [x]=1

Non-atomic (even in SC semantics)
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Adding Read-Modify-Write instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)

Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

Thread 0 Thread 1

LOCK;INC x LOCK;INC x

Forbidden Final State: [x]=1

Also LOCK’d ADD, SUB, XCHG, etc., and CMPXCHG

Being able to do that atomically is important for many low-level algorithms. On x86 can also do for other sizes,
including for 8B and 16B adjacent-doublesize quantities



CAS

Compare-and-swap (CAS):

CMPXCHG dest←src

compares EAX with dest, then:

◮ if equal, set ZF=1 and load src into dest,

◮ otherwise, clear ZF=0 and load dest into EAX

All this is one atomic step.

Can use to solve consensus problem...



Adding LOCK’d instructions to the model

1. extend the tiny language syntax

2. extend the tiny language semantics so that whatever
represents a LOCK;INC x will (in thread t) do

2.1 t:L
2.2 t:R x=v for an arbitrary v
2.3 t:W x=(v + 1)
2.4 t:U

3. extend the x86-TSO abstract machine with rules for the
LOCK and UNLOCK transitions

(this lets us reuse the semantics for INC for LOCK;INC, and to do
so uniformly for all RMWs)



x86-TSO Abstract Machine: Behaviour

L: Lock

m.L = None
m.B(t) = [ ]

m
t:L
−−→ m ⊕ 〈[L := Some(t)]〉

If the lock is not held and its buffer is empty, thread t can begin a
LOCK’d instruction.

Note that if a hardware thread t comes to a LOCK’d instruction when its

store buffer is not empty, the machine can take one or more t:τ x=v steps

to empty the buffer and then proceed.



x86-TSO Abstract Machine: Behaviour

U: Unlock

m.L = Some(t)
m.B(t) = [ ]

m
t:U
−−→ m ⊕ 〈[L :=None]〉

If t holds the lock, and its store buffer is empty, it can end a
LOCK’d instruction.



Restoring SC with RMWs



CAS cost

From Paul McKenney (http://www2.rdrop.com/~paulmck/RCU/):

http://www2.rdrop.com/~paulmck/RCU/


NB: Processors, Hardware Threads, and Threads

Our ‘Threads’ are hardware threads.

Some processors have simultaneous multithreading (Intel:
hyperthreading): multiple hardware threads/core sharing resources.

If the OS flushes store buffers on context switch, software threads
should have the same semantics.



NB: Not All of x86

Coherent write-back memory (almost all code), but assume

◮ no exceptions

◮ no misaligned or mixed-size accesses

◮ no ‘non-temporal’ operations

◮ no device memory

◮ no self-modifying code

◮ no page-table changes

Also no fairness properties: finite executions only, in this course.



x86-TSO vs SPARC TSO

x86-TSO based on SPARC TSO

SPARC defined

◮ TSO (Total Store Order)

◮ PSO (Partial Store Order)

◮ RMO (Relaxed Memory Order)

But as far as we know, only TSO has really been used
(implementations have not been as weak as PSO/RMO or software
has turned them off).

The SPARC Architecture Manual, Version 8, 1992. http://sparc.org/wp-content/uploads/2014/01/v8.pdf.gz

App. K defines TSO and PSO.

Version 9, Revision SAV09R1459912. 1994 http://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz Ch. 8
and App. D define TSO, PSO, RMO

(in an axiomatic style – see later)

http://sparc.org/wp-content/uploads/2014/01/v8.pdf.gz
http://sparc.org/wp-content/uploads/2014/01/SPARCV9.pdf.gz


NB: This is an Abstract Machine

A tool to specify exactly and only the programmer-visible behavior,
not a description of the implementation internals

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread ⊇beh

6=hw

Force: Of the internal optimizations of processors, only per-thread
FIFO write buffers are visible to programmers.

Still quite a loose spec: unbounded buffers, nondeterministic
unbuffering, arbitrary interleaving



x86 spinlock example



Adding primitive mutexes to our source language

Statements s ::= . . . | lock x | unlock x

Say lock free if it holds 0, taken otherwise.

Don’t mix locations used as locks and other locations.

Semantics (outline): lock x has to atomically (a) check the mutex
is currently free, (b) change its state to taken, and (c) let the
thread proceed.
unlock x has to change its state to free.

Record of which thread is holding a locked lock? Re-entrancy?



Using a Mutex

Consider

P = t1 : 〈lockm; r = x; x = r + 1; unlockm, R0〉
| t2 : 〈lockm; r = x; x = r + 7; unlockm, R0〉

in the initial store M0:

〈t1 : 〈skip; r = x; x = r + 1; unlockm, R0〉|t2 : 〈lockm; r = x; x = r + 7; unlockm, R0〉, M
′〉

∗

++❲❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲

〈P, M0〉

t1:LOCKm
99ttttttttt

t2:LOCKm
%%❏

❏❏
❏❏

❏❏
❏❏

〈t1 : 〈skip, R1〉|t2 : 〈skip, R2〉, M0 ⊕ (x 7→ 8, m 7→ 0)〉

〈t1 : 〈lockm; r = x; x = r + 1; unlockm, R0〉|t2 : 〈skip; r = x; x = r + 7; unlockm, R0〉, M
′′〉

∗

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

where M ′ = M0 ⊕ (m 7→ 1)



Deadlock

lockm can block (that’s the point). Hence, you can deadlock.

P = t1 : 〈lockm1; lockm2; x = 1; unlockm1; unlockm2, R0〉
| t2 : 〈lockm2; lockm1; x = 2; unlockm1; unlockm2, R0〉



Implementing mutexes with simple x86 spinlocks

Implementing the language-level mutex with x86-level simple
spinlocks

lock x

critical section

unlock x



Implementing mutexes with simple x86 spinlocks

while atomic decrement(x) < 0 {
skip

}

critical section

unlock(x)

Invariant:
lock taken if x ≤ 0
lock free if x=1

(NB: different internal representation from high-level semantics)



Implementing mutexes with simple x86 spinlocks

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

unlock(x)



Implementing mutexes with simple x86 spinlocks

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

x ←1 OR atomic write(x, 1)



Implementing mutexes with simple x86 spinlocks

while atomic decrement(x) < 0 {
while x ≤ 0 { skip }

}

critical section

x ←1



Simple x86 Spinlock

The address of x is stored in register eax.

acquire: LOCK DEC [eax]
JNS enter

spin: CMP [eax],0
JLE spin
JMP acquire

enter:

critical section

release: MOV [eax]←1

From Linux v2.6.24.7

NB: don’t confuse levels — we’re using x86 atomic (LOCK’d) instructions in a Linux spinlock implementation.



Spinlock Example (SC)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1

x = 1
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Spinlock Example (SC)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1

x = 1
x = 0 acquire
x = 0 critical
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Spinlock SC Data Race
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Spinlock Example (x86-TSO)

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

Shared Memory Thread 0 Thread 1

x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = -1 release, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x
x = 0 acquire



Triangular Races (Owens)

◮ Read/write data race

◮ Only if there is a bufferable write preceding the read

Triangular race
... y ←v2
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...
x←v1 x
...

...
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Triangular Races

◮ Read/write data race

◮ Only if there is a bufferable write preceding the read

Triangular race Triangular race
... y ←v2
...

...
x←v1 x
...

...

... y ←v2

...
...

lock x←v1 x
...

...



TRF Principle for x86-TSO

Say a program is triangular race free (TRF) if no SC execution has
a triangular race.

Theorem (TRF)

If a program is TRF then any x86-TSO execution is equivalent to
some SC execution.

If a program has no triangular races when run on a sequentially
consistent memory, then

x86-TSO = SC

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

Lock Shared Memory

Thread Thread



Spinlock Data Race

while atomic decrement(x) < 0 {
while x ≤ 0 { skip } }

critical section
x ←1

x = 1
x = 0 acquire
x = -1 critical acquire
x = -1 critical spin, reading x
x = 1 release, writing x

◮ acquire’s writes are locked



Program Correctness

Theorem
Any well-synchronized program that uses the spinlock correctly is
TRF.

Theorem
Spinlock-enforced critical sections provide mutual exclusion.



Other Applications of TRF

A concurrency bug in the HotSpot JVM

◮ Found by Dave Dice (Sun) in Nov. 2009

◮ java.util.concurrent.LockSupport (‘Parker’)

◮ Platform specific C++

◮ Rare hung thread

◮ Since“day-one” (missing MFENCE)

◮ Simple explanation in terms of TRF

Also: Ticketed spinlock, Linux SeqLocks, Double-checked locking



Architectures



What About the Specs?

Hardware manufacturers document architectures:

Intel 64 and IA-32 Architectures Software Developer’s Manual
AMD64 Architecture Programmer’s Manual
Power ISA specification

ARM Architecture Reference Manual

and programming languages (at best) are defined by standards:

ISO/IEC 9899:1999 Programming languages – C

J2SE 5.0 (September 30, 2004)

◮ loose specifications,

◮ claimed to cover a wide range of past and future
implementations.



What About the Specs?

Hardware manufacturers document architectures:

Intel 64 and IA-32 Architectures Software Developer’s Manual
AMD64 Architecture Programmer’s Manual
Power ISA specification

ARM Architecture Reference Manual

and programming languages (at best) are defined by standards:

ISO/IEC 9899:1999 Programming languages – C

J2SE 5.0 (September 30, 2004)

◮ loose specifications,

◮ claimed to cover a wide range of past and future
implementations.

Flawed. Always confusing, sometimes wrong.



What About the Specs?

“all that horrible horribly incomprehensible and confusing
[...] text that no-one can parse or reason with — not even
the people who wrote it”

Anonymous Processor Architect, 2011



Why all these problems?

Recall that the vendor architectures are:

◮ loose specifications;

◮ claimed to cover a wide range of past and future processor
implementations.

Architectures should:

◮ reveal enough for effective programming;

◮ without revealing sensitive IP; and

◮ without unduly constraining future processor design.

There’s a big tension between these, compounded by internal
politics and inertia.



Fundamental Problem

Architecture texts: informal prose attempts at subtle loose
specifications

In a multiprocessor system, maintenance of cache consis-
tency may, in rare circumstances, require intervention by
system software.

(Intel SDM, Nov. 2006, vol 3a, 10-5)



Fundamental Problem

Architecture texts: informal prose attempts at subtle loose
specifications

Fundamental problem: prose specifications cannot be used

◮ to test programs against, or

◮ to test processor implementations, or

◮ to prove properties of either, or even

◮ to communicate precisely.

(in a real sense, the architectures don’t exist).

The models we’re developing here can be used for all these things.
An ‘architecture’ should be such a precisely defined mathematical
artifact.



Validating the models?

We are inventing new abstractions, not just formalising existing
clear-but-non-mathematical specs. So why should anyone believe
them?

◮ some aspects of existing arch specs are clear (a few
concurrency examples, much of ISA spec)

◮ experimental testing

◮ models should be sound w.r.t. experimentally observable
behaviour of existing h/w (modulo h/w bugs)

◮ but the architectural intent may be (often is) looser

◮ discussion with architects

◮ consistency with expert-programmer intuition

◮ formalisation (at least mathematically consistent)

◮ proofs of metatheory



Tests and Testing



‘Empirical Science of the Artificial’

Treating these human-made artifacts as objects of empirical science

In principle (modulo manufacturing defects): their structure and
behaviour are completely known.

In practice: the structure is too complex for anyone to fully
understand, the emergent behaviour is not well-understood, and
there are commercial confidentiality issues.



Litmus Testing

Initial state: x=0 and y=0

Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0



Litmus Testing
Initial state: x=0 and y=0

Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

Step 1: Get the compiler out of the way, writing tests in assembly:
SB.litmus:

X86 SB ""

{x = 0; y = 0};

P0 | P1 ;

mov [x], 1 | mov [y], 1 ;

mov EAX, [y] | mov EBX, [x] ;

exists (P0:EAX = 0 /\ P1:EBX = 0);



Litmus Testing

Step 2: Want to run that test

◮ starting in a wide range of the processor’s internal states
(cache-line states, store-buffer states, pipeline states, ...),

◮ with the threads roughly synchronised, and

◮ with a wide range of timing and interfering activity.

Our litmus tool takes a test and compiles it to a program (C with
embedded assembly) that does that.

Basic idea: have an array for each location (x, y) and the observed
results; run many instances of test in a randomised order.

First version: Braibant, Sarkar, Zappa Nardelli [x86-CC, POPL09].
Now mostly Maranget: [TACAS11]



Litmus Testing

Install via opam, or download litmus:
http://diy.inria.fr/sources/litmus.tar.gz

Untar, edit the Makefile to set the install PREFIX (e.g. to the
untar’d directory).

make all (needs OCaml) and make install

./litmus -mach corei7.cfg testsuite/X86/SB.litmus

Docs at http://diy.inria.fr/doc/litmus.html

More tests on course web page.

http://diy.inria.fr/sources/litmus.tar.gz
http://diy.inria.fr/doc/litmus.html


Litmus Output (1/2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Results for ../../../sem/WeakMemory/litmus.new/x86/SB.litmus %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X86 SB

"Loads may be reordered with older stores to different locations"

{x=0; y=0;}

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[y] | MOV EBX,[x] ;

exists (0:EAX=0 /\ 1:EBX=0)

Generated assembler

#START _litmus_P1

movl $1,(%rdi,%rcx)

movl (%rdx,%rcx),%eax

#START _litmus_P0

movl $1,(%rsi,%rdx)

movl (%rdi,%rdx),%eax



Litmus Output (2/2)

Test SB Allowed

Histogram (4 states)

11 *>0:EAX=0; 1:EBX=0;

499985:>0:EAX=1; 1:EBX=0;

499991:>0:EAX=0; 1:EBX=1;

13 :>0:EAX=1; 1:EBX=1;

Ok

Witnesses

Positive: 11, Negative: 999989

Condition exists (0:EAX=0 /\ 1:EBX=0) is validated

Hash=d907d5adfff1644c962c0d8ecb45bbff

Observation SB Sometimes 11 999989

Time SB 0.17

...and logging /proc/cpuinfo, litmus options, and gcc options

Good practice: the litmus file condition identifies a particular outcome of interest (often enough to completely
determine the reads-from and coherence relations of an execution), but does not say whether that outcome is
allowed or forbidden in any particular model; that’s kept elsewhere.



What’s a Test?

Initial state: x=0 and y=0

Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0



What’s a Test?

Initial state: x=0 and y=0

Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

In the operational model, is there a trace

〈t0 : 〈x = 1; r0 = y , R0〉|t1 : 〈y = 1; r1 = x , R0〉, {x 7→ 0, y 7→ 0}〉
l1−→ . . .

ln
−→

〈t0 : 〈skip, R ′
0〉|t1 : 〈skip, R ′

1〉, M
′〉

such that R ′
0(r0) = 0 and R ′

1(r1) = 0 ?



Candidate Execution Diagrams
That final condition identifies a set of executions, with particular
read and write events; we can abstract from the threadwise
semantics and just draw those:

Test SB

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

◮ in these diagrams, the events are organised by threads, we elide the thread ids,
but we give each event a unique id a, b, . . ..

◮ we draw program order (po) edges within each thread;

◮ we draw reads-from (rf) edges from each write (or a red dot for the initial state)
to all reads that read from it;



Coherence

Conventional hardware architectures guarantee coherence:

◮ in any execution, for each location, there is a total order over
all the writes to that location, and for each thread the order is
consistent with the thread’s program-order for its reads and
writes to that location; or (loosely)

◮ in any execution, for each location, the execution restricted to
just the reads and writes to that location is SC.

In simple hardware implementations, that’s the order in which the
processors gain write access to the cache line.



From-reads
Given that, we can think of a read event as“before” the
coherence-successors of the write it reads from.

b:tj :W x = 2

c:tk :W x = 3

d:tr :R x = 1

a:ti :W x = 1

co

co

fr

fr

co

co

rf



From-reads

Given that, we can think of a read event as“before” the
coherence-successors of the write it reads from.

Given a candidate execution with a coherence order co over the
writes to x, and a reads-from relation rf from writes to x to the
reads that read from them, define the from-reads relation fr to
relate each read to the co-successors of the write it reads from (or
to all writes to x if it reads from the initial state).

r
fr
−→ w iff (∃w0. w0

co
−→ w ∧ w0

rf
−→ r) ∨

(¬∃w0. w0
rf
−→ r)

(co is an irreflexive transitive relation)



The SB cycle

Test SB

a: W[x]=1

b: R[y]=0

c: W[y]=1

d: R[x]=0

Thread 0 Thread 1

po po
frfr

A more abstract characterisation of why this execution is non-SC?



Candidate Executions, more precisely

Forget the memory states Mi and focus just on the read and write events. Give them
ids a, b, . . . (unique within an execution): a : t : R x=n and a : t : W x=n.
Say a candidate pre-execution E consists of

◮ a finite set E of such events

◮ program order (po), an irreflexive transitive relation over E
[intuitively, from a control-flow unfolding and choice of arbitrary memory read values of the source program]

Say a candidate execution witness for E , X , consists of with

◮ reads-from (rf ), a relation over E relating writes to the reads that read from
them (with same address and value)
[note this is intensional: it identifies which write, not just the value]

◮ coherence (co), an irreflexve transitive relation over E relating only writes that
are to the same address; total when restricted to the writes of each address
separately
[intuitively, the hardware coherence order for each address]



SC, said differently again: pre-executions
Say a candidate pre-execution E is SC-L if there exists a total
order sc over all its events such that for all read events
er = (a : t : R x=n) ∈ E , either n is the value of the most recent
(w.r.t. sc) write to x , if there is one, or 0, otherwise.

Theorem (?)

E is SC-L iff there exists a trace ~l ∈ traces(M0) of M0 such that
the events of E are the labels of ~l (with a choice of unique id for
each) and po is the union of the order of ~l restricted to each
thread.

Say a candidate pre-execution E is consistent with the threadwise
semantics of process P if there exists a trace ~l ∈ traces(P) of P
such that the events of E are the labels of ~l (with a choice of
unique id for each) and po is the union of the order of ~l restricted
to each thread.



SC, said differently again: “Axiomatically”

Say a candidate pre-execution E and execution witness X are SC-A
if

acyclic(po ∪ rf ∪ co ∪ fr)

Theorem (?)

E is SC-L iff there exists an execution witness X (satisfying the
well-formedness conditions of the last-but-one slide) such that
E ,X is SC-A.

This characterisation of SC is existentially quantifying over
irrelevant order...



How to generate good tests?

◮ hand-crafted test programs [RAPA, Collier]

◮ hand-crafted litmus tests

◮ exhaustive or random small program generation

◮ from executions that (minimally?) violate
acyclic(po ∪ rf ∪ co ∪ fr)

...given such an execution, construct a litmus test program
and final condition that picks out that execution

[diy tool of Alglave and Maranget
http://diy.inria.fr/doc/gen.html; and Shasha and Snir,
TOPLAS 1988]

◮ systematic families of those (see periodic table, later)

Accumulated library of 1000’s of litmus tests.

http://diy.inria.fr/doc/gen.html


How to compare test results and models?

Need model to be executable as a test oracle: given a litmus test,
want to compute the set of all results the model permits.

Then compare that set with the set of all results observed running
test (with litmus harness) on actual hardware.

model experiment conclusion

Y Y
Y – model is looser (or testing not aggressive)
– Y model not sound (or hardware bug)
– –



The SC semantics as executable test oracles

Given P, either:

1. enumerate entire graph of 〈P, M0〉 transition system

(maybe with some partial-order reduction), or

2. 2.1 enumerate all pre-executions E , by enumerating entire graph of
P threadwise semantics transition system;

2.2 for each E , enumerate all pairs of relations over the events (for
rf and co, to make a well-formed execution witness X ); and

2.3 discard those that don’t satisfy the SC-A acyclicity predicate of
E ,X .

(actually for (1), use an inductive-on-syntax characterisation of the set of all pre-executions of a process)



These are operational and axiomatic styles of defining relaxed
memory models.
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