
A word on C11/C++11 low-level atomics
std::atomic<int> flag0(0),flag1(0),turn(0);

void lock(unsigned index) {
 if (0 == index) {
 flag0.store(1, std::memory_order_relaxed);
 turn.exchange(1, std::memory_order_acq_rel);

 while (flag1.load(std::memory_order_acquire)
 && 1 == turn.load(std::memory_order_relaxed))
 std::this_thread::yield();
 } else {
 flag1.store(1, std::memory_order_relaxed);
 turn.exchange(0, std::memory_order_acq_rel);

 while (flag0.load(std::memory_order_acquire)
 && 0 == turn.load(std::memory_order_relaxed))
 std::this_thread::yield();
 }
}

void unlock(unsigned index) {
 if (0 == index) {
 flag0.store(0, std::memory_order_release);
 } else {
 flag1.store(0, std::memory_order_release);
 }
}

Atomic variable declaration

New syntax for
memory accesses

Qualifier

89Monday 29 December 14

Low-level atomics

MO_SEQ_CST

MO_RELAXED

MO_RELEASE / MO_ACQUIRE

MO_RELEASE / MO_CONSUME

LESS RELAXED

MORE RELAXED

90Monday 29 December 14

MO_SEQ_CST

The compiler must ensure that MO_SEQ_CST accesses have
sequentially consistent semantics.

Thread 0 Thread 1

x.store(1,MO_SEQ_CST) y.store(1,MO_SEQ_CST)

r1 = y.load(MO_SEQ_CST) r2 = x.load(MO_SEQ_CST)

The program above cannot end with r1 = r2 = 0.

Sample compilation on x86:
store: MOV; MFENCE
load: MOV

Sample compilation on Power:
store: HWSYNC; ST
load: HWSYNC; LD; CMP; BC; ISYNC

91Monday 29 December 14

MO_RELEASE / MO_ACQUIRE

Supports a fast implementation of the message passing idiom:

Thread 0 Thread 1

x.store(1,MO_RELAXED) r1 = y.load(MO_ACQUIRE)

y.store(1,MO_RELEASE) r2 = x.load(MO_RELAXED)

The program above cannot end with r1 = 1 and r2 = 0.

Sample compilation on x86:
store: MOV
load: MOV

Sample compilation on Power:
store: LWSYNC; ST
load: LD; CMP; BC; ISYNC

Accesses to the data structure can be reordered/optimised (MO_RELAXED).

92Monday 29 December 14

MO_RELEASE / MO_CONSUME

Supports a fast implementation of the message passing idiom on Power:

Thread 0 Thread 1

x.store(1,MO_RELAXED) r1 = y.load(x,MO_CONSUME)

y.store(&x,MO_RELEASE) r2 = (*r1).load(MO_RELAXED)

The program above cannot end with r1 = 1 and r2 = 0.

Sample compilation on x86:
store: MOV
load: MOV

Sample compilation on Power:
store: LWSYNC; ST
load: LD

The two loads have an address dependency, Power won't reorder them.

93Monday 29 December 14

