The $C 1 x$ and $C++11$ concurrency model

Mark Batty

University of Cambridge

ISO C1x/C ++11 concurrency

Sequential consistency

ISO $\mathrm{C} 1 \mathrm{x} / \mathrm{C}++11$ concurrency

Sequential consistency

Pthreads

ISO C1x/C++11 concurrency

Sequential consistency

Pthreads

Java

ISO $\mathrm{C} 1 \mathrm{x} / \mathrm{C}++11$ concurrency

Sequential consistency

Pthreads

Java

Expose hardware model (e.g. ClightTSO)

ISO C1x/C++11 concurrency

Sequential consistency

Pthreads

Java

Expose hardware model (e.g. ClightTSO)
$\mathrm{C}++11 / \mathrm{C} 1 \mathrm{x}: \mathrm{SC}$ for data race free programs, almost...

$\mathrm{C}++11$: the next $\mathrm{C}++$

1300 page prose specification defined by the ISO.

The design is a detailed compromise:

- hardware/compiler implementability
- useful abstractions
- broad spectrum of programmers

$\mathrm{C}++11$: the next $\mathrm{C}++$

1300 page prose specification defined by the ISO.

The design is a detailed compromise:

- hardware/compiler implementability
- useful abstractions
- broad spectrum of programmers

We fixed serious problems in both $\mathrm{C}++11$ and C 1 x , both now finalised.

The $\mathrm{C} 1 \mathrm{x} / \mathrm{C}++11$ memory model

The $\mathrm{C} 1 \mathrm{x} / \mathrm{C}++11$ memory model

- top level
- sequential execution
- simple concurrency
- expert concurrency
- very expert concurrency

How may a program execute?

The memory model is factored out from a symbolic operational semantics.

$$
\text { 1. } P \mapsto E_{1}, \ldots, E_{n}
$$

How may a program execute?

The memory model is factored out from a symbolic operational semantics.

$$
\begin{aligned}
& \text { 1. } P \mapsto E_{1}, \ldots, E_{n} \\
& \text { 2. } E_{i} \mapsto X_{i 1}, \ldots, X_{i m}
\end{aligned}
$$

How may a program execute?

The memory model is factored out from a symbolic operational semantics.

$$
\begin{aligned}
& \text { 1. } P \mapsto E_{1}, \ldots, E_{n} \\
& \text { 2. } E_{i} \mapsto X_{i 1}, \ldots, X_{i m}
\end{aligned}
$$

3. is there an $X_{i j}$ with a race? (actually, several kinds...)

The relations of a pre-execution

Each symbolic execution, E_{i}, contains:
sb - sequenced before
asw - additional synchronizes with
dd - data-dependence

The relations of a pre-execution

Each symbolic execution, E_{i}, contains:
sb - sequenced before
asw - additional synchronizes with
dd - data-dependence

Each full execution, $X_{i j}$, also has:
rf - reads from
sc - SC order
mo - modification order

A single threaded program

int main() \{
int $\mathrm{x}=2$;
int $y=0$;
$y=(x==x)$;
return 0; \}

A single threaded program

A data race

$$
\begin{aligned}
& \text { int } y, x=2 ; \\
& x=3 ;
\end{aligned}
$$

A data race

$$
\begin{aligned}
& \text { int } y, x=2 ; \\
& x=3 ;
\end{aligned}
$$

Simple concurrency: Decker's example and SC

atomic_int $\mathrm{x}=0$;
atomic_int $y=0$;
x.store(1, seq_cst); |y.store(1, seq_cst);
y.load(seq_cst);

Simple concurrency: Decker's example and SC

atomic_int $\mathrm{x}=0$;
atomic_int y = 0;
x.store(1, seq_cst);
y.store(1, seq_cst);
x.load (seq_cst) ;

$$
\begin{gathered}
c: W_{s q} y=1 \\
s b \\
d: R_{s c} x=0
\end{gathered}
$$

$e: W_{s c} x=1$
$s b$
$f: R_{s c} y=0$

Simple concurrency: Decker's example and SC

atomic_int $\mathrm{x}=0$;
atomic_int y = 0;
x.store(1, seq_cst); |y.store(1, seq_cst);
y.load(seq_cst); x.load(seq_cst);

Simple concurrency: Decker's example and SC

```
atomic_int \(\mathrm{x}=0\);
atomic_int y = 0;
```

x.store(1, seq_cst);
y.load(seq_cst);
y.store(1, seq_cst);
x.load (seq_cst);

An example rule

let sc_reads_restricted actions rf sc mo $h b=$ $\forall(a, b) \in r f$. is_seq_cst $b->$
((adjacent_less_than_such_that
(fun $c \rightarrow$ is_write $c \wedge$ same_location $b c$)
sc actions ab)
$\vee \ldots$)

Using only seq_cst reads and writes gives SC.
(Initialization is not seq_cst though...)

Expert concurrency: The release-acquire idiom

$/ /$ sender	// receiver $\mathrm{x}=\ldots$ $\mathrm{y} . \operatorname{store(1,~release);~}$
while (0 == y.load(acquire));	
$\mathrm{r}=\mathrm{x} ;$	

Expert concurrency: The release-acquire idiom

// sender	
$\mathrm{x}=\ldots$	
$\mathrm{y} \cdot \operatorname{store(1,~release);~;~}$	// receiver while $(0==\mathrm{y} . \operatorname{load}($ acquire $)) ;$ $\mathrm{r}=\mathrm{x} ;$

Expert concurrency: The release-acquire idiom

$/ /$ sender	// receiver $\mathrm{x}=\ldots$ $\mathrm{y} . \operatorname{store(1,~release);~}$
while (0 == y.load(acquire));	
$\mathrm{r}=\mathrm{x} ;$	

Expert concurrency: The release-acquire idiom

```
// sender
\(\mathrm{x}=\ldots\).
y.store(1, release);
// receiver
while ( \(0==\mathrm{y} . \mathrm{load}(\) acquire \()\) );
\(\mathrm{r}=\mathrm{x}\);
```

$a: W_{\text {np }}{ }_{s b}{ }^{x=1} h b$
$\mathrm{b}: \mathrm{W}_{\text {rel }} \mathrm{X}=1$

$$
\begin{aligned}
& \xrightarrow{\text { simple-happens-before }}= \\
& (\stackrel{\text { sequenced-before }}{\longrightarrow} \cup \xrightarrow{\text { synchronizes-with }})^{+}
\end{aligned}
$$

Locks and unlocks

Unlocks and locks synchronise too:
int $x, r ;$
mutex m;

$$
\begin{array}{l|l}
\mathrm{m} . \operatorname{lock}() ; & \mathrm{m} \cdot \operatorname{lock}() ; \\
\mathrm{x}=\ldots & \mathrm{m}=\mathrm{x} \\
\mathrm{~m} . \operatorname{unlock}() ; &
\end{array}
$$

Locks and unlocks

Unlocks and locks synchronise too:

$$
\text { int } x, r ;
$$

mutex m;

$$
\begin{array}{l|l}
\mathrm{m} . \operatorname{lock}() ; & \mathrm{m} \cdot \operatorname{lock}() ; \\
\mathrm{x}=\ldots & \mathrm{r}=\mathrm{x} \\
\mathrm{~m} \cdot \operatorname{unlock}() ; &
\end{array}
$$

$h: L$ mutex
$s b$
$i: R_{n a} x=1$
f:U mutex

Locks and unlocks

Unlocks and locks synchronise too:

$$
\text { int } x, r ;
$$

mutex m;

$$
\begin{array}{l|l}
\mathrm{m} . \operatorname{lock}() ; & \mathrm{m} \cdot \operatorname{lock}() ; \\
\mathrm{x}=\ldots & \mathrm{m}=\mathrm{x} ; \\
\mathrm{m} \cdot \operatorname{unlock}() ; &
\end{array}
$$

f:U mutex

Locks and unlocks

Unlocks and locks synchronise too:

$$
\text { int } x, r ;
$$

mutex m;

m. $\operatorname{lock}() ;$	$\mathrm{m} \cdot \operatorname{lock}() ;$
$\mathrm{x}=\ldots$	
$\mathrm{m} . \operatorname{unlock}() ;$	$\mathrm{r}=\mathrm{x} ;$

f:U mutex

Locks and unlocks

Unlocks and locks synchronise too:

$$
\text { int } x, r ;
$$

mutex m;

m. $\operatorname{lock}() ;$	$\mathrm{m} \cdot \operatorname{lock}() ;$
$\mathrm{x}=\ldots$	
$\mathrm{m} . \operatorname{unlock}() ;$	$\mathrm{r}=\mathrm{x} ;$

f:U mutex

Locks and unlocks

Unlocks and locks synchronise too:

$$
\text { int } x, r ;
$$

mutex m;

m. $\operatorname{lock}() ;$	$\mathrm{m} \cdot \operatorname{lock}() ;$
$\mathrm{x}=\ldots$	
$\mathrm{m} . \operatorname{unlock}() ;$	$\mathrm{r}=\mathrm{x} ;$

f:U mutex

Happens before is key to the model

Non-atomic loads read the most recent write in happens before. (This is unique in DRF programs)

The story is more complex for atomics, as we shall see.

Data races are defined as an absence of happens before.

A data race

$$
\begin{aligned}
& \text { int } y, x=2 ; \\
& x=3 ;
\end{aligned}
$$

Data race definition

let data_races actions $h b=$ $\{(a, b) \mid \forall a \in$ actions $b \in$ actions \mid
$\neg(a=b) \wedge$
same_location ab^
(is_write a \vee is_write b) \wedge
$\neg($ same_thread a $b) \wedge$
$\neg($ is_atomic_action $a \wedge$ is_atomic_action $b) \wedge$
$\neg((a, b) \in h b \vee(b, a) \in h b)\}$

A program with a data race has undefined behaviour.

Relaxed writes: load buffering

```
x.load(relaxed);
y.store(1, relaxed);
    y.load(relaxed);
    x.store(1, relaxed);
```


No synchronisation cost, but weakly ordered.

Relaxed writes: independent reads, independent writes

```
atomic_int x = 0;
atomic_int y = 0;
```



```
c:Wrlx x=1 \
    f:Rrlx y=0
    h:Rrlx x=0
```


Expert concurrency: fences avoid excess synchronisation

```
// sender
x = ...
y.store(1, release);
```

// receiver
while $(0==\mathrm{y}$. load(acquire)) ;
$r=x ;$

Expert concurrency: fences avoid excess synchronisation

```
// sender
x = ...
y.store(1, release);
```

// sender
$\mathrm{x}=\ldots$.
y.store(1, release);

```
// receiver
while (0 == y.load(relaxed));
fence(acquire);
r = x;
```


Expert concurrency: The fenced release-acquire idiom

```
// sender
x = ...
y.store(1, release);
```

```
// receiver
while (0 == y.load(relaxed));
fence(acquire);
r = x;
```


Expert concurrency: The fenced release-acquire idiom

```
// sender
x = ...
y.store(1, release);
    // receiver
while (0 == y.load(relaxed));
fence(acquire);
r = x;
```


Expert concurrency: The fenced release-acquire idiom

```
// sender
x = ...
y.store(1, release);
    // receiver
while (0 == y.load(relaxed));
fence(acquire);
r = x;
```


Expert concurrency: The fenced release-acquire idiom

```
// sender
x = ...
y.store(1, release);
    // receiver
while (0 == y.load(relaxed));
fence(acquire);
r = x;
```


Expert concurrency: modification order

Modification order is a per-location total order over atomic writes of any memory order.

$$
\begin{array}{l|l}
\text { x.store (1, relaxed); } & \text { x.load(relaxed); } \\
\text { x.store(2, relaxed); } & \text { x.load(relaxed); }
\end{array}
$$

Expert concurrency: modification order

Modification order is a per-location total order over atomic writes of any memory order.

x.store(1, relaxed);
x.store(2, relaxed);
x.load (relaxed);
x.load (relaxed);

$$
\begin{array}{ll}
\mathrm{b}: \mathrm{W}_{\mathrm{rlx}} \mathrm{x}=1 & \mathrm{rf} \\
\mathrm{c}: \mathrm{W}_{\mathrm{rlx}} \mathrm{x}=2 \underset{\mathrm{rf}}{\rightarrow} \underset{\mathrm{rf}}{\mathrm{sb}} \mathrm{e}: \mathrm{R}_{\mathrm{rlx}} \mathrm{x}=2
\end{array}
$$

Expert concurrency: modification order

Modification order is a per-location total order over atomic writes of any memory order.

x.store(1, relaxed);
x.store(2, relaxed);
x.load (relaxed);
x.load (relaxed);

$$
\begin{array}{lll}
\mathrm{b}: \mathrm{W}_{\mathrm{rlx}} \mathrm{x}=1 & \mathrm{rf} & \mathrm{~d}: \mathrm{R}_{\mathrm{rlx}} \mathrm{x}=1 \\
\mathrm{c}: \mathrm{W}_{\mathrm{rlx}} \mathrm{x}=2 \underset{\mathrm{rf}}{\rightarrow} & \mathrm{e}: \mathrm{R}_{\mathrm{rlx}} \mathrm{x}=2
\end{array}
$$

Coherence and atomic reads

All forbidden!

CoRR

$$
\begin{aligned}
& \mathrm{a}: W^{x}=1 \\
& \mathrm{hb}
\end{aligned}
$$

$$
\mathrm{b}: \mathrm{W} \mathrm{x}=2
$$

CoWW

CoWR

CoRW

Atomics cannot read from later writes in happens before.

Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

```
x.store(1, relaxed); compare_exchange(&x, 2, 3, relaxed, relaxed);
x.store(2, relaxed);
x.store(4, relaxed);
```


Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

```
x.store(1, relaxed); compare_exchange(&x, 2, 3, relaxed, relaxed);
x.store(2, relaxed);
x.store(4, relaxed);
```

$$
\begin{aligned}
& \mathrm{a}: \mathrm{W}_{\mathrm{rlx}} \mathrm{x}=1 \quad \mathrm{~d}: \mathrm{RMW}_{\mathrm{rlx}} \mathrm{x}=2 / 3 \\
& \mathrm{sb}: \mathrm{W}_{\mathrm{rlx}} \mathrm{x}=2 \\
& \mathrm{sb}: \mathrm{W}_{\mathrm{rlx}} \mathrm{x}=4
\end{aligned}
$$

Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

```
x.store(1, relaxed); compare_exchange(&x, 2, 3, relaxed, relaxed);
x.store(2, relaxed);
x.store(4, relaxed);
```


Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

```
x.store(1, relaxed); compare_exchange(&x, 2, 3, relaxed, relaxed);
x.store(2, relaxed);
x.store(4, relaxed);
```


Very expert concurrency: consume

Weaker than acquire

Stronger than relaxed

Non-transitive happens before! (only fully transitive through data dependence, dd)

C1x and $\mathrm{C}++11$ support many modes of programming: - sequential

C1x and $\mathrm{C}++11$ support many modes of programming:

- sequential
- concurrent with locks

C1x and $\mathrm{C}++11$ support many modes of programming:

- sequential
- concurrent with locks
- with seq_cst atomics

C1x and $\mathrm{C}++11$ support many modes of programming:

- sequential
- concurrent with locks
- with seq_cst atomics
- with release and acquire

The model as a whole

C1x and $\mathrm{C}++11$ support many modes of programming:

- sequential
- concurrent with locks
- with seq_cst atomics
- with release and acquire
- with relaxed, fences and the rest

The model as a whole

C1x and $\mathrm{C}++11$ support many modes of programming:

- sequential
- concurrent with locks
- with seq_cst atomics
- with release and acquire
- with relaxed, fences and the rest
- with all of the above plus consume

The full model

The full model

Theorems

Are C 1 x and $\mathrm{C}++11$ hopelessly complicated?

Programmers cannot be given this model!

With a formal definition, we can do proof, and even mechanise it.

What do we need to prove?

Are C 1 x and $\mathrm{C}++11$ hopelessly complicated?

Programmers cannot be given this model!

With a formal definition, we can do proof, and even mechanise it.

What do we need to prove?

- implementability
- simplifications
- libraries

Implementability

Can we compile to $x 86$?

Implementability

Can we compile to $x 86$?

Operation	x86 Implementation
load(non-seq_cst)	mov
load(seq_cst)	lock xadd(0)
store(non-seq_cst)	mov
store(seq_cst)	lock xchg
fence(non-seq_cst)	no-op

x86-TSO is stronger and simpler.

Top level comparison

Recall the $\mathrm{C} / \mathrm{C}++$ semantics for program P :

$$
\text { 1. } P \mapsto E_{1}, \ldots, E_{n} \text {, }
$$

Top level comparison

Recall the $\mathrm{C} / \mathrm{C}++$ semantics for program P :

\author{

1. $P \mapsto E_{1}, \ldots, E_{n}$, each an $E_{\text {opsem }}$
}

Top level comparison

Recall the $\mathrm{C} / \mathrm{C}++$ semantics for program P :

$$
\begin{aligned}
& \text { 1. } P \mapsto E_{1}, \ldots, E_{n} \text {, each an } E_{\text {opsem }} \\
& \text { 2. } E_{i} \mapsto X_{i 1}, \ldots, X_{i m} \text {, }
\end{aligned}
$$

Top level comparison

Recall the $\mathrm{C} / \mathrm{C}++$ semantics for program P :

1. $P \mapsto E_{1}, \ldots, E_{n}$, each an $E_{\text {opsem }}$
2. $E_{i} \mapsto X_{i 1}, \ldots, X_{i m}$, collectively $X_{\text {witness }}$

Top level comparison

Recall the $\mathrm{C} / \mathrm{C}++$ semantics for program P :

1. $P \mapsto E_{1}, \ldots, E_{n}$, each an $E_{\text {opsem }}$
2. $E_{i} \mapsto X_{i 1}, \ldots, X_{i m}$, collectively $X_{\text {witness }}$
3. is there an $X_{i j}$ with a race? (actually, several kinds...)

Top level comparison

Recall the $\mathrm{C} / \mathrm{C}++$ semantics for program P :

1. $P \mapsto E_{1}, \ldots, E_{n}$, each an $E_{\text {opsem }}$
2. $E_{i} \mapsto X_{i 1}, \ldots, X_{i m}$, collectively $X_{\text {witness }}$
3. is there an $X_{i j}$ with a race? (actually, several kinds...)

In x86-TSO:
Events and dependencies, $E_{\mathrm{x} 86}$ are analogous to $E_{\text {opsem }}$.

Top level comparison

Recall the $\mathrm{C} / \mathrm{C}++$ semantics for program P :

1. $P \mapsto E_{1}, \ldots, E_{n}$, each an $E_{\text {opsem }}$
2. $E_{i} \mapsto X_{i 1}, \ldots, X_{i m}$, collectively $X_{\text {witness }}$
3. is there an $X_{i j}$ with a race? (actually, several kinds...)

In x86-TSO:
Events and dependencies, $E_{\mathrm{x} 86}$ are analogous to $E_{\text {opsem }}$. Execution witnesses, $X_{\mathrm{x} 86}$ are analogous to $X_{\text {witness }}$.

Top level comparison

Recall the $\mathrm{C} / \mathrm{C}++$ semantics for program P :

1. $P \mapsto E_{1}, \ldots, E_{n}$, each an $E_{\text {opsem }}$
2. $E_{i} \mapsto X_{i 1}, \ldots, X_{i m}$, collectively $X_{\text {witness }}$
3. is there an $X_{i j}$ with a race? (actually, several kinds...)

In x86-TSO:
Events and dependencies, $E_{x 86}$ are analogous to $E_{\text {opsem }}$. Execution witnesses, $X_{\mathrm{x} 86}$ are analogous to $X_{\text {witness }}$. There is not a DRF semantics.

Theorem

$$
\begin{aligned}
E_{\text {opsem }} & \text { consistent_execution } \\
\text { evt_comp } & >X_{\text {witness }} \\
E_{\mathrm{x} 86} \xrightarrow[\text { valid_execution }]{ } & \longrightarrow X_{\mathrm{x} 86}
\end{aligned}
$$

Theorem

We have a mechanised proof that $\mathrm{C} 1 \times / \mathrm{C}++11$ behaviour is preserved.

Implementability

Can we compile to IBM Power?

Implementability

Can we compile to IBM Power?

C++0x Operation	POWER Implementation
Non-atomic Load	ld
Load Relaxed	ld
Load Consume	ld (and preserve dependency)
Load Acquire	ld ; cmp; bc; isync
Load Seq Cst	sync; ld; cmp; bc; isync
Non-atomic Store	st
Store Relaxed	st
Store Release	lwsync ; st
Store Seq Cst	sync; st

We have a hand proof that $\mathrm{C} 1 \mathrm{x} / \mathrm{C}++11$ behaviour is preserved.

Simplifications

Full model - visible sequences of side effects are unneeded (HOL4).

Simplifications

Full model - visible sequences of side effects are unneeded (HOL4).
Derivative models:

- without consume, happens-before is transitive (HOL4).
- DRF programs using only seq_cst atomics are SC (false).

Simplifications

Full model - visible sequences of side effects are unneeded (HOL4).
Derivative models:

- without consume, happens-before is transitive (HOL4).
- DRF programs using only seq_cst atomics are SC (false).
atomic_int x = 0;
atomic_int y = 0;

if (1 == x.load(seq_cst) $)$	if (1 == y.load(seq_cst))
atomic_init (\&y, 1);	atomic_init ($\& x, 1) ;$

atomic_init is a non-atomic write, and in $\mathrm{C} 1 \mathrm{x} / \mathrm{C}++11$ they race...

Usability

Provide simplified models for higher level constructs.

Formal description of mutual exclusion in terms of happens-before.

We need libraries that provide a simpler model to programmers.

Cppmem

helps explore and understand the model

CPpmem

Code in, all executions out

Confidence and speed

Communication

How may a program execute in CPPMEM?

1. $P \mapsto E_{1}, \ldots, E_{n}$ - tracking constraints
2. $E_{i} \mapsto X_{i 1}, \ldots, X_{i m}$ - automatically uses formal model
3. is there an $X_{i j}$ with a race?

Refinements to the standards

The current state of the standard

Fixed:

- Happens-before
- Coherence
- seq_cst atomics were more broken

The current state of the standard

Fixed:

- Happens-before
- Coherence
- seq_cst atomics were more broken

Not fixed:

- Self satisfying conditionals
- seq_cst atomics are still not SC

Self-satisfying conditionals

```
r1 = x.load(mo_relaxed); |r2 = y.load(mo_relaxed);
if (r1 == 42)
    y.store(r1, mo_relaxed);
    r2 = y.load(mo_relaxed);
c:Rrlx x=1 e:Rrlx y=1
    sb\downarrow
d:Wrlx y=1 f:Wrlx x=1
```


Conclusion

It's OK to like the $C++0 x$ memory model design
Our formal model lets us make fun things (go use it!)

- Optimized compilation?
- Static analysis?
- Dynamic analysis?
- Observational congruence?
- Program logics?

