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Exercise sheet (Tim Harris’ section)  

Each question carries equal marks, for a total of 50% of the course total 

Core exercises (Part II and ACS/Part III) 

1. Locks and performance 

A machine has 4 processors, each with its own cache.  A program runs with 1 thread per processor, and 1 

mutual exclusion lock used by all of the threads.  Each thread must acquire the lock, execute a short critical 

section, and then release the lock.   

For each of the following locks (i) describe the cache line transfers that occur in a simple MESI cache protocol 

in the best-case execution in which threads happen to only attempt to acquire the lock when it is available, 

and (ii) describe any additional cache line transfers that may occur if threads attempt to acquire the lock at 

the same time. 

 Test-and-set lock. 

 Test-and-test-and-set lock. 

 MCS lock. 

You may assume that, by chance, the thread on processor 1 successfully acquires the lock first, then 

processors 2, 3, and 4.  Also, you may assume that each QNode structure for the MCS lock is a single cache 

line in size. 

2. Lock implementation  

(i) In the slides, the pseudo-code for the MCS acquireMCS operation shows that the new QNode is only 

linked into the queue after performing a CAS operation on lock->tail.  This makes the releaseMCS 

operation more complicated because it may need to wait in the while loop watching qn->next.  

 

Therefore it is tempting to look for ways to update the links between the QNodes before updating the 

tail of the list in lock->tail.  Show why it would be incorrect to do this, even if a CAS is used: 
 
void acquireMCS(mcs *lock, QNode *qn) { 
  QNode *prev; 
  qn->flag = false; 
  qn->next = NULL; 
  while (true) { 
     prev = lock->tail; 
     if (prev == NULL || (CAS(&prev->next, NULL, qn) && 
                          CAS(&lock->tail, prev, qn))) break; 
  } 
  if (prev != NULL) { 
    while (!qn->flag) { } // Spin 
} } 
 

(ii) A “ticket lock” is implemented using two shared counters, T and C, both initially 0.  A thread wanting to 

acquire the lock uses an atomic fetch-and-add on T to obtain a unique sequence number.  The thread 

then waits until C is equal to this sequence number.  After releasing the lock, the thread increments C.   

 

What are the advantages / disadvantages of this ticket lock compared with a test-and-test-and-set lock, 

and compared with the MCS queue lock? 



 

3. Linearizability 

 

Consider the following history of operations on a set implemented over a linked list.  The set is initially 

empty.  A call to insert(X) returns true if it succeeds in adding X to the set.  A delete_ge(X) operation deletes 

the next value above or equal to X.  It returns the value deleted, or -1 if there is no such value. 

Thread 1 : Calls delete_ge(10) 

Thread 2 : Calls insert(30) 

Thread 2 : insert(30) returns true 

Thread 3 : Calls insert(20) 

Thread 3 : insert(20) returns true 

Thread 4 : Calls insert(30) 

Thread 4 : insert(30) returns false 

Thread 1 : delete_ge(10) returns 30 

 

Show that this concurrent history is not linearizable.  Then, for each of the following alternatives, show that 

the resulting history would be linearizable: 

 

(i) If the delete_ge(10) operation had returned -1 to thread 1. 

(ii) If the delete_ge(10) operation could delete any value greater than or equal to 10 in the set. 

(iii) If the operations in thread 4 executed before those in thread 3. 
 

4. Lock freedom 

 

Consider a simple shared counter that supports an “Increment” operation.  Each increment advances the 

counter’s value by 1 and returns the counter’s new value –  i.e., 1, 2, 3, etc.  

 

(i) Explain whether or not the following history is linearizable: 

 

- Time 0  : Thread 1 invokes Increment 

- Time 10  : Thread 1 receives response 1 

- Time 11  : Thread 1 invokes Increment 

- Time 20  : Thread 2 invokes Increment 

- Time 21  : Thread 1 receives response 3 

- Time 22  : Thread 1 invokes Increment 

- Time 30  : Thread 2 receives response 2 

- Time 31  : Thread 1 receives response 4 

(ii) In pseudo-code, give a lock-free implementation of “Increment” using an atomic compare and swap 

operation. 

(iii) Explain whether or not your implementation is also wait-free. 

  



 

5. Lock-free lists and memory management 

 

Consider a lock-free linked list of integers, held in sorted order and shared between a large number of 

threads.  Threads perform search, insert, and delete operations on the list.   

Initially, assume that a garbage collector is used to reclaim storage automatically.  Describe workloads (i) 

where the lock-free list is likely to perform better than a list protected by a single well-implemented mutual 

exclusion lock, and (ii) where the lock-free list is likely to perform worse than the lock-based list.  In each 

case, describe the number of threads involved, the size of the list, and the mix of operations being 

performed on the list. 

Suppose that a per-list-node reference counting scheme is used instead of garbage collection in the lock-free 

list.  Are there now any cases where the lock-free list would still be preferable to the lock-based list?   (Note 

that reference counting would not be needed in the lock-based list.) 

 

Additional exercises (ACS/Part III only) 

 

6. Work-stealing queues 
The array-based deque in the slides supports one thread on the “bottom” and, and multiple threads stealing 

from the “top” end (slides 41—46).   

 

Consider instead the case of a simpler array-based queue supporting a fixed maximum number of elements 

in the queue at any one time (N) and only a single producer (calling “pushTop”) and a single consumer 

(calling “popBottom”).  A push should return “true” if it succeeds (adding the item to the queue), and “false” 

otherwise (if the queue is full).  A pop should return a data item if there is one in the queue, or NULL if the 

queue is empty.  

 

In pseudo-code, give a lock-free linearizible implementation of this queue building on atomic compare and 

swap, read, and write. 

 

7. Transactional memory 

Transactional memory implementations are often classified as making eager or lazy updates and performing 

eager or lazy conflict detection.   

Describe two workloads, one of which would perform well under eager-eager, and one which would perform 

well under lazy-lazy.  Justify your answer in terms of (i) the series of reads and writes that are being 

attempted within the transactions, (ii) the amount of work executing the transactions initially, (iii) the 

amount of additional work attempting to commit the transactions, and (iv) the amount of additional work 

caused by transactional re-execution.    

8. Alternatives 

An enthusiastic researcher writes that “In the future all shared memory data structures will be lock-free 

because they are fast and scalable”.  With the aid of example data structures, and possible uses of these 

data structures, describe three cases in which you would agree with using lock-free data structures, and 

three cases where you would suggest using locking or using transactional memory instead. 


