Mobile and Sensor Systems

Lecture 6: Mobile Sensing Energy and

Systems Considerations

Prof Cecilia Mascolo
[thanks to Prof Nic Lane for material]

58 UNIVERSITY OF
4%» CAMBRIDGE

In this Lecture

* We will study approaches to preserve energy
in mobile sensing systems

* We will look at aspects of local versus cloud
computation

* We will look at how machine learning can be
used on mobile/wearable/powered devices

B UNIVERSITY OF

» CAMBRIDGE

Devices have various processors

* Locally ...and remotely (cloud)

* Trading these off vs power is important

= DSP £

8 UNIVERSITY OF

¥ CAMBRIDGE ;

MAUI

* MAUI is a mobile device framework which
profiles code components in terms of energy
to decide if to run them locally or remotely
(considering latency requirements).

— Costs related to the transfer of code/data
— Programming framework

— Dynamic decisions based on network constraints
— CPU only

B UNIVERSITY OF

‘P CAMBRIDGE [Cuervo et al 2010]

MAUI Offloading

35 - 60 - 150 - —
B Smartphone only
30 - & MAUI (Wi-Fi, 10ms RTT)
@ MAUI (Wi-Fi, 25ms RTT) 120 -
=25 1 72 MAUI (Wi-Fi, 50ms RTT) - —_
2 = MAUI (Wi-Fi, 100ms RTT) 8 40 ~ k]
320 - £ MAUI* (3G, 220ms RTT) 3 3 90 1
> >
815 1 B & 60 -
10 S 20 1 &
5 30 A
o J BN \\N : 0 0

ONE RUN FACE RECOGNITION 400 FRAMES of VIDEO GAME 30 MOVE CHESS GAME

Figure 9: A comparison of MAUI’s energy consumption. We compare the energy consumption of running three applications standalone
on the smartphone versus using MAUI for remote execution to servers that are successively further away (the RTT is listed for each case).
The graph on the left shows one run of the face recognition application; the graph in the middle shows running the video game for
400 frames; the graph on the right shows running the chess game for 30 moves. MAUI" is a slight modification to MAUI to bypass the
optimizer and to always offload code. Without this modification, MAUI would have not performed code offload in the case of the video
game and chess because offload ends up hurting energy performance.

MAUI would not

UNIVERSITY OF perform offloading
CAMBRIDGE with 3G...

Continuous Audio Sensing Applications

.»—i)
= \.v
Emotion recognition Speaker count Speaker identification
Gender estimation Ambient sound detection

B UNIVERSITY OF

4% CAMBRIDGE

LEO Overview

Sensor apps

—_J

k!) Sensor Job Buffer
Workload
& - ‘ Monitor - EDjj
i
Tasks
Q — Resource LPU — ——Il
s Monitor Scheduler .
[&):
51 UNIVERSITY OF
g‘b CAMBRIDGE [Georgiev et al 2016]

S LEO Overview
ensor apps

—_J &

g!) Sensor Job Buffer = [yl B
Workload - -
& Monitor - EDjj e
l ‘ Tasks
Q — Resource LPU — ——Il
g Monitor Scheduler .

g_ UNIVERSITY OF
» CAMBRIDGE

Low overhead

* uses heuristics (fast runtime)
* runs on the LPU (low energy)

10 app ~100 ms <0.5% VS.
workload

scheduling in cloud
(next best alternative)

g. UNIVERSITY OF
P CAMBRIDGE

Optimized GPU is Efficient

Optimized GPU is >6x faster than cloud

12|
N ZF . .
2 10| | noru e
E 08 B 1 aGPU=optimize
e 06 | duse of GPU
S5 0.4
X 0.2

0.0

B UNIVERSITY OF Keyword Spotting application
¥ CAMBRIDGE [Georgiev et al 2017]

Optimized GPU is Efficient

Optimized GPU with batching outperforms
cloud energy-wise

/{-- nGPU -
6
o 5 "ﬁ" 1Mbp5

W - 5Mbps
10Mbps

—

>4}
>
O 3f

c /

W 2}
11

20Mbps

!

r
02

B UNIVERSITY OF

4% CAMBRIDGE

8 101'21'41'61'820

4 6
Batch Size (seconds)

Keyword Spotting classification

Machine Learning for Mobiles

* We have seen in the previous lecture that

sensor data can be analysed offline with
machine learning

* This allows rich applications and
understanding of user behaviour

‘B UNIVERSITY OF

P CAMBRIDGE

Could We Perform Inference
On Device!?

* Machine Learning models are often built with
little consideration of system resources...

* AlphaGo: 1920 CPUs and 280 GPUs, $3000 in
electricity per game...mhhhh.

B UNIVERSITY OF

» CAMBRIDGE

Why Perform Inference On Device

* Performing Inference on device would allow for data not to
flow out of devices...(privacy)

* Limit how much bandwidth is used to send data out (at the
cost of processing usage for inference)...
* Applications:

— Video applications on image sensors for traffic
characterization (comms costs reduced)

— Drone/robot navigation local processing for low latency
and security

Thinking of trade offs is essential.

B UNIVERSITY OF

» CAMBRIDGE

Resource requirements

Layer type Tunable Time
parameters | (%)
1 Convolution 34,944 37.20
2 Non-linear - 0.05
180 1.0 3 Normalization - 0.12
o 08 4 Pooling - 0.15
® Tr'a_d eoffs: g g, 5 | Convolution 307,456 2.05
§ §.. 6 Non-linear - 0.05
=% o 7 | Normalization - 0.21
A £ 2 8 Pooling - 1.11
— ACCUracy per . T TEReem . O TT i i venen 9 | Convolution 885,120 | 30.89
(a) AlexNet (b) SVHN 10 Non-linear - 0.46
11 Convolution 663,936 13.56
— Memory / latency. 12 | Nonlincar : 008
50 o 13 | Convolution 442,624 7.45
9 oo 14 | Non-linear - 0.38
1 4 . 5., 15 Pooling . 0.74
* Considerations: Lo FeRc v |37 | 049
00 1 2 3 4 5 6 7 8 9 101 00 1 2 3 4 5 6 7 8 9 101 17 Non_linea'r - 0'15
Layers Layers 18 Dropout - 0.06
—_ M emo I"y_ (c) DeepEar (emotion only) (d) Deep KWS 19 | Feed-forward | 16,781,312 0.19
Figure 6: Memory requirements during inference on a per layer 20 Non-linear - 0.14
basis; only the layers of the model being operated upon are left in 21 Dropout - 0.07
— E n e r memory to lower requirements. (Execution on Snapdragon CPU). 22 | Feed-forward 4,097,000 4.34
gY‘ 22 Softmax - 0.06

— Latency.

Tegra Snapdragon Edison

CPU GPU CPU DSP CPU

Deep KWS 0.8 1.1 7.1 7.0 63.1
DeepEar 6.7 3.2 71.2 | 379.2 109.0
AlexNet 600.2 | 49.1 | 159,383.1 - | 283,038.6
SVHN 15.1 2.8 1,616.5 - 3,562.3

Table 3: Execution Time (msec.)

Table 5: Layer-by-layer runtime performance of AlexNet.

Tegra Snapdragon | Edison
CPU GPU | CPU DSP CPU
Deep KWS | 14.34 9.16 5.00 | 134.41 27.78
UNIVERSITY OF AloxNet | 349 [1056 | 580 | L | Taas
t . . . - .
sz);-ll\? 13.98 | 14.81 3.97 - 15.38 [Lane et al 2015]

CAMBRIDGE

Table 4: Battery Life Estimate (hrs.)

How to improve
resource tradeoffs?

* General methods

— Pruning — removing excess parameters.

— Quantization — decreasing parameter precision.
* Fully connected layers

— Weight factorization — low rank approximation.
* Convolutional layers

— Convolution separation — low rank approximation.

* Other paths to resource efficiency.

5 5 UNIVERSITY OF
@ CAMBRIDGE [52e et al]

4800
5
o 3200

1600

Pruning

Pruning removes, sets to zero, weights in
NN base on a pre-defined heuristic.
Magnitude (abs. value) is the most used
criterion. It performs as well as a random
criterion.

before pruning after pruning

pruning ___,
synapses

pruning
- -
neurons 0.05

0.05 0 .
Weight Value

-005 0 0.05
Weight Value

‘B UNIVERSITY OF

% CAMBRIDGE

Pruning

* Pruning followed by re-training performs
very well and doing it iteratively is best...

0.5%

0.0%
-0.5%
-1.0%
-1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%
-4.5%

Accuracy Loss

-O-L2 regularization w/o retrain

L1 regularization w/ retrain
~®-2 regularization w/ iterative prune and retrain

~4-L1 regularization w/o retrain
L2 regularization w/ retrain

-~ - ~ -
- -
~ - -
-
-

2

P

40% 50%

1 UNIVERSITY OF
CAMBRIDGE

60% 70% 80%

Parametes Pruned Away

90%

100%

[Gupta et al 2015]

Quantization

Is a lower precision representation of trained parameters.
* Post-training quantization.

— Usually applied after pruning.
— Varied options:
9000 ‘ Weight <'!istribution' after pruning
* K-means

2500

* Hashing

Weight distribution after pruning and quantization
8000

6000

| HH A
=, 0 .._.olellll| Il |!l|.

-0.1 0 0.
Weight Value

1500

* Huffman Coding ™

Count

500

* Weight Sharing 3

-0 Weight Value
* Training quantized models.

0.1

0.2

— Networks are quantized at each step in the training process at

the forward pass (but leaving the back propagation parameters

in higher precision): this limits accuracy loss.
58 UNIVERSITY OF

% CAMBRIDGE

Training quantized models

* At train time quantization is achieved by:

— Truncation

— (Stochastic) Rounding

* MNIST dataset
fully connected DNNs

UNIVERSITY OF
CAMBRIDGE

Training error

Training error

Rlound 'fo nealrest, WL = 1|6

0.01

0.001

0.0001 L
@0 5 10 15 20 25 30

Training epoch

Stcl)chastlic rourl1dinq,|WL =|1 6

Training epoch

Test error(%)

Test error(%)

Round to nearest, WL = 16
1 8 I I I I

5 10 15 20 25 30
Training epoch

Sltochasltic rou?dinq, YVL = 116

Training epoch

FL 14
FL10
FL 8
Float

FL 14
FL10
FL 8
Float

Binary Weight Networks (BVVNs)

* Weights set to {-a, + a} set based on
original layer values.

* Activations and last layer are 32-bit.

Network Variations Operations Memory | Computation ' Accuracy on ‘ - ' .
used in Saving Saving ImageNet “ . . .
Convolution | (Inference) @ (Inference) (AlexNet) ;
Real-Value Inputs
Standard Real-Value Weighs ' ' g

Convolution |0.11.0.21 5 -0.34"" +,—-,X 1x 1x %56.7
-0.250.61... 0.52
Real-Value Inputs
1 | Il
Binary Welght 0.11 -0.21 _0‘34." + , - ~32X ~2X %56.8 . . '
-0.250.61 ... 052"
s o rE -
Bir\aryWeight — Binary Weights XNOR
Binary Input I 14017 bit t ~32X ~58x %44.2
(XNOR-Net) 11..17 itcoun L r ‘ -

g & UNIVERSITY OF |
CAMBRIDGE [Rastegari et al 2016]

How to improve
resource tradeoffs?

* General methods

— Pruning — removing excess parameters.

— Quantization — decreasing parameter precision.
* Fully connected layers

— Weight factorization — low rank approximation.
* Convolutional layers

— Convolution separation — low rank approximation.

* Other paths to resource efficiency.

B UNIVERSITY OF

» CAMBRIDGE

SVD weight approximation

h

S
b‘
38

Q

x T TT TN S

g HE EEE EHE |

—_

—_

m X k n

. %IXIRI/I%{IS{IITS&)E [S. Bhattacharya et al 2016]

SVD weight approximation

After

Before

gﬂm UNIVERSITY OF
P CAMBRIDGE

SVD weight approximation

h

v

mxn nxl1 m X k

Q

%

x T I TTN TN S

1

S

Total Operations:mxnx1 Total Operationsimxkx1+kxnx1

mxn

Memory & compute savings if: k <
min

UNIVERSITY OF
» CAMBRIDGE

SVD weight approximation

Ambient scene analysis and speaker detection tasks.

o Oneiedon o S8R o OnamM0 o Gonex M
3 S s S s ST N
7 v LCC+CSR v LCC +CSR (f)
10 T T I N T B
10° 2-4% accuracy | : S \
drop I I
105 1 1 <F I
1 1 1
= 10 | b O
N I '
> 103 ! I Cortex
1 1
g : : M3/MO
2 1 1 1
UCJ 10 1 1 1
1 1 1
10! . : |
0 ® : : :
10 3 ’ 1] 1 : PPPLRWPW
& I I I
10-1 . L ARM Cortex M3 ARM Cortex MO

10t 10° 10 10° 10° 10* 10° 10° 107 108
Latency (msec)

g_ UNIVERSITY OF
» CAMBRIDGE

How to improve
resource tradeoffs?

* General methods

— Pruning — removing excess parameters.

— Quantization — decreasing parameter precision.
* Fully connected layers

— Weight factorization — low rank approximation.
 Convolutional layers

— Convolution separation — low rank approximation.

* Other paths to resource efficiency.

B UNIVERSITY OF

» CAMBRIDGE

Convolution separation

Find an approximation of the kernels that is:
* more computationally efficient,

* faithful to original kernel.

/Cn - RdXdXC 1 3 1 1

A 2 6 2 |:> 2 And 1 3
ICn ~ ICn Horizontal Filter

K 3 9 3 3
]€C _ Z Hk VC T
n n (Vi) Computational gain dCN
k=1 \ when: K < O+ N
Vertical Filter ' +

‘B UNIVERSITY OF

&% CAMBRIDGE

Other parts towards efficiency

* Commodity processors and accelerators

— The elephant in the room in this discussion. —Jﬂ ==

[Krait CPU — Gore

* System-level Solutions

— Including runtime.

* Cross Models Optimization

e Low-Resource Architectures
— MobileNet

g. UNIVERSITY OF
P CAMBRIDGE

of Publications over the Years

0

LEO
SCHEDULER

LOS

1‘ ‘ Hexagon DSP ‘

Krait CPU — Core

2 Adreno GPU

Krait CPU — Core

Krait CPU — Core

Connectivity
4G LTE, WiFi
BT, FM, USB

Asyn

model

$56

P4 v h

|epow

Event-based Synchronization

Summary

* We have looked at on device computation vs
offloading to cloud/edge

* We have studied how local resources and
cloud offloading have an impact on energy
efficiency and could be used to improve it.

* We have explored the trade offs of accuracy
and energy and the techniques which can
improve machine learning on device.

B UNIVERSITY OF

» CAMBRIDGE

References

* E.Cuervo, A. Balasubramanian, D. Cho,A.Wolman, S. Saroiu, R. Chandra, P. Bahl. 2010. MAUI: making
smartphones last longer with code offload. In Proceedings of MobiSys 'l 0.

* P Georgiev, N. Lane, K. Rachuri, C. Mascolo. 2016. LEO: scheduling sensor inference algorithms
across heterogeneous mobile processors and network resources. In Proceedings of MobiCom ‘| 6.

* P.Georgiey, N. Lane, C. Mascolo, D. Chu.Accelerating Mobile Audio Sensing Algorithms through On-
Chip GPU Offloading. In Proceedings of 15th ACM International Conference on Mobile System:s,
Applications and Services (Mobisys 2017). Niagara Falls, NY. USA. June 2017.

* N.Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, F. Kawsar. 201 5. An Early Resource Characterization
of Deep Learning on Wearables, Smartphones and Internet-of-Things Devices. In Workshop on
Internet of Things towards Applications 2015.

* S.Bhattacharya, N. Lane. 201 6. Sparsification and Separation of Deep Learning Layers for
Constrained Resource Inference on Wearables. In Procs of the ACM SenSys ‘1 6.

* S.Gupta, A.Agrawal, K. Gopalakrishnan, P. Narayanan. 2015. Deep learning with limited numerical
precision. In Proceedings of the 32nd International Conference on International Conference on
Machine Learning - Volume 37 (ICML'I5),.

* Mohammad Rastegari,Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: Imagenet
Classification Using Binary Convolutional Neural Networks. ECCV 201 6.

* V.Sze andY/ Chen and T.Yang, |. Emer. Efficient Processing of Deep Neural Networks: A Tutorial and
Survey. https://arxiv.org/abs/1703.09039

‘B UNIVERSITY OF

» CAMBRIDGE

https://arxiv.org/abs/1703.09039

