Mobile and Sensor Systems

Lecture 6: Mobile Sensing Energy and

Systems Considerations

Prof Cecilia Mascolo
[thanks to Prof Nic Lane for material]
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In this Lecture

* We will study approaches to preserve energy
in mobile sensing systems

* We will look at aspects of local versus cloud
computation

* We will look at how machine learning can be
used on mobile/wearable/powered devices
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Devices have various processors

* Locally ...and remotely (cloud)

* Trading these off vs power is important
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MAUI

* MAUI is a mobile device framework which
profiles code components in terms of energy
to decide if to run them locally or remotely
(considering latency requirements).

— Costs related to the transfer of code/data
— Programming framework

— Dynamic decisions based on network constraints
— CPU only
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MAUI Offloading
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Figure 9: A comparison of MAUI’s energy consumption. We compare the energy consumption of running three applications standalone
on the smartphone versus using MAUI for remote execution to servers that are successively further away (the RTT is listed for each case).
The graph on the left shows one run of the face recognition application; the graph in the middle shows running the video game for
400 frames; the graph on the right shows running the chess game for 30 moves. MAUI" is a slight modification to MAUI to bypass the
optimizer and to always offload code. Without this modification, MAUI would have not performed code offload in the case of the video
game and chess because offload ends up hurting energy performance.

MAUI would not

UNIVERSITY OF perform offloading
CAMBRIDGE with 3G...




Continuous Audio Sensing Applications

.»—i)
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Emotion recognition Speaker count Speaker identification
Gender estimation Ambient sound detection
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LEO Overview

Sensor apps
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Low overhead

* uses heuristics (fast runtime)
* runs on the LPU (low energy)

10 app ~100 ms <0.5% VS.
workload

scheduling in cloud
(next best alternative)
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Optimized GPU is Efficient

Optimized GPU is >6x faster than cloud
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Optimized GPU is Efficient

Optimized GPU with batching outperforms
cloud energy-wise
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Machine Learning for Mobiles

* We have seen in the previous lecture that

sensor data can be analysed offline with
machine learning

* This allows rich applications and
understanding of user behaviour
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Could We Perform Inference
On Device!?

* Machine Learning models are often built with
little consideration of system resources...

* AlphaGo: 1920 CPUs and 280 GPUs, $3000 in
electricity per game...mhhhh.
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Why Perform Inference On Device

* Performing Inference on device would allow for data not to
flow out of devices...(privacy)

* Limit how much bandwidth is used to send data out (at the
cost of processing usage for inference)...
* Applications:

— Video applications on image sensors for traffic
characterization (comms costs reduced)

— Drone/robot navigation local processing for low latency
and security

Thinking of trade offs is essential.
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Resource requirements

Layer type Tunable Time
parameters | (%)
1 Convolution 34,944 37.20
2 Non-linear - 0.05
180 1.0 3 Normalization - 0.12
o 08 4 Pooling - 0.15
® Tr'a_d eoffs: g g, 5 | Convolution 307,456 2.05
§ §.. 6 Non-linear - 0.05
=% o 7 | Normalization - 0.21
A £ 2 8 Pooling - 1.11
— ACCUracy per . T TEReem . O TT i i venen 9 | Convolution 885,120 | 30.89
(a) AlexNet (b) SVHN 10 Non-linear - 0.46
11 Convolution 663,936 13.56
— Memory / latency. 12 | Nonlincar : 008
50 o 13 | Convolution 442,624 7.45
9 oo 14 | Non-linear - 0.38
1 4 . 5., 15 Pooling . 0.74
* Considerations: Lo FeRc v |37 | 049
00 1 2 3 4 5 6 7 8 9 101 00 1 2 3 4 5 6 7 8 9 101 17 Non_linea'r - 0'15
Layers Layers 18 Dropout - 0.06
—_ M emo I"y_ (c) DeepEar (emotion only) (d) Deep KWS 19 | Feed-forward | 16,781,312 0.19
Figure 6: Memory requirements during inference on a per layer 20 Non-linear - 0.14
basis; only the layers of the model being operated upon are left in 21 Dropout - 0.07
— E n e r memory to lower requirements. (Execution on Snapdragon CPU). 22 | Feed-forward 4,097,000 4.34
gY‘ 22 Softmax - 0.06

— Latency.

Tegra Snapdragon Edison

CPU GPU CPU DSP CPU

Deep KWS 0.8 1.1 7.1 7.0 63.1
DeepEar 6.7 3.2 71.2 | 379.2 109.0
AlexNet 600.2 | 49.1 | 159,383.1 - | 283,038.6
SVHN 15.1 2.8 1,616.5 - 3,562.3

Table 3: Execution Time (msec.)

Table 5: Layer-by-layer runtime performance of AlexNet.

Tegra Snapdragon | Edison
CPU GPU | CPU DSP CPU
Deep KWS | 14.34 9.16 5.00 | 134.41 27.78
UNIVERSITY OF AloxNet | 349 [ 1056 | 580 | L | Taas
t . . . - .
sz);-ll\? 13.98 | 14.81 3.97 - 15.38 [Lane et al 2015]
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How to improve
resource tradeoffs?

* General methods

— Pruning — removing excess parameters.

— Quantization — decreasing parameter precision.
* Fully connected layers

— Weight factorization — low rank approximation.
* Convolutional layers

— Convolution separation — low rank approximation.

* Other paths to resource efficiency.
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Pruning

Pruning removes, sets to zero, weights in
NN base on a pre-defined heuristic.
Magnitude (abs. value) is the most used
criterion. It performs as well as a random
criterion.

before pruning after pruning
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Pruning

* Pruning followed by re-training performs
very well and doing it iteratively is best...
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Quantization

Is a lower precision representation of trained parameters.
* Post-training quantization.

— Usually applied after pruning.
— Varied options:
9000 ‘ Weight <'!istribution' after pruning
* K-means

2500

* Hashing

Weight distribution after pruning and quantization
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* Huffman Coding ™

Count

500

* Weight Sharing 3

-0 Weight Value
* Training quantized models.

0.1

0.2

— Networks are quantized at each step in the training process at

the forward pass (but leaving the back propagation parameters

in higher precision): this limits accuracy loss.
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Training quantized models

* At train time quantization is achieved by:

— Truncation

— (Stochastic) Rounding

* MNIST dataset
fully connected DNNs
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Binary Weight Networks (BVVNs)

* Weights set to {-a, + a} set based on
original layer values.

* Activations and last layer are 32-bit.

Network Variations Operations Memory | Computation ' Accuracy on ‘ - ' .
used in Saving Saving ImageNet “ . . .
Convolution | (Inference) @ (Inference) (AlexNet) ;
Real-Value Inputs
Standard Real-Value Weighs ' ' g

Convolution |0.11.0.21 5 -0.34"" +,—-,X 1x 1x %56.7
-0.250.61... 0.52
Real-Value Inputs
1 | Il
Binary Welght 0.11 -0.21 _0‘34." + , - ~32X ~2X %56.8 . . '
-0.250.61 ... 052"
s o rE -
Bir\aryWeight — Binary Weights XNOR
Binary Input I 14017 bit t ~32X ~58x %44.2
(XNOR-Net) 11..17 itcoun L r ‘ -
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How to improve
resource tradeoffs?

* General methods

— Pruning — removing excess parameters.

— Quantization — decreasing parameter precision.
* Fully connected layers

— Weight factorization — low rank approximation.
* Convolutional layers

— Convolution separation — low rank approximation.

* Other paths to resource efficiency.
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SVD weight approximation
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SVD weight approximation

After

Before
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SVD weight approximation
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SVD weight approximation

Ambient scene analysis and speaker detection tasks.
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How to improve
resource tradeoffs?

* General methods

— Pruning — removing excess parameters.

— Quantization — decreasing parameter precision.
* Fully connected layers

— Weight factorization — low rank approximation.
 Convolutional layers

— Convolution separation — low rank approximation.

* Other paths to resource efficiency.
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Convolution separation

Find an approximation of the kernels that is:
* more computationally efficient,

* faithful to original kernel.

/Cn - RdXdXC 1 3 1 1

A 2 6 2 |:> 2 And 1 3
ICn ~ ICn Horizontal Filter
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]€C _ Z Hk VC T
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Other parts towards efficiency

* Commodity processors and accelerators

— The elephant in the room in this discussion. —Jﬂ ==

[Krait CPU — Gore

* System-level Solutions

— Including runtime.

* Cross Models Optimization

e Low-Resource Architectures
— MobileNet
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Summary

* We have looked at on device computation vs
offloading to cloud/edge

* We have studied how local resources and
cloud offloading have an impact on energy
efficiency and could be used to improve it.

* We have explored the trade offs of accuracy
and energy and the techniques which can
improve machine learning on device.
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