
Mobile and Sensor Systems

Lecture 6: Mobile Sensing Energy and

Systems Considerations

Prof Cecilia Mascolo
[thanks to Prof Nic Lane for material]

In this Lecture

• We will study approaches to preserve energy
in mobile sensing systems

• We will look at aspects of local versus cloud
computation

• We will look at how machine learning can be
used on mobile/wearable/powered devices

2

Devices have various processors

• Locally …and remotely (cloud)
• Trading these off vs power is important

3

MAUI

• MAUI is a mobile device framework which
profiles code components in terms of energy
to decide if to run them locally or remotely
(considering latency requirements).
– Costs related to the transfer of code/data
– Programming framework
– Dynamic decisions based on network constraints
– CPU only

4[Cuervo et al 2010]

MAUI Offloading

5

MAUI would not
perform offloading
with 3G…

Continuous Audio Sensing Applications

Emotion recognition Speaker count Speaker identification

Gender estimation Ambient sound detection

LEO OverviewSensor apps

Workload
Monitor

Sensor Job Buffer

LPU
Scheduler

Resource
Monitor

Tasks

[Georgiev et al 2016]

LEO OverviewSensor apps

Workload
Monitor

Sensor Job Buffer

LPU
Scheduler

Resource
Monitor

Tasks

Low overhead

• uses heuristics (fast runtime)
• runs on the LPU (low energy)

10 app
workload

~100 ms <0.5% vs. ~3.5%

scheduling in cloud
(next best alternative)

Optimized GPU is Efficient

Optimized GPU is >6x faster than cloud

Keyword Spotting application

nGPU= naïve
GPU usage
aGPU=optimize
d use of GPU

[Georgiev et al 2017]

Optimized GPU is Efficient

Keyword Spotting classification

Optimized GPU with batching outperforms
cloud energy-wise

Machine Learning for Mobiles

• We have seen in the previous lecture that
sensor data can be analysed offline with
machine learning

• This allows rich applications and
understanding of user behaviour

Could We Perform Inference
On Device?

• Machine Learning models are often built with
little consideration of system resources…

• AlphaGo: 1920 CPUs and 280 GPUs, $3000 in
electricity per game…mhhhh.

Why Perform Inference On Device

• Performing Inference on device would allow for data not to
flow out of devices…(privacy)

• Limit how much bandwidth is used to send data out (at the
cost of processing usage for inference)…

• Applications:

– Video applications on image sensors for traffic
characterization (comms costs reduced)

– Drone/robot navigation local processing for low latency
and security

• Thinking of trade offs is essential.

Resource requirements

• Tradeoffs:

– Accuracy per £.
– Memory / latency.

• Considerations:
– Memory.

– Energy.
– Latency.

[Lane et al 2015]

• General methods
– Pruning – removing excess parameters.
–Quantization – decreasing parameter precision.

• Fully connected layers
–Weight factorization – low rank approximation.

• Convolutional layers
– Convolution separation – low rank approximation.

• Other paths to resource efficiency.

How to improve
resource tradeoffs?

[Sze et al]

Pruning

• Pruning removes, sets to zero, weights in
NN base on a pre-defined heuristic.
Magnitude (abs. value) is the most used
criterion. It performs as well as a random
criterion.

Pruning

• Pruning followed by re-training performs
very well and doing it iteratively is best…

[Gupta et al 2015]

Quantization
Is a lower precision representation of trained parameters.

• Post-training quantization.
– Usually applied after pruning.

– Varied options:
• K-means

• Hashing
• Huffman Coding

• Weight Sharing
• Training quantized models.

– Networks are quantized at each step in the training process at
the forward pass (but leaving the back propagation parameters
in higher precision): this limits accuracy loss.

Training quantized models

• At train time quantization is achieved by:

– Truncation
– (Stochastic) Rounding

• MNIST dataset

fully connected DNNs

Binary Weight Networks (BWNs)

• Weights set to {-𝛂, + 𝛂} set based on
original layer values.

• Activations and last layer are 32-bit.

[Rastegari et al 2016]

• General methods
– Pruning – removing excess parameters.
–Quantization – decreasing parameter precision.

• Fully connected layers
–Weight factorization – low rank approximation.

• Convolutional layers
– Convolution separation – low rank approximation.

• Other paths to resource efficiency.

How to improve
resource tradeoffs?

SVD weight approximation

⇡

U

V

xL

· ·
m⇥ k

k ⇥ n

n⇥ 1

WL xL

·
m⇥ n n⇥ 1

[S. Bhattacharya et al 2016]

SVD weight approximation

WL

xL

xL+1

Before

U

V

xL+1

xL

New
Inserted

Layer

After

SVD weight approximation

⇡

Total Operations: m x k x 1 + k x n x 1

U

V

xL

· ·
m⇥ k

k ⇥ n

n⇥ 1

Total Operations: m x n x 1

WL xL

·
m⇥ n n⇥ 1

Memory & compute savings if:𝑘 < $×&
$'&

SVD weight approximation

ARM Cortex M3 ARM Cortex M0

32 KB 16 KB

2-4% accuracy
drop

Ambient scene analysis and speaker detection tasks.

Cortex
M3/M0

• General methods
– Pruning – removing excess parameters.
–Quantization – decreasing parameter precision.

• Fully connected layers
–Weight factorization – low rank approximation.

• Convolutional layers
– Convolution separation – low rank approximation.

• Other paths to resource efficiency.

How to improve
resource tradeoffs?

Convolution separation

Find an approximation of the kernels that is:

• more computationally efficient,
• faithful to original kernel.

Kn 2 Rd⇥d⇥C

Kn ⇡ K̂n

K̂
c
n =

KX

k=1

H
k
n(V

c
k)

T

Horizontal Filter

Vertical Filter

Computational gain
when: K <

dCN

C +N

31 1

2 6 2

93 3

1

2

3

1 13And

Other parts towards efficiency

• Commodity processors and accelerators

– The elephant in the room in this discussion.

• System-level Solutions
– Including runtime.

• Cross Models Optimization

• Low-Resource Architectures
– MobileNet

Krait CPU — Core 1 Hexagon DSP

Krait CPU — Core 2

Krait CPU — Core 3

Krait CPU — Core 4

Adreno GPU

Connectivity
4G LTE, WiFi
BT, FM, USBLEO

SCHEDULER

CV4

CV3

CV2

CV1

CV3

CV2

CV1

CV1

CV2

CV3

CV2

CV1

CV3

CV2

CV1

Fully Connected Layers

Convolution Layers

FC1

FC2

FC3

FC1

FC2

FC1

FC2

FC3 FC1

FC1

FC2

FC3

As
yn

ch
ro

no
us

 a
cr

os
s

m
od

el

Asynchronous across
m

odel

Event-based Synchronization

Pre-processing of Image

Predictions

Summary

• We have looked at on device computation vs
offloading to cloud/edge

• We have studied how local resources and
cloud offloading have an impact on energy
efficiency and could be used to improve it.

• We have explored the trade offs of accuracy
and energy and the techniques which can
improve machine learning on device.

30

References
• E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, P. Bahl. 2010. MAUI: making

smartphones last longer with code offload. In Proceedings of MobiSys '10.
• P. Georgiev, N. Lane, K. Rachuri, C. Mascolo. 2016. LEO: scheduling sensor inference algorithms

across heterogeneous mobile processors and network resources. In Proceedings of MobiCom ‘16.
• P.. Georgiev, N. Lane, C. Mascolo, D. Chu. Accelerating Mobile Audio Sensing Algorithms through On-

Chip GPU Offloading. In Proceedings of 15th ACM International Conference on Mobile Systems,
Applications and Services (Mobisys 2017). Niagara Falls, NY. USA. June 2017.

• N. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, F. Kawsar. 2015. An Early Resource Characterization
of Deep Learning on Wearables, Smartphones and Internet-of-Things Devices. In Workshop on
Internet of Things towards Applications 2015.

• S. Bhattacharya, N. Lane. 2016. Sparsification and Separation of Deep Learning Layers for
Constrained Resource Inference on Wearables. In Procs of the ACM SenSys ‘16.

• S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan. 2015. Deep learning with limited numerical
precision. In Proceedings of the 32nd International Conference on International Conference on
Machine Learning -Volume 37 (ICML'15),.

• Mohammad Rastegari,Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: Imagenet
Classification Using Binary Convolutional Neural Networks. ECCV 2016.

• V. Sze and Y/ Chen and T.Yang, J. Emer. Efficient Processing of Deep Neural Networks: A Tutorial and
Survey. https://arxiv.org/abs/1703.09039

31

https://arxiv.org/abs/1703.09039

