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In this Lecture

• We will study approaches to preserve energy 
in mobile sensing systems

• We will look at aspects of local versus cloud 
computation

• We will look at how machine learning can be 
used on mobile/wearable/powered devices
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Devices have various processors

• Locally …and remotely (cloud)
• Trading these off vs power is important
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MAUI

• MAUI is a mobile device framework which 
profiles code components in terms of energy 
to decide if to run them locally or remotely 
(considering latency requirements).
– Costs related to the transfer of code/data
– Programming framework
– Dynamic decisions based on network constraints
– CPU only
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MAUI Offloading
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MAUI would not 
perform offloading 
with 3G…



Continuous Audio Sensing Applications

Emotion recognition Speaker count Speaker identification

Gender estimation Ambient sound detection
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Low overhead

• uses heuristics (fast runtime)
• runs on the LPU (low energy)

10 app
workload

~100 ms <0.5% vs. ~3.5%

scheduling in cloud
(next best alternative)



Optimized GPU is Efficient

Optimized GPU is >6x faster than cloud

Keyword Spotting application

nGPU= naïve 
GPU usage
aGPU=optimize
d use of GPU

[Georgiev et al 2017]



Optimized GPU is Efficient

Keyword Spotting classification

Optimized GPU with batching outperforms 
cloud energy-wise



Machine Learning for Mobiles

• We have seen in the previous lecture that 
sensor data can be analysed offline with 
machine learning

• This allows rich applications and 
understanding of user behaviour



Could We Perform Inference 
On Device?

• Machine Learning models are often built with 
little consideration of  system resources…

• AlphaGo: 1920 CPUs and 280 GPUs, $3000 in 
electricity per game…mhhhh.



Why Perform Inference On Device

• Performing Inference on device would allow for data not to 
flow out of devices…(privacy)

• Limit how much bandwidth is used to send data out (at the 
cost of processing usage for inference)…

• Applications: 

– Video applications on image sensors for traffic 
characterization (comms costs reduced)

– Drone/robot navigation local processing for low latency 
and security

• Thinking of trade offs is essential. 



Resource requirements

• Tradeoffs:

– Accuracy per £.
– Memory / latency.

• Considerations:
– Memory.

– Energy.
– Latency.

[Lane et al 2015]



• General methods
– Pruning – removing excess parameters.
–Quantization – decreasing parameter precision.

• Fully connected layers
–Weight factorization – low rank approximation.

• Convolutional layers
– Convolution separation – low rank approximation.

• Other paths to resource efficiency.

How to improve 
resource tradeoffs?

[Sze et al]



Pruning

• Pruning removes, sets to zero, weights in 
NN base on a pre-defined heuristic. 
Magnitude (abs. value) is the most used
criterion. It performs as well as a random 
criterion.



Pruning

• Pruning followed by re-training performs 
very well and doing it iteratively is best… 

[Gupta et al 2015]



Quantization
Is a lower precision representation of trained parameters.

• Post-training quantization.
– Usually applied after pruning.

– Varied options:
• K-means

• Hashing
• Huffman Coding

• Weight Sharing
• Training quantized models.

– Networks are quantized at each step in the training process at 
the forward pass (but leaving the back propagation parameters 
in higher precision): this limits accuracy loss.



Training quantized models

• At train time quantization is achieved by:

– Truncation
– (Stochastic) Rounding

• MNIST dataset

fully connected DNNs



Binary Weight Networks (BWNs)

• Weights set to {-𝛂, + 𝛂} set based on 
original layer values.

• Activations and last layer are 32-bit.

[Rastegari et al 2016]



• General methods
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SVD weight approximation
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SVD weight approximation
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SVD weight approximation

⇡

Total Operations: m x k x 1 + k x n x 1

U

V

xL

· ·
m⇥ k

k ⇥ n

n⇥ 1

Total Operations: m x n x 1

WL xL

·
m⇥ n n⇥ 1

Memory & compute savings if:𝑘 < $×&
$'&



SVD weight approximation

ARM Cortex M3 ARM Cortex M0

32 KB 16 KB

2-4% accuracy 
drop

Ambient scene analysis and speaker detection tasks. 

Cortex 
M3/M0



• General methods
– Pruning – removing excess parameters.
–Quantization – decreasing parameter precision.

• Fully connected layers
–Weight factorization – low rank approximation.

• Convolutional layers
– Convolution separation – low rank approximation.

• Other paths to resource efficiency.

How to improve 
resource tradeoffs?



Convolution separation

Find an approximation of the kernels that is: 

• more computationally efficient, 
• faithful to original kernel.
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Other parts towards efficiency

• Commodity processors and accelerators 

– The elephant in the room in this discussion.

• System-level Solutions 
– Including runtime.

• Cross Models Optimization

• Low-Resource Architectures
– MobileNet
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Summary

• We have looked at on device computation vs 
offloading to cloud/edge

• We have studied how local resources and 
cloud offloading have an impact on energy 
efficiency and could be used to improve it.

• We have explored the trade offs of accuracy 
and energy and the techniques which can 
improve machine learning on device.
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