Mobile and Sensor Systems

Lecture 5: Sensor Data Inference
Prof C Mascolo

[ack to Prof T. Plotz for some material]
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In this lecture

* We will talk about mobile sensing
* We will describe the challenges in sensor inference

* We will talk about the steps involved in the sensor to
inference process

* We will introduce traditional feature based and neural
network based modelling
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Mobile and Wearable Sensing




Sensors

* Microphone

e Camera

« GPS

* Accelerometer
* Compass

* Gyroscope

*  WiFi

* Bluetooth

* Proximity

* Light

* NFC (near field communication)
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Applications

* Individual sensing:
— Fitness and health applications
— behaviour intervention applications
* Group/community sensing:
— groups to sense common activities and help achieving group goals
— examples: assessment of neighbourhood safety, environmental sensing,
collective recycling efforts
 Urban-scale sensing:
— large scale sensing, where large number of people have the same application
installed

— examples: tracking speed of disease across a city, congestion and pollution in
a city
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Sensor Based Inference Systems
Characteristics

e Offline/Online Inference
 Continuous/Periodic/lsolated Inference

* In all cases, collecting ground truth is key:

— data needs precise labels...
[Bulling et al 2013]
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Sensor Data Analysis Challenges:
Differences in Users and Device Positions

* Users have differences which influence the
readings on the sensors (eg different gait)




Sensor Data Analysis Challenges:
Range of Activities

* Activities (classes) can often be many and

sometimes very similar (or similar for some
users)

* Collection of balanced data among those
classes (for ground truth) can be challenging

— The nature of the data collection might impose
imbalances in the data

e Ground Truth Annotation is hard...
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Activity Recognition from Sensor Data

* Activity recognition aims to recognize the
actions of an individual from a series
of observations on the individual’s actions
and the environmental conditions.
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Activity Recognition
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Sensor Inference Pipeline
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Sensor Raw Data and Preprocessing

* Acquisition can happen

— from different sensors (at different locations on the
body or orientation, or from different sensors,
acceleration or GPS...)

— At different sampling rate (eg for energy reasons)
* Sensor data can be corrupted or contain errors

* Preprocessing synchronizes and removes
artifacts (calibration, unit conversion,

normalization, resampling, synchronization..)
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Accelerometer Preprocessing
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Sampling Rate

Dataset #Classes  Q q (5=0.99)
Skoda

PAMAP2-Hand

PAMAP2-Chest

PAMAP2-Ankle
USC-HAD
PHealth
Walk8
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[Khan et a 2016]
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Data Segmentation

* Localize temporal patterns of interest
* But you do not know what/where these are...

* Sliding window approach

— Works well with quasi-periodic activities




Feature Extraction

Example: Activity Recognition

overall close dishwasher open drawer drink cup
0.03 0.03 0.03 0.03
g 0.02 g 0.02 g 0.02 g 0.02
= 0.01 = 0.01 = 0.01 = 0.01 M
0 0 0 0
-2000 O 2000 -2000 O 2000 -2000 O 2000 -2000 O 2000
acc [mg] acc [mg] acc [mg] acc [mg]
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Physical Activity using Accelerometer

* Sensor:accelerometer

* Activities: sitting, standing,
waking, running

* Features:
— Mean (can help distinguish

between standing and sitting).

— Standard deviation

— Number of peaks (can help
distinguish between waking
and running).
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Feature Extraction:
Conversation Detection

FFT (Fast Fourier Transform) of audio (from microphone)

Human voice Noisy environment
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Sound samples of human voice present most of their energy within

the 0-4 KHz spectrum.
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Feature Extraction:
Conversation Detection

* Selecting as Features the mean and standard deviation of the FFT
power

X Talking
© No talking
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* Using a simple threshold line, could give a relatively accurate
detection (with a high number of false positives, however)
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Inference

* The process of mapping raw sensor data to meaningful high-level
events. Inference Pipeline:

Detected
Event

* Designing an Inference Engine:

— Collecting raw sensor data, typically labelled with ground truth
information.

— Data set should also cover states we are not trying to detect but
look similar (e.g. detect walking : we need data also for running and
standing).

— Train the inference engine with the collected data.

— Applying the inference engine to the target application.
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Classification

* Feature extraction produces a feature vector.

* The classification matches the feature vector to a pre-defined
set of high-level classes.

* The classification engine is typically based on machine-learning
techniques and is trained using labelled training data.

* Common classification algorithms include:
— K Nearest Neighbour.
— Naive Bayes classifier.

— Decision Trees.
— Hidden Markov Models.
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Activity Recognition Classification
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Activities
opening a window
closing a window
watering a plant
turning book pages

drinking from a bottle
cutting with a knife
chopping with a knife

stirring 1n a bowl

forehand
backhand

and smash
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Sensors
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Classification Results:
Person Dependence and

Multiple Sensors
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Confusion Matrix on Activities
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Beyond Features: Deep Learning

Movement away from hand-crafted experimentally driven features

towards models that combine feature and classification phases

<
;_’__’

Paradigm of learning discriminative representations (“‘feature
representation learning”) directly from large amounts of relatively
raw data (“end-to-end learning”)

Detected
Event

Detected
Event

Modelling techniques (e.g., training algorithms, network architecture)

are less tied to specific domains and tasks.

UNIVERSITY OF

' CAMBRIDGE



Representative Deep Neural Network
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Example of
Feature Representation Learning

Log-Mel Filter Bank Features

input
speech Multiply by Fourier Magni-
Brief Window Transform tude

o 7 Inverse MFCCs
7 .
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(1) Mel frequency »

cepstral coefficients

* Result of decades of
research into audio

Learned Filter Bank Features
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DNN in Activity Recognition

CAMBRIDGE

PAMAP2 DG OPP
Performance F,, Fy F,, F,
DNN 0.904 0.633 0.575 0.888
CNN 0.937 0.684 0.591 0.894
LSTM-F 0.929 0.673 0.672 0.908
LSTM-S 0.882 0.760 0.698 0.912
b-LSTM-S 0.868 0.741 0.745 0.927
CNN [Yang et al., 2015] — 0.851
CNN [Ordéiiez and Roggen, 2016]  0.535 0.883
DeepConvLSTM [Ordé6iiez and Roggen, 2016] 0.704 0.917
Delta from median AF,, AFy AF,, mean
DNN 0.129 0.149 0.357 0.221
CNN 0.071 0.122 0.120 0.104
LSTM-F 0.10 0.281 0.085 0.156
LSTM-S 0.128 0.297 0.079 0.168
b-LSTM-S 0.087 0.221 0.205 0.172
UNIVERSITY OF

[Hammerla et al 2016]
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CNN vs LSTM for HAR
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CNN+ LSTM for HAR
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Small Datasets!

* Unlike other domains sensor data lacks large
scale labelled datasets

— Difficult to collect large scale ground truth

* Can lead to overfitting! (DNN with many
parameters will memorize small data)

* Solutions:

— Transfer learning
— Classifier ensembles
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