Mobile and Sensor Systems

Mobile Robots for Robotic Sensor Networks

Dr. Amanda Prorok

Autonomous Robots

• What is a robot?

microrobots [Wood, Harvard]

self-foldable / self-actuated [Sung and Rus; MIT]

lightweight aerial robots [Kumar et al.; UPenn]

consumer-grade drones

autonomous vehicles [Google]

- Challenges:
 - How to model and perceive the world?
 - How to process information and exert control?
 - How to reason and plan in the face of uncertainty?

Robots and Mobile Systems

smart infrastructure / mobility-on-demand

connected vehicles / automated highways

drone swarms / surveillance

truck platoons / long-haul transport

In this Lecture

- Introduction to mobile robot systems
- Methods to create a **robotic sensor network**
 - I. How to deploy multiple robots to cover an area?
 - Area tessellation
 - Coverage control
 - Lloyds algorithm
 - 2. How to use multiple robots for pose estimation?
 - Collaborative particle filter
 - 3. How to move a robot?
 - Basic principles of kinematics

Multi-Robot Systems

- Terms used: robot swarms / robot teams / robot networks
- Why?
 - Distributed nature of many problems
 - Overall performance greater REFINE findividual efforts
 - Redundancy
- Numerous commercial, civil, military applications

^AMBRIDGF

surveillance / monitoring

product pickup / delivery

Taxonomy of Multi-Robot Systems

- Architecture: centralized vs. decentralized
 - Centralized: one control/estimation unit communicates with all robots to issue commands; requires synchronized, reliable communication channels; single-point failures
 - Decentralized: scalable, robust to failure; often asynchronous; sub-optimal performance (w.r.t centralized)
- Communication: explicit vs. implicit
 - Implicit: observable states; information exchanged through observation
 - **Explicit:** unobservable states; need to be communicated explicitly
- Heterogeneity: homogenenous vs. heterogeneous
 - Robot teams can leverage inter-robot complementarities

Decentralization

- Goal: Achieve similar (or same) performance as would be achievable with an ideal, centralized system.
- Challenges:
 - Communication: delays and overhead
 - Input: asynchronous; with rumor propagation
 - Sub-optimality with respect to the centralized solution
- Advantages:
 - No single-point failure
 - Can converge to optimum as time progresses
 - 'Any-comm' algorithms exist (with graceful degradation)
 - 'Any-time' algorithms exist (that guarantee gradual improvements)

Robotic Sensor Networks

A key application of multi-robot systems: robotic sensor networks. Three examples:

I. Coordinated sampling of dynamic oceanographic features with underwater vehicles [Das et al., 2012]:

Robotic Sensor Networks

2. Mobile Sensor Network Deployment using Potential Fields: A Distributed, Scalable Solution to the Area Coverage Problem; [Howard et al., 2002]

3. Underwater Data Collection Using Robotic Sensor Networks; [Hollinger et al., 2011]

How to obtain coverage of an area?

Coverage

- Coverage classes:
 - **Blanket**: Deploy sensors, e.g. carried by networked robots, in a *static arrangement* to cover an area.

Blanket

Coverage

- Coverage classes:
 - **Barrier**: Deploy sensors in a *static arrangement* that minimizes the probability of undetected penetration through the barrier.

Barrier

UNIVERSITY OF CAMBRIDGE

Coverage

- Coverage classes:
 - Sweep: Move a group of sensors across a coverage area to achieve a balance between maximizing the number of detections per time and minimizing the number of missed detections per area.

Sweep

Coverage Applications

Application	Coverage Class
Target search & rescue	Sweep
Reconaissance	Sweep
Sentry duty	Barrier
Communications relay	Blanket
Maintenance / inspection	Blanket

Scenario

Tessellation

- Voronoi diagram:
 - Partitioning of a plane into regions based on distances to points in a specific subset of the plane.
 - A set of points (called seeds, sites, or generators) is specified beforehand, and for each seed there is a corresponding region consisting of all points closer to that seed than to any other.
 - Regions called Voronoi cells

Voronoi Coverage

- A widely studied class of solutions to coverage use Voronoi tessellations that optimize the configuration of *n* robots
- Assumption: One robot (generator) per Voronoi cell
- **Optimization objective**: minimize the average distance between robots and all points in their respective cells.
- Centroidal Voronoi Tessellation (CVT):

generator position coincides with cell centroids

Density function $\phi(\mathbf{x})$ describes importance of different areas in space

Mass of a cell:
$$M_{V_i} = \int_{V_i} \phi(\mathbf{x}) d\mathbf{x}$$

Centroid of a cell: $\mathbf{c}_{V_i} = \frac{1}{M_{V_i}} \int_{V_i} \mathbf{x} \phi(\mathbf{x}) d\mathbf{x}$

Centroidal Voronoi Tessellation

- CVT: When the generating point of each Voronoi cell is also its centroid
- CVTs minimize this cost function (using Euclidean distance):

$$H(\mathbf{P}) = \sum_{i=1}^{n} H(\mathbf{p}_{i}) = \frac{1}{2} \sum_{i=1}^{n} \int_{V_{i}} \|\mathbf{p}_{i} - \mathbf{x}\|_{2}^{2} \phi(\mathbf{x}) d\mathbf{x}$$

$$\xrightarrow{\text{position of robot } i}$$

$$\xrightarrow{\text{generator positions (robot positions) do not coincide with cell centroids}}$$
RESITYOE

Centroidal Voronoi Tessellation

- Goal: Move robots ('generators') to generate a CVT.
- Idea: Take partial derivative w.r.t. robot positions to improve the cost function $H(\mathbf{P})$.
- Resulting partial derivative describes that a Voronoi tessellation becomes a CVT when all generators coincide with the cell centroids:

$$\frac{\partial H(\mathbf{p}_i)}{\partial \mathbf{p}_i} = -M_{V_i}(\mathbf{c}_{V_i} - \mathbf{p}_i) = 0$$

Coverage Control

$$\frac{\partial H(\mathbf{p}_i)}{\partial \mathbf{p}_i} = -M_{V_i}(\mathbf{c}_{V_i} - \mathbf{p}_i) = 0$$

• Control strategy for 1st order dynamics:

Lloyds algorithm

Lloyd's Algorithm

- Lloyd's algorithm:
 - Deterministic way of **constructing CVTs**.
 - Iterates over 3 steps:
 - I. Construct the Voronoi partition for the generators
 - 2. Compute the centroids of these regions
 - 3. Move generators to centroids and start over.

- Convergence of Lloyd's algorithm:
 - A set of points in a given environment converges under the Lloyd algorithm to a centroidal Voronoi configuration. (proof exists)

Coverage Control

$$\frac{\partial H(\mathbf{p}_i)}{\partial \mathbf{p}_i} = -M_{V_i}(\mathbf{c}_{V_i} - \mathbf{p}_i) = 0$$

• Control strategy for 1st order dynamics:

Collaborative localization

Collaborative Multi-Robot Systems

Communication Topologies for Multi-Robot Systems:

Distributed Estimation

- Goal: Estimate a local or global variable in **distributed** manner
- Filters can be distributed
 - Examples: Kalman filter, particle filter
 - Method: fuse relative observations of other robots
 - Correct implementation considers relative observations as dependent measurements; the whole history of measurements needs to be tracked (to avoid rumor propagation)!
- Other mechanisms:
 - Opportunistic mechanisms
 - Consensus (agreement mechanism)

Collaborative Localization

- Collaborative localization uses relative inter-robot observations
- Robots communicate their position estimate
- Fuse relative observation by transforming position into local frame

Collaborative Localization

- This example considers a particle filter (Kalman filter also possible)
- Detected robot weights its particles using belief of detecting robot
- Particles re-sampled according to new weights (standard filter)

Range & Bearing Model

• **Collaborative sensor model**: relies on the fact that robots can 'see' each other, and can send each other this detection data.

Range & Bearing Model

$$r_{mn}^{[i]} : \text{ range with center } \mathbf{x}_{m}^{[i]} \text{ to } \mathbf{x}_{n}$$

$$\theta_{mn}^{[i]} : \text{ bearing from } \mathbf{x}_{m}^{[i]} \text{ with respect to } \mathbf{x}_{n}$$

$$\mathcal{R}_{n}$$

Collaborative Localization Algorithm

Algorithm 1 MultiRob_Recip_MCL($X_{n,t-1}, u_{n,t}, z_{n,t}, D_{n,t}$) 1: $\bar{X}_{n,t} = X_{n,t} = \emptyset$ 1: $M_{n,t} = M_{n,t} = p$ 2: for i = 1 to M do 3: $\mathbf{x}_{n,t}^{[i]} \leftarrow \text{Motion_Model}(u_{n,t}, \mathbf{x}_{n,t-1}^{[i]})$ 4: $w_{n,t}^{[i]} \leftarrow \text{Measurement_Model}(\mathbf{x}_{n,t}^{[i]})$ 5: $w_{n,t}^{[i]} \leftarrow \text{Detection_Model}(D_{n,t}, \mathbf{x}_{n,t}^{[i]}, w_{n,t}^{[i]})$ $\bar{X}_{n,t} \leftarrow \bar{X}_{n,t} + \left\langle \mathbf{x}_{n,t}^{[i]}, w_{n,t}^{[i]} \right\rangle$ 6: 7: end for 8: for i = 1 to M do $r \sim \mathcal{U}(0,1)$ 9: if $r \leq (1-\alpha)$ then 10: $\mathbf{x}_{n,t}^{[i]} \gets \texttt{Sampling}(ar{X}_{n,t})$ 11: $\mathbf{x}_{n,t}^{[i]} \leftarrow \texttt{Reciprocal_Sampling}(D_{n,t}, \bar{X}_{n,t})$ end if 12: 13: 14: $X_{n,t} \leftarrow X_{n,t} + \left\langle \mathbf{x}_{n,t}^{[i]}, w_{n,t}^{[i]} \right\rangle$ 15: 16: end for 17: return $X_{n,t}$

[Prorok et al., 2011]

Collaborative Localization

4 robots equipped with range & bearing modules

Coverage Control

$$\frac{\partial H(\mathbf{p}_i)}{\partial \mathbf{p}_i} = -M_{V_i}(\mathbf{c}_{V_i} - \mathbf{p}_i) = 0$$

• Control strategy for 1st order dynamics:

Robot control

Control

- Goal: reach desired position / follow desired trajectory
- Example: trajectory tracking
- Assumption: robot receives **feedback** on distance to desired trajectory.

Control

A Simple Closed-Loop Controller:

```
Algorithm: Bang-Bang Controller
forever do:
    error ← reference - measured // Distance
    if error < 0 // Too far left
    left-motor-power ← 100
    right-motor-power ← -100
    if error > 0 // Too far right
    left-motor-power ← -100
    right-motor-power ← 100
    if error = 0 // Just right
    left-motor-power ← 100
    right-motor-power ← 100
```


Bang-Bang Controller

- Example: trajectory tracking
- Assumption: robot receives feedback on distance to desired trajectory.

zig-zag behavior: we can do better!

'on-off' or 'bang-bang' controller

Proportional Control (P-Control)

- Example: trajectory tracking
- Assumption: robot receives feedback on distance to line.
- Robot computes **error**, and **adjusts** control as a function of error

Proportional Control (P-Control)

Algorithm: P-Controller

forever do:
 error ← reference - measured // Distance
 power ← gain * error // Control value
 left-motor-power ← power_left
 right-motor-power ← power_right

Proportional Control (P-Control)

- Behavior of P-control:
 - Adapt control proportionally to your perceived error to set-point.
 - $u(t) = \kappa_p e(t)$
- Why is the target distance not reached?
 - Methods to overcome this: PID control (advanced)
- Behavior for varying gain values
- High gains not desirable! We call this an *unstable* controller.

* image credit: Elements of Robotics

Further Reading

Fundamental concepts:

- Elements of Robotics, F Mondada et al., 2018
- Autonomous Mobile Robots, R Siegwart et al., 2004

State of the art:

- Springer Handbook of Robotics library has a copy!
- The grand challenges of Science Robotics, Science, Yang et al. 2018

Further reading:

- Probabilistic Robotics, S Thrun et al, 2005
- Springer Handbook of Robotics, B Siciliano et al., 2008

PID Control (Advanced)

- Pl-controller:
 - takes into account accumulated error over time

$$u(t) = \kappa_p e(t) + \kappa_i \int_0^t e(\tau) dt$$

- E.g., in presence of friction, error will be integrated causing higher motor setting to overcome remaining delta.
- PID-controller:
 - take into account future error by computing rate of change of error.
 - acts as a 'dampener' on control effort.

* image credit: Elements of Robotics