
Sensor Fusion
Dr Robert Harle
Mobile and Sensor Systems
Lent 2020

Measurements are Noisy
A sensor measures some quantity with some accuracy. Whatever we do, noise
will creep in
We therefore need to fuse multiple measurements to get a robust idea of
what's happening

Fusion
algorithm

State estimate
(and error)

Multiple measurements from same
sensor

[Domain-specific
constraints]

Multiple measurements
from different sensors

Algorithms
There are many fusion techniques and algorithms

We will look at the two extremes: a very fast, very common algorithm that is
limited in what it works with, and a general-purpose and flexible but more
computationally demanding algorithm

Both are based on bayesian probability

We will use location tracking to illustrate the techniques because the problem
is easy to relate to. But everything is general.

Simple Tracking Example
Consider a series of positions that come in a few seconds apart for a
pedestrian. They will probably look rather unrealistic for a walking route:

Simple Tracking Example
But if we consider noise and error in the measurements we see that the data
supports a more realistic hypothesis of straight line walking:

Probabilistic Approach

State at time t
(e.g. position)

Belief
(probability)

Measurements
(e.g. from positioning

system)

So what we want to do is to estimate our current state while incorporating
knowledge of recent measurements and all of the associated errors. To do this
we will use probability

Filters and Smoothers

This is known as a filter because it estimates the current state based on
current and past measurements (only)

Sometimes you know the ‘future’ e.g. you may have logged data for
post-processing rather than live processing

In that case you have a smoother

Apply a Markov model (next state depends only on last) to recursively build up
our probabilities

This is the propagation or prediction step

We update the probabilities based on some model (e.g. constant velocity) →
prior distribution

Recursive Bayesian Filters

Prior Propagation (motion)
model

Evaluate over
all previous states

Apply Bayes' theorem to incorporate measurements

This is the correction or update step

We correct the probabilities on a measurement → posterior distribution

Recursive Bayesian Filters

Posterior Measurement
modelNorm

factor

Prior

There are broadly two classes of techniques to implement these filters

1. Model all the probability distributions using mathematical models. This
keeps everything continuous. But it's not always easy to do this (the
distributions get complex). E.g. Use Gaussians everywhere → “Kalman
Filter”

2. Represent arbitrary distributions by sampling them. Nice and general but
much more work involved.

Implementation
Propagation/predict

Correction/update

The Kalman Filter

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system using linear algebra
(matrices etc)

Boils down to 3 equations:

The Kalman Filter

Propagation

Correction

New state

Motion model

Last state

Motion Model Example: Constant Velocity

F = 1 dt
0 1

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system using linear algebra
(matrices etc)

Boils down to 3 equations:

The Kalman Filter

Propagation

Correction

Noise terms

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system using linear algebra
(matrices etc)

Boils down to 3 equations:

The Kalman Filter

Propagation

Correction

Covariance
(“error”)

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system using linear algebra
(matrices etc)

Boils down to 3 equations:

The Kalman Filter

Propagation

Correction

Measurement
model

Just measure the position directly

Measurement Model Example

H = (1 0)

The Nitty Gritty

(Thanks to wikipedia. No, you aren't expected to learn these)

Key to the Kalman Filter

Initially we have some position
estimate that is associated with a
normal distribution

Key to the Kalman Filter

We propagate the state,
meaning we use the motion
model to move it forward. Since
we had no actual input, we
increase the error (→ Gaussian
gets shorter and fatter)

Key to the Kalman Filter

We repeat the propagation but
then a measurement comes in.
This is associated with
another Gaussian, although
thinner because it's an OK
estimate

Key to the Kalman Filter

The beauty of a Gaussian is that
when you multiply two together
you get another Gaussian. Thus
we always finish a cycle with a
new Gaussian estimate → we
can represent it using just two
parameters, making it amenable
to linear algebra

Key to the Kalman Filter
Consider the Inertial GPS systems you find in vehicles. They need to estimate
where the car is at all times between GPS measurements.

We compute position by concatenating a series of displacements and headings
(dead reckoning).

We use inertial sensors to estimate the displacements (wheel encoders) and
headings (gyroscopes) since the last state estimate

A more complex example

t=1t=0 t=2 t=3

We integrate the gyroscope signal to estimate the heading change (note the
motion model uses the inertial inputs)

But gyros are subject to bias errors (a bias is a bogus offset reported when it's
not rotating) and we often see erroneous bending:

Inertial Nav

True
(unobservable)

INS bias bends heading

Estimate

When a GPS measurement comes in we can fix things

Inertial Nav

GPS

True
(unobservable)

INS

GPS correction

But if we just correct position, it starts to go wrong again

Inertial Nav

GPS

True
(unobservable)

INS

But if we add the bias to the state in the kalman filter, it will estimate that for us
too

Inertial Nav

True
(unobservable)

INS

Bias corrected

KF Limitations
Propagation

Correction

What if those probability distributions don't lend themselves to being normal?

Our example will be constraining movement to be on a building floorplan. How
could you build a motion model matrix that incorporated a floorplan??! The Particle Filter

Our Goal

Figure out where someone walked indoors
Phones detect step events pretty well from the accelerometer

Step Detection

Step-and-Heading Systems
IMUs in phonescan detect steps quite well, and orientation changes reasonably
well (from a KF on the gyro)

Phone gyroscope gives
us heading changes.

Step-and-Heading Systems

Duration of step
closely correlated
to step distance.

IMUs in phones can detect steps quite well, and orientation changes reasonably
well (from a KF on the gyro)

Noisy Dead Reckoning

We end up with a lot of step vectors, with noise on both orientation
and length.

We could add these up (dead reckoning) but the noise will
accumulate fast and we’ll have big errors.

Need to model the errors and constrain them based on the floorplan.

 𝛳

d

Particle Filter Approach

Floorplan constraints are hard to incorporate because they are so nonlinear in
nature. Instead we apply monte-carlo technique (effectively simulating multiple
hypotheses)

A ‘particle’ that
represents a single

hypothesis about where
the person is and what

their orientation is.

(x, y, 𝛳)

Particle Filter Approach

p(A)=0.25
p(B)=0.25
p(C)=0.25
p(D)=0.25

A

B
C

D

A ‘particle’ that
represents a single

hypothesis about where
the person is and what

their orientation is.

Make lots of hypotheses
(particles) and assign

each a probability that
represents our belief in it.

(x, y, 𝛳)

Floorplan constraints are hard to incorporate because they are so nonlinear in
nature. Instead we apply monte-carlo technique (effectively simulating multiple
hypotheses)

Particle Filter Approach

Propagate: Shift each particle
forward by the

ZUPT-estimated distance and
rotation. Throw in some noise
to model measurement error.

p=0.25

p=0.25
p=0.25

p=0.25

 𝛳

d

Floorplan constraints are hard to incorporate because they are so nonlinear in
nature. Instead we apply monte-carlo technique (effectively simulating multiple
hypotheses)

Growing uncertainty

With every step, the noise I put in means the particle cloud will spread.

This is correct: I have not included any measurement to constrain it. Compare to
the Gaussian getting fatter and fatter in the Kalman filter before the correct stage.

Particle Filter Approach

Correct: Any particle that
crossed a wall gets a

probability of zero

p=0

p=0.5
p=0.5

p=0

Floorplan constraints are hard to incorporate because they are so nonlinear in
nature. Instead we apply monte-carlo technique (effectively simulating multiple
hypotheses)

+

Particle Filter Approach

If we also had another
system that estimated

our actual position (with
error of course), we could
boost the weights of the
particles most consistent

with it

p=0

p=0.25
p=0.75

p=0

Floorplan constraints are hard to incorporate because they are so nonlinear in
nature. Instead we apply monte-carlo technique (effectively simulating multiple
hypotheses)

Particle Filter Approach

Resample: If we just let the
propagation/correct cycle run

and run then we would be
wasting time processing low
(or zero!) probability particles

(hypotheses).

Instead we create a new set of
particles by randomly

sampling in proportion to
their probabilities.

But how?

p=0

p=0.25
p=0.75

p=0

Floorplan constraints are hard to incorporate because they are so nonlinear in
nature. Instead we apply monte-carlo technique (effectively simulating multiple
hypotheses)

Sampling in Proportion

Number each particle (order is irrelevant) and form the cumulative weight
distribution

p=0

p=0.25
p=0.75

p=0

1

4

2
3

1 2 3 4

1.00

0.75

0.50

0.25

0

Sampling in Proportion

Generate uniform random number between 0.0 and 1.0 and read across and down
to find out which particle to clone into the next generation (“resample”)

p=0

p=0.25
p=0.75

p=0

1

4

2
3

1 2 3 4

1.00

0.75

0.50

0.25

0

Resample particle 2
three times and
particle 3 one time

Particle Filter Approach

Resampled set ready for
next cycle. Each has the
same probability now.

p=0.25
p=0.25
p=0.25
p=0.25

Floorplan constraints are hard to incorporate because they are so nonlinear in
nature. Instead we apply monte-carlo technique (effectively simulating multiple
hypotheses)

Update and correct steps are nicely parallelisable

But forming the cumulative weight for resampling is fundamentally sequential...

A Note on Performance

Initially we have no knowledge of the user's position

Lots of particles

“Localisation Phase”

Localisation vs Tracking Symmetry Problem

Localisation vs Tracking
Eventually we figure out where they are and the
problem becomes easier

Fewer particles needed

“Tracking Phase”

(For interest, we got ~ 0.75m accuracy 95% of the
time in this building)

In General
Particle filters are easy to implement and highly flexible

But:

● Every particle you add costs you in terms of computation
● The results are not deterministic
● Too few particles gives bad/failed results, while too many wastes precious

CPU cycles. You need to ensure your system adequately represents the
real uncertainty without going overboard!

