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Measurements are Noisy
A sensor measures some quantity with some accuracy. Whatever we do, noise 
will creep in
We therefore need to fuse multiple measurements to get a robust idea of 
what's happening

Fusion
algorithm

State estimate
(and error)

Multiple measurements from same 
sensor

[Domain-specific 
constraints]

Multiple measurements 
from different sensors

Algorithms
There are many fusion techniques and algorithms

We will look at the two extremes: a very fast, very common algorithm that is 
limited in what it works with, and a general-purpose and flexible but more 
computationally demanding algorithm

Both are based on bayesian probability

We will use location tracking to illustrate the techniques because the problem 
is easy to relate to. But everything is general.

Simple Tracking Example
Consider a series of positions that come in a few seconds apart for a 
pedestrian. They will probably look rather unrealistic for a walking route:



Simple Tracking Example
But if we consider noise and error in the measurements we see that the data 
supports a more realistic hypothesis of straight line walking:

Probabilistic Approach

State at time t
(e.g. position)

Belief 
(probability)

Measurements
(e.g. from positioning 

system)

So what we want to do is to estimate our current state while incorporating 
knowledge of recent measurements and all of the associated errors. To do this 
we will use probability

Filters and Smoothers

This is known as a filter because it estimates the current state based on 
current and past measurements (only)

Sometimes you know the ‘future’ e.g. you may have logged data for 
post-processing rather than live processing

In that case you have a smoother

Apply a Markov model (next state depends only on last) to recursively build up 
our probabilities

This is the propagation or prediction step

We update the probabilities based on some  model (e.g. constant velocity) → 
prior distribution

Recursive Bayesian Filters

Prior Propagation (motion)
model

Evaluate over
all previous states



Apply Bayes' theorem to incorporate measurements

This is the correction or update step

We correct the probabilities on a measurement → posterior distribution

Recursive Bayesian Filters

Posterior Measurement
modelNorm

factor

Prior

There are broadly two classes of techniques to implement these filters

1. Model all the probability distributions using mathematical models.  This 
keeps everything continuous. But it's not always easy to do this (the 
distributions get complex). E.g. Use Gaussians everywhere → “Kalman 
Filter”

2. Represent arbitrary distributions by sampling them. Nice and general but 
much more work involved.

Implementation
Propagation/predict

Correction/update

The Kalman Filter

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system using linear algebra 
(matrices etc)

Boils down to 3 equations:

The Kalman Filter

Propagation

Correction

New state

Motion model

Last state 



Motion Model Example: Constant Velocity

F =  1 dt
0  1

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system using linear algebra 
(matrices etc)

Boils down to 3 equations:

The Kalman Filter

Propagation

Correction

Noise terms

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system using linear algebra 
(matrices etc)

Boils down to 3 equations:

The Kalman Filter

Propagation

Correction

Covariance 
(“error”)

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system using linear algebra 
(matrices etc)

Boils down to 3 equations:

The Kalman Filter

Propagation

Correction

Measurement 
model 



Just measure the position directly

Measurement Model Example

H = (1   0)

The Nitty Gritty

(Thanks to wikipedia. No, you aren't expected to learn these)

Key to the Kalman Filter

Initially we have some position 
estimate that is associated with a 
normal distribution

Key to the Kalman Filter

We propagate the state, 
meaning we use the motion 
model to move it forward. Since 
we had no actual input, we 
increase the error (→ Gaussian 
gets shorter and fatter)



Key to the Kalman Filter

We repeat the propagation but 
then a measurement comes in. 
This is associated with 
another Gaussian, although 
thinner because it's an OK 
estimate 

Key to the Kalman Filter

The beauty of a Gaussian is that 
when you multiply two together 
you get another Gaussian. Thus 
we always finish a cycle with a 
new Gaussian estimate → we 
can represent it using just two 
parameters, making it amenable 
to linear algebra

Key to the Kalman Filter
Consider the Inertial GPS systems you find in vehicles. They need to estimate 
where the car is at all times between GPS measurements.

We compute position by concatenating a series of displacements and headings 
(dead reckoning).

We use inertial sensors to estimate the displacements (wheel encoders) and 
headings (gyroscopes) since the last state estimate 

A more complex example

t=1t=0 t=2 t=3



We integrate the gyroscope signal to estimate the heading change (note the 
motion model uses the inertial inputs)

But gyros are subject to bias errors (a bias is a bogus offset reported when it's 
not rotating) and we often see erroneous bending:

Inertial Nav

True
(unobservable)

INS bias bends heading

Estimate

When a GPS measurement comes in we can fix things

Inertial Nav

GPS

True
(unobservable)

INS

GPS correction

But if we just correct position, it starts to go wrong again

Inertial Nav

GPS

True
(unobservable)

INS

But if we add the bias to the state in the kalman filter, it will estimate that for us 
too

Inertial Nav

True
(unobservable)

INS

Bias corrected



KF Limitations
Propagation

Correction

What if those probability distributions don't lend themselves to being normal?

Our example will be constraining movement to be on a building floorplan.  How 
could you build a motion model matrix that incorporated a floorplan??! The Particle Filter

Our Goal

Figure out where someone walked indoors
Phones detect step events pretty well from the accelerometer

Step Detection



Step-and-Heading Systems
IMUs in phonescan detect steps quite well, and orientation changes reasonably 
well (from a KF on the gyro)

Phone gyroscope gives 
us heading changes.

Step-and-Heading Systems

Duration of step 
closely correlated 
to step distance.

IMUs in phones can detect steps quite well, and orientation changes reasonably 
well (from a KF on the gyro)

Noisy Dead Reckoning

We end up with a lot of step vectors, with noise on both orientation 
and length.

We could add these up (dead reckoning) but the noise will 
accumulate fast and we’ll have big errors.

Need to model the errors and constrain them based on the floorplan.
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Particle Filter Approach

Floorplan constraints are hard to incorporate because they are so nonlinear in 
nature. Instead we apply monte-carlo technique (effectively simulating multiple 
hypotheses)

A ‘particle’ that 
represents a single 

hypothesis about where 
the person is and what 

their orientation is.

(x, y, 𝛳)



Particle Filter Approach

p(A)=0.25
p(B)=0.25
p(C)=0.25
p(D)=0.25

A

B
C

D

A ‘particle’ that 
represents a single 

hypothesis about where 
the person is and what 

their orientation is.

Make lots of hypotheses 
(particles) and assign 

each a probability that 
represents our belief in it.

(x, y, 𝛳)

Floorplan constraints are hard to incorporate because they are so nonlinear in 
nature. Instead we apply monte-carlo technique (effectively simulating multiple 
hypotheses)

Particle Filter Approach

Propagate: Shift each particle 
forward by the 

ZUPT-estimated distance and 
rotation. Throw in some noise 
to model measurement error.

p=0.25

p=0.25
p=0.25

p=0.25
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Floorplan constraints are hard to incorporate because they are so nonlinear in 
nature. Instead we apply monte-carlo technique (effectively simulating multiple 
hypotheses)

Growing uncertainty

With every step, the noise I put in means the particle cloud will spread.

This is correct: I have not included any measurement to constrain it. Compare to 
the Gaussian getting fatter and fatter in the Kalman filter before the correct stage.

Particle Filter Approach

Correct: Any particle that 
crossed a wall gets a 

probability of zero

p=0

p=0.5
p=0.5

p=0

Floorplan constraints are hard to incorporate because they are so nonlinear in 
nature. Instead we apply monte-carlo technique (effectively simulating multiple 
hypotheses)



+

Particle Filter Approach

If we also had another 
system that estimated 

our actual position (with 
error of course), we could 
boost the weights of the 
particles most consistent 

with it

p=0

p=0.25
p=0.75

p=0

Floorplan constraints are hard to incorporate because they are so nonlinear in 
nature. Instead we apply monte-carlo technique (effectively simulating multiple 
hypotheses)

Particle Filter Approach

Resample: If we just let the 
propagation/correct cycle run 

and run then we would be 
wasting time processing low 
(or zero!) probability particles 

(hypotheses).

Instead we create a new set of 
particles by randomly 

sampling in proportion to 
their probabilities.

But how?

p=0

p=0.25
p=0.75

p=0

Floorplan constraints are hard to incorporate because they are so nonlinear in 
nature. Instead we apply monte-carlo technique (effectively simulating multiple 
hypotheses)

Sampling in Proportion

Number each particle (order is irrelevant) and form the cumulative weight 
distribution
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Sampling in Proportion

Generate uniform random number between 0.0 and 1.0 and read across and down 
to find out which particle to clone into the next generation (“resample”)

p=0
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p=0.75
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Resample particle 2 
three times and 
particle 3 one time



Particle Filter Approach

Resampled set ready for 
next cycle. Each has the 
same probability now.

p=0.25
p=0.25
p=0.25
p=0.25

Floorplan constraints are hard to incorporate because they are so nonlinear in 
nature. Instead we apply monte-carlo technique (effectively simulating multiple 
hypotheses)

Update and correct steps are nicely parallelisable

But forming the cumulative weight for resampling is fundamentally sequential...

A Note on Performance

Initially we have no knowledge of the user's position

Lots of particles

“Localisation Phase”

Localisation vs Tracking Symmetry Problem



Localisation vs Tracking
Eventually we figure out where they are and the 
problem becomes easier

Fewer particles needed

“Tracking Phase”

(For interest, we got ~ 0.75m accuracy 95% of the 
time in this building)

In General
Particle filters are easy to implement and highly flexible

But:

● Every particle you add costs you in terms of computation
● The results are not deterministic
● Too few particles gives bad/failed results, while too many wastes precious 

CPU cycles. You need to ensure your system adequately represents the 
real uncertainty without going overboard!


