Sensor Fusion

Dr Robert Harle
Mobile and Sensor Systems
Lent 2020

Algorithms

There are many fusion techniques and algorithms
We will look at the two extremes: a very fast, very common algorithm that is limited in what it works with, and a general-purpose and flexible but more computationally demanding algorithm

Both are based on bayesian probability
We will use location tracking to illustrate the techniques because the problem is easy to relate to. But everything is general.

Measurements are Noisy

A sensor measures some quantity with some accuracy. Whatever we do, noise will creep in
We therefore need to fuse multiple measurements to get a robust idea of what's happening

Multiple measurements from same
sensor

Multiple measurements
from different sensors

[Domain-specific constraints]

Simple Tracking Example

Consider a series of positions that come in a few seconds apart for a pedestrian. They will probably look rather unrealistic for a walking route:

Simple Tracking Example

But if we consider noise and error in the measurements we see that the data supports a more realistic hypothesis of straight line walking:

Filters and Smoothers

$$
\operatorname{Bel}\left(\boldsymbol{x}_{t}\right)=p\left(\boldsymbol{x}_{t} \mid \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{t}\right)
$$

This is known as a filter because it estimates the current state based on current and past measurements (only)

Sometimes you know the 'future' e.g. you may have logged data for post-processing rather than live processing

In that case you have a smoother

Probabilistic Approach

So what we want to do is to estimate our current state while incorporating knowledge of recent measurements and all of the associated errors. To do this we will use probability
 system)

Recursive Bayesian Filters

Apply a Markov model (next state depends only on last) to recursively build up our probabilities

This is the propagation or prediction step
We update the probabilities based on some model (e.g. constant velocity) \rightarrow prior distribution

Recursive Bayesian Filters

Apply Bayes' theorem to incorporate measurements

This is the correction or update step
We correct the probabilities on a measurement \rightarrow posterior distribution

Implementation

$\operatorname{Bel}^{-}\left(\boldsymbol{x}_{t}\right)=\int p\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-\delta t}\right) \operatorname{Bel}\left(\boldsymbol{x}_{t-\delta t}\right) d \boldsymbol{x}_{t-\delta t}$.
Propagation/predict
$\operatorname{Bel}\left(\boldsymbol{x}_{t}\right)=\alpha_{t} p\left(\boldsymbol{z}_{t} \mid \boldsymbol{x}_{t}\right) \operatorname{Bel}^{-}\left(\boldsymbol{x}_{t}\right)$
Correction/update

There are broadly two classes of techniques to implement these filters

1. Model all the probability distributions using mathematical models. This keeps everything continuous. But it's not always easy to do this (the distributions get complex). E.g. Use Gaussians everywhere \rightarrow "Kalman Filter"
2. Represent arbitrary distributions by sampling them. Nice and general but much more work involved.

The Kalman Filter

The simplest recursive Bayesian filter
It is used everywhere: very important
Requires that you can write the dynamics of your system using linear algebra (matrices etc)

$$
z_{t}=\boldsymbol{H}_{t} \boldsymbol{x}_{t}+\boldsymbol{v}_{t}
$$

Motion Model Example: Constant Velocity

$$
\boldsymbol{x}_{t}=\boldsymbol{F}_{t} \boldsymbol{x}_{t-\delta t}+\boldsymbol{w}_{t}
$$

$\mathrm{F}=\left(\begin{array}{ll}1 & \mathrm{dt} \\ 0 & 1\end{array}\right)$

The Kalman Filter

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system using linear algebra (matrices etc)

Boils down to 3 equations:

The Kalman Filter

The simplest recursive Bayesian filter
It is used everywhere: very important
Requires that you can write the dynamics of your system using linear algebra (matrices etc)

Boils down to 3 equations:

$$
\begin{array}{rlr}
\boldsymbol{x}_{t}=\boldsymbol{F}_{t} \boldsymbol{x}_{t-\delta t}+\boldsymbol{w}_{t} & \text { Propagation } \\
\boldsymbol{P}_{t}^{-} & =\boldsymbol{F}_{t} \boldsymbol{P}_{t-\delta \boldsymbol{t}} \boldsymbol{F}_{t}^{T}+\boldsymbol{Q}_{t} & \\
\boldsymbol{z}_{t} & =\boldsymbol{H}_{t} \boldsymbol{x}_{t}+\boldsymbol{v}_{t} \text { Model } & \text { Correction }
\end{array}
$$

Measurement Model Example

Just measure the position directly

$$
\boldsymbol{z}_{t}=\boldsymbol{H}_{t} \boldsymbol{x}_{t}+\boldsymbol{v}_{t}
$$

$H=\left(\begin{array}{ll}1 & 0\end{array}\right)$

The Nitty Gritty

Predict [edit]
Predicted (a priori) state estimate

$$
\hat{\mathbf{x}}_{k \mid k-1}=\mathbf{F}_{k} \hat{\mathbf{x}}_{k-1 \mid k-1}+\mathbf{B}_{k} \mathbf{u}_{k}
$$

$$
\mathbf{P}_{k \mid k-1}=\mathbf{F}_{k} \mathbf{P}_{k-1 \mid k-1} \mathbf{F}_{k}^{\mathrm{T}}+\mathbf{Q}_{k}
$$

Update [edit]
Innovation or measurement residual
Innovation (or residual) covariance
Optimal Kalman gain
Updated (a posteriori) state estimate
Updated (a posteriori) estimate covariance
$\tilde{\mathbf{y}}_{k}=\mathbf{z}_{k}-\mathbf{H}_{k} \hat{\mathbf{x}}_{k \mid k-}$
$\mathbf{S}_{k}=\mathbf{H}_{k} \mathbf{P}_{k \mid k-1} \mathbf{H}_{k}^{T}+\mathbf{R}_{k}$
$\mathbf{K}_{k}=\mathbf{P}_{k \mid k-1} \mathbf{H}_{k}^{T} \mathbf{S}_{k}^{-1}$
$\hat{\mathbf{x}}_{k \mid k}=\hat{\mathbf{x}}_{k \mid k-1}+\mathbf{K}_{k} \tilde{\mathbf{y}}_{k}$
$\mathbf{P}_{k \mid k}=\left(I-\mathbf{K}_{k} \mathbf{H}_{k}\right) \mathbf{P}_{k \mid k-1}$

A more complex example

Consider the Inertial GPS systems you find in vehicles. They need to estimate where the car is at all times between GPS measurements.

We compute position by concatenating a series of displacements and headings (dead reckoning).

We use inertial sensors to estimate the displacements (wheel encoders) and headings (gyroscopes) since the last state estimate

Inertial Nav

We integrate the gyroscope signal to estimate the heading change (note the motion model uses the inertial inputs)

But gyros are subject to bias errors (a bias is a bogus offset reported when it's not rotating) and we often see erroneous bending:

True
(unobservable)
Estimate

INS bias bends heading

Inertial Nav

When a GPS measurement comes in we can fix things

(unobservable)

INS

Inertial Nav

But if we add the bias to the state in the kalman filter, it will estimate that for us

True
(unobservable)

INS

too

True
(unobservable)

INS

KF Limitations

$\operatorname{Bel}^{-}\left(\boldsymbol{x}_{t}\right)=\int p\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-\delta t}\right) \operatorname{Bel}\left(\boldsymbol{x}_{t-\delta t}\right) d \boldsymbol{x}_{t-\delta t}$.
Propagation
$\operatorname{Bel}\left(\boldsymbol{x}_{t}\right)=\alpha_{t} p\left(\boldsymbol{z}_{t} \mid \boldsymbol{x}_{t}\right) \operatorname{Bel}^{-}\left(\boldsymbol{x}_{t}\right)$
Correction

What if those probability distributions don't lend themselves to being normal?
Our example will be constraining movement to be on a building floorplan. How could you build a motion model matrix that incorporated a floorplan??!

Our Goal

Figure out where someone walked indoors

The Particle Filter

Step Detection

Phones detect step events pretty well from the accelerometer

Step-and-Heading Systems

IMUs in phonescan detect steps quite well, and orientation changes reasonably well (from a KF on the gyro)

Step-and-Heading Systems

IMUs in phones can detect steps quite well, and orientation changes reasonably well (from a KF on the gyro)

Particle Filter Approach

Floorplan constraints are hard to incorporate because they are so nonlinear in nature. Instead we apply monte-carlo technique (effectively simulating multiple hypotheses)

$$
(x, y, \theta)
$$

A 'particle' that
A 'particle' that
represents a single hypothesis about where the person is and what their orientation is.

Particle Filter Approach

Floorplan constraints are hard to incorporate because they are so nonlinear in nature. Instead we apply monte-carlo technique (effectively simulating multiple hypotheses)

A 'particle' that represents a single hypothesis about where their orientation is.

Particle Filter Approach

Floorplan constraints are hard to incorporate because they are so nonlinear in nature. Instead we apply monte-carlo technique (effectively simulating multiple hypotheses)

Propagate: Shift each particle forward by the
ZUPT-estimated distance and rotation. Throw in some noise to model measurement error.

Growing uncertainty

With every step, the noise I put in means the particle cloud will spread.
This is correct: I have not included any measurement to constrain it. Compare to the Gaussian getting fatter and fatter in the Kalman filter before the correct stage.

Particle Filter Approach

Floorplan constraints are hard to incorporate because they are so nonlinear in nature. Instead we apply monte-carlo technique (effectively simulating multiple hypotheses)

Particle Filter Approach

Floorplan constraints are hard to incorporate because they are so nonlinear in nature. Instead we apply monte-carlo technique (effectively simulating multiple hypotheses)

Sampling in Proportion

Number each particle (order is irrelevant) and form the cumulative weight distribution

Particle Filter Approach

Floorplan constraints are hard to incorporate because they are so nonlinear in nature. Instead we apply monte-carlo technique (effectively simulating multiple hypotheses)

Sampling in Proportion

Generate uniform random number between 0.0 and 1.0 and read across and down to find out which particle to clone into the next generation ("resample")

Particle Filter Approach

A Note on Performance

Update and correct steps are nicely parallelisable
hature Instead we apply monte-carlo hypotheses)

But forming the cumulative weight for resampling is fundamentally sequential..

Localisation	Tracking
	Initially we have no knowledge of the user's position Lots of particles "Localisation Phase"

Symmetry Problem

| Localisation VS Tracking |
| :--- | :--- |
| Eventually we figure out where they are and the |
| problem becomes easier |

In General

Particle filters are easy to implement and highly flexible
But:

- Every particle you add costs you in terms of computation
- The results are not deterministic
- Too few particles gives bad/failed results, while too many wastes precious CPU cycles. You need to ensure your system adequately represents the real uncertainty without going overboard!

