9: Viterbi Algorithm for HMM Decoding Machine Learning and Real-world Data

Andreas Vlachos (adapted from Simone Teufel)

Dept. of Computer Science and Technology University of Cambridge

Lent 2020

Last session: estimating parameters of an HMM

- The dishonest casino, dice edition.
- Two hidden states: L (loaded dice), F (fair dice).
- Input: dual tape of state and observation (dice outcome) sequences *X* and *O*.

(s_0)	F	F	F	F	L	L	L	F	F	F	F	L	L	L	L	F	F	(sf)
(k_0)																		

■ You estimated transition and emission probabilities (A and B, Task 7).

This session: decoding

- Now we can only observe the numbers that are thrown but we don't know which dice is currently in use. (more realistic unless the croupier is a friend?)
- We want the HMM to find out when the fair dice was out, and when the loaded dice was out.
- We need to write a decoder. (Task 8)

Decoding: finding the most likely path

■ Definition of decoding: Finding the most likely hidden state sequence X that explains the observation O given the HMM parameters $\mu = (A, B)$.

$$\hat{X} = \underset{X}{\operatorname{argmax}} P(X, O; \mu)$$

$$= \underset{X}{\operatorname{argmax}} P(O|X; B) P(X|; A)$$

$$= \underset{X_1 \dots X_T}{\operatorname{argmax}} \prod_{t=1}^T P(O_t|X_t; B) P(X_t|X_{t-1}; A)$$

■ Number of possible state sequences X is $O(N^T)$ (N =number of unique hidden states); too large for brute force search.

Viterbi is a Dynamic Programming Application

(Reminder from Algorithms course) We can use Dynamic Programming if two conditions apply:

- Optimal substructure property
 - An optimal state sequence $X_1 ... X_j ... X_T$ contains inside it the sequence $X_1 ... X_j$, which is also optimal
- Overlapping subsolutions property
 - If both X_t and X_u are on the optimal path, with u > t, then the calculation of the probability for being in state X_t is part of each of the many calculations for being in state X_u .

The intuition behind Viterbi

- Here's how we can save ourselves a lot of time.
- Because of the Limited Horizon of the HMM, we don't need to keep a complete record of how we arrived at a certain state.
 - For 1st-order HMM, we need to record one previous step.
- Just do the calculation of the probability of reaching each state once for each time step and memoise it in an appropriate data structure
 - This reduces our effort to $O(N^2T)$ for the 1st order HMM.
 - We need to calculate the probability of arriving in each hidden state given each previous hidden state for every timestep.
 - What if we had a 2nd order HMM?

Viterbi: main data structure

- Memoisation is done using a *trellis*.
- A trellis is equivalent to a Dynamic Programming table.
- The trellis is $(N+2) \times (T+2)$ in size, with states j as rows and time steps t as columns.
- Each cell j, t records the Viterbi probability $\delta_j(t)$, the probability of the most likely path that ends in state s_j at time t:

$$\delta_j(t) = \max_{1 \le i \le N} [\delta_i(t-1) a_{ij} b_j(O_t)]$$

- This probability is calculated by maximising over the best ways of going to s_i for each s_i .
- a_{ij} : the transition probability from s_i to s_j
- $b_j(O_t)$: the probability of emitting O_t from destination state s_j

Note: the probability of a state starting the sequence at t=0 is just the probability of it emitting the first symbol.

Viterbi algorithm, main step

Viterbi algorithm, main step, ψ

 $\psi_j(t)$ is a helper variable that stores the t-1 state index i on the highest probability path.

$$\psi_j(t) = \underset{1 < i < N}{\operatorname{argmax}} [\delta_i(t-1) \, a_{ij} \, b_j(O_t)]$$

 \blacksquare In the backtracing phase, we will use ψ to find the previous cell/state in the best path.

Viterbi algorithm, termination

Viterbi algorithm, termination

Why is it necessary to keep N states at each time step?

- We have convinced ourselves that it's not necessary to keep more than N ("real") states per time step.
- But could we cut down the table to just a one-dimensional table of *T* time slots by choosing the probability of the best path overall ending in that time slot, in any of the states?
 - This would be the greedy choice
 - But think about what could happen in a later time slot.
 - lacktriangle You could encounter a zero or very low probability concerning all paths going through your chosen state s_j at time t.
 - Now a state s_k that looked suboptimal in comparison to s_j at time t becomes the best candidate.
 - As we don't know the future, we need to keep the probabilities for each state at each timestep.
- Viterbi is an exact decoding algorithm, find the same solution as brute-force but faster!

Precision and Recall

- So far, we have measured system success in accuracy.
- But sometimes it's only one type of instances that we find interesting.
- We don't want a summary measure that averages over interesting and non-interesting instances, as accuracy does.
- In those cases, we use precision, recall and F-measure.
- These metrics are imported from the field of information retrieval, where the difference beween interesting and non-interesting examples is particularly high.
- Accuracy doesn't work well when the types of instances are unbalanced

Precision and Recall

System says:

Truth is:

	- ,						
	F	L	Total				
F	а	b	a+b				
L	С	d	c+d				
Total	a+c	b+d	a+b+c+d				

- \blacksquare Precision of L: $P_L = \frac{d}{b+d}$
- Recall of L: $R_L = \frac{d}{c+d}$
- \blacksquare F-measure of L: $F_L = \frac{2P_LR_L}{P_L + R_L}$
- Accuracy: $A = \frac{a+d}{a+b+c+d}$

Your task today

Task 8:

- Implement the Viterbi algorithm.
- Run it on the dice dataset and measure precision of L (P_L) , recall of L (R_L) and F-measure of L (F_L) .

Literature

- Jurafsky and Martin, 3rd Edition, section 8.4 (but careful, notation!):
 - http://web.stanford.edu/~jurafsky/slp3/8.pdf
- Fosler-Lussier, Eric (1998). Markov Models and Hidden Markov Models: A Brief Tutorial. TR-98-041.
- Smith, Noah A. (2011). Linguistic Structure Prediction (section 3.3.3)
- Bockmayr and Reinert (2011). Markov chains and Hidden Markov Models. Discrete Math for Bioinformatics WS 10/11.
- Extra reading on the connection between Viterbi and Dijkstra's algorithms (likely sequence vs shortest path): Liang Huang's tutorial:
 - https://www.aclweb.org/anthology/C08-5001.pdf