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Last session: estimating parameters of an HMM

m The dishonest casino, dice edition.
m Two hidden states: L (loaded dice), F (fair dice).

m Input: dual tape of state and observation (dice outcome)
sequences X and O.
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m You estimated transition and emission probabilities (A and B,
Task 7).



This session: decoding

m Now we can only observe the numbers that are thrown but we
don’t know which dice is currently in use. (more realistic
unless the croupier is a friend?)

m We want the HMM to find out when the fair dice was out,
and when the loaded dice was out.

m We need to write a decoder. (Task 8)



Decoding: finding the most likely path

m Definition of decoding: Finding the most likely hidden state
sequence X that explains the observation O given the HMM
parameters = (A, B).

A

X = argmax P(X,O; )
X
=argmax P(O|X; B)P(X|; A)
X
T
= argmax H P(O¢| Xt; B)P(X¢| Xi—1; A)
X1 X7 =1

m Number of possible state sequences X is O(NT) (N =number
of unique hidden states); too large for brute force search.



Viterbi is a Dynamic Programming Application

(Reminder from Algorithms course)
We can use Dynamic Programming if two conditions apply:

m Optimal substructure property
m An optimal state sequence X ... X, ... Xr contains inside it
the sequence X ... X}, which is also optimal
m Overlapping subsolutions property

m If both X; and X, are on the optimal path, with u > ¢, then
the calculation of the probability for being in state X; is part
of each of the many calculations for being in state X,,.



The intuition behind Viterbi

m Here's how we can save ourselves a lot of time.

m Because of the Limited Horizon of the HMM, we don’t need to
keep a complete record of how we arrived at a certain state.

m For 1st-order HMM, we need to record one previous step.

m Just do the calculation of the probability of reaching each
state once for each time step and memoise it in an
appropriate data structure

m This reduces our effort to O(N?T) for the 1st order HMM.

m We need to calculate the probability of arriving in each hidden
state given each previous hidden state for every timestep.

m What if we had a 2nd order HMM?



Viterbi:

main data structure

Memoisation is done using a trellis.

A trellis is equivalent to a Dynamic Programming table.

The trellis is (N +2) x (T'+ 2) in size, with states j as rows
and time steps t as columns.

Each cell j, t records the Viterbi probability §;(t), the

probability of the most likely path that ends in state s; at

time t:

85(0) = mav [8(t = 1) iy by(O)

This probability is calculated by maximising over the best
ways of going to s; for each s;.

a;;: the transition probability from s; to s;

b;(Oy): the probability of emitting O; from destination state
Sj



Viterbi algorithm, initialisation

Note: the probability of a state starting the sequence at t =0 is
just the probability of it emitting the first symbol.



Viterbi algorithm, initialisation



Viterbi algorithm, initialisation
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Viterbi algorithm, initialisation



Viterbi algorithm, main step




Viterbi algorithm, main step: observation is 4




Viterbi algorithm, main step: observation is 4
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Viterbi algorithm, main step, ¢

m ¢);(t) is a helper variable that stores the ¢ — 1 state index i on
the highest probability path.

Yi(t) = afgilix[@(t 1) ai; b;(O)]

m In the backtracing phase, we will use 1 to find the previous
cell/state in the best path.



Viterbi algorithm, main step: observation is 4
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Viterbi algorithm, main step: observation is 4
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Viterbi algorithm, main step: observation is 4
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Viterbi algorithm, main step: observation is 4
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Viterbi algorithm, main step: observation is 3



Viterbi algorithm, main step: observation is 3
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Viterbi algorithm, main step: observation is 3
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Viterbi algorithm, main step: observation is 3
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Viterbi algorithm, main step: observation is 3
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Viterbi algorithm, main step: observation is 5
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Viterbi algorithm, main step: observation is 5
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Viterbi algorithm, termination
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Viterbi algorithm, termination
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Viterbi algorithm, backtracing




Viterbi algorithm, backtracing




Viterbi algorithm, backtracing




Viterbi algorithm, backtracing
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Viterbi algorithm, backtracing




Viterbi algorithm, backtracing




Viterbi algorithm, backtracing




Viterbi algorithm, backtracing




Why is it necessary to keep N states at each time step?

m We have convinced ourselves that it's not necessary to keep
more than N (“real”) states per time step.

m But could we cut down the table to just a one-dimensional
table of T" time slots by choosing the probability of the best
path overall ending in that time slot, in any of the states?

m This would be the greedy choice

m But think about what could happen in a later time slot.

m You could encounter a zero or very low probability concerning
all paths going through your chosen state s; at time t.

m Now a state s, that looked suboptimal in comparison to s; at
time t becomes the best candidate.

m As we don't know the future, we need to keep the probabilities
for each state at each timestep.

m Viterbi is an exact decoding algorithm, find the same solution
as brute-force but faster!



Precision and Recall

So far, we have measured system success in accuracy.

But sometimes it's only one type of instances that we find
interesting.

We don’t want a summary measure that averages over
interesting and non-interesting instances, as accuracy does.
In those cases, we use precision, recall and F-measure.
These metrics are imported from the field of information
retrieval, where the difference beween interesting and
non-interesting examples is particularly high.

Accuracy doesn't work well when the types of instances are
unbalanced



Precision and Recall

System says:

F L Total

Truth is: | F a b a+b

L o d c+d

Total | a+c | b+d | a+b+c+d

m Precision of L: P, = b_%d

m Recall of L: Ry, = cj%d

m F-measure of L: F[, = J%fﬁ_]]%
m Accuracy: A = a+‘gif+d




Your task today

Task 8:
m Implement the Viterbi algorithm.

m Run it on the dice dataset and measure precision of L (Pp),
recall of L (Rr) and F-measure of L (FL).



Literature

m Jurafsky and Martin, 3rd Edition, section 8.4 (but careful,
notation!):
http://web.stanford.edu/~jurafsky/slp3/8.pdf

m Fosler-Lussier, Eric (1998). Markov Models and Hidden
Markov Models: A Brief Tutorial. TR-98-041.

m Smith, Noah A. (2011). Linguistic Structure Prediction
(section 3.3.3)

m Bockmayr and Reinert (2011). Markov chains and Hidden
Markov Models. Discrete Math for Bioinformatics WS 10/11.

m Extra reading on the connection between Viterbi and
Dijkstra's algorithms (likely sequence vs shortest path): Liang
Huang's tutorial:
https://www.aclweb.org/anthology/C08-5001.pdf
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