8: Hidden Markov Models
 Machine Learning and Real-world Data

Andreas Vlachos (adapted from Simone Teufel)
Dept. of Computer Science and Technology
University of Cambridge

Lent 2020

■ So far we've looked at (statistical) classification.

- Experimented with different ideas for sentiment detection.

■ Let us now talk about...

■ So far we've looked at (statistical) classification.
■ Experimented with different ideas for sentiment detection.
■ Let us now talk about ... the weather!

Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day

Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day

■ Can we guess what the weather will be like tomorrow?

Weather prediction

■ Two types of weather: rainy and cloudy

- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:

$$
\begin{gathered}
P\left(w_{t}=\text { Rainy } \mid w_{t-1}=\text { Rainy }, w_{t-2}=\text { Cloudy }, w_{t-3}=\right. \\
\text { Cloudy } \left., w_{t-4}=\text { Rainy }\right)
\end{gathered}
$$

Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:

$$
\begin{gathered}
P\left(w_{t}=\text { Rainy } \mid w_{t-1}=\text { Rainy }, w_{t-2}=\text { Cloudy }, w_{t-3}=\right. \\
\text { Cloudy } \left., w_{t-4}=\text { Rainy }\right)
\end{gathered}
$$

- Markov Assumption (first order):

$$
P\left(w_{t} \mid w_{t-1}, w_{t-2}, \ldots, w_{1}\right) \approx P\left(w_{t} \mid w_{t-1}\right)
$$

Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:

$$
\begin{gathered}
P\left(w_{t}=\text { Rainy } \mid w_{t-1}=\text { Rainy }, w_{t-2}=\text { Cloudy }, w_{t-3}=\right. \\
\text { Cloudy } \left., w_{t-4}=\text { Rainy }\right)
\end{gathered}
$$

- Markov Assumption (first order):

$$
P\left(w_{t} \mid w_{t-1}, w_{t-2}, \ldots, w_{1}\right) \approx P\left(w_{t} \mid w_{t-1}\right)
$$

- The joint probability of a sequence of observations / events is then:

$$
P\left(w_{1}, w_{2}, \ldots, w_{t}\right)=\prod_{t=1}^{n} P\left(w_{t} \mid w_{t-1}\right)
$$

Markov Chains

Today \begin{tabular}{c}
Tomorrow

Rainy

Rainy

Rloudy

Cloudy
\end{tabular}\(\left[\begin{array}{cc}0.7 \& 0.3

0.3 \& 0.7\end{array}\right]\)

Transition probability matrix

Markov Chains

$\left.\begin{array}{c} \\ \\ \\ \text { Today } \\ \text { Rainy } \\ \text { Rloudy }\end{array} \begin{array}{cc}\text { Rainy } & \text { Cloudy } \\ 0.7 & 0.3 \\ 0.3 & 0.7\end{array}\right]$

Transition probability matrix

Two states: rainy and cloudy

Markov Chains

$\left.\begin{array}{c} \\ \\ \text { Today } \\ \\ \text { Rainy } \\ \text { Cloudy }\end{array} \begin{array}{cc}\text { Rainy } & \text { Cloudy } \\ 0.7 & 0.3 \\ 0.3 & 0.7\end{array}\right]$

Transition probability matrix

Two states: rainy and cloudy

- A Markov Chain is a stochastic process that embodies the Markov Assumption.
■ Can be viewed as a probabilistic finite-state automaton.
- States are fully observable, finite and discrete; transitions are labelled with transition probabilities.
■ Models sequential problems - your current situation depends on what happened in the past

Markov Chains

- Useful for modeling the probability of a sequence of events
- Valid phone sequences in speech recognition
- Sequences of speech acts in dialog systems (answering, ordering, opposing)
- Predictive texting

Markov Chains

- Useful for modeling the probability of a sequence of events that can be unambiguously observed
- Valid phone sequences in speech recognition
- Sequences of speech acts in dialog systems (answering, ordering, opposing)
- Predictive texting

Markov Chains

- Useful for modeling the probability of a sequence of events that can be unambiguously observed
- Valid phone sequences in speech recognition
- Sequences of speech acts in dialog systems (answering, ordering, opposing)
- Predictive texting

■ What if we are interested in events that are not unambiguously observed?

Markov Model

Markov Model: A Time-elapsed view

Hidden Markov Model: A Time-elapsed view

- Underlying Markov Chain over hidden states.

■ We only have access to the observations at each time step.

- No 1:1 mapping between observations and hidden states.
- A number of hidden states can be associated with a particular observation, but the association of states and observations is governed by statistical behaviour.
- We now have to infer the sequence of hidden states that corresponds to a sequence of observations.

Hidden Markov Model: A Time-elapsed view

$\left.\begin{array}{c} \\ \text { Rainy } \\ \text { Cloudy }\end{array} \begin{array}{cc}\text { Umbrella } & \text { No umbrella } \\ 0.9 & 0.1 \\ 0.2 & 0.8\end{array}\right]$

Transition probabilities $P\left(w_{t} \mid w_{t-1}\right)$

Emission probabilities $P\left(o_{t} \mid w_{t}\right)$ (Observation likelihoods)

Hidden Markov Model: A Time-elapsed view - start and end states

Hidden

Observed

- Could use initial probability distribution over hidden states.
- Instead, for simplicity, we will also model this probability as a transition, and we will explicitly add a special start state.
- Similarly, we will add a special end state to explicitly model the end of the sequence.

■ Special start and end states not associated with "real" observations.

More formal definition of Hidden Markov Models; States and Observations

$$
\begin{aligned}
& S_{e}=\left\{s_{1}, \ldots, s_{N}\right\} \\
& s_{0} \\
& s_{f}
\end{aligned} \begin{aligned}
& \text { a set of } N \text { emitting hidden states, } \\
& \text { a special start state, }
\end{aligned} \quad \begin{array}{ll}
\\
k_{0}=\left\{k_{1}, \ldots k_{M}\right\} & \begin{array}{l}
\text { an output alphabet of special start symbol, } M \text { observations } \\
k_{f} \\
\text { ("vocabulary"). }
\end{array} \\
X=O_{1} \ldots O_{T} & \begin{array}{l}
\text { a special end symbol. } \\
\text { drawn from } K .
\end{array} \\
X=X_{1} \ldots X_{T} & \begin{array}{l}
\text { a sequence of } T \text { states, each one drawn } \\
\text { from } S_{e} .
\end{array}
\end{array}
$$

More formal definition of Hidden Markov Models; First-order Hidden Markov Model

1 Markov Assumption (Limited Horizon): Transitions depend only on current state:

$$
P\left(X_{t} \mid X_{1} \ldots X_{t-1}\right) \approx P\left(X_{t} \mid X_{t-1}\right)
$$

2 Output Independence: Probability of an output observation depends only on the current state and not on any other states or any other observations:

$$
P\left(O_{t} \mid X_{1} \ldots X_{t}, \ldots, X_{T}, O_{1}, \ldots, O_{t-1}, O_{t+1}, \ldots, O_{T}\right) \approx P\left(O_{t} \mid X_{t}\right)
$$

More formal definition of Hidden Markov Models; State Transition Probabilities

A : a state transition probability matrix of size $(N+2) \times(N+2)$.

$$
A=\left[\begin{array}{ccccccccc}
- & a_{01} & a_{02} & a_{03} & \cdot & \cdot & \cdot & a_{0 N} & - \\
- & a_{11} & a_{12} & a_{13} & \cdot & \cdot & \cdot & a_{1 N} & a_{1 f} \\
- & a_{21} & a_{22} & a_{23} & \cdot & \cdot & \cdot & a_{2 N} & a_{2 f} \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & a_{N 1} & a_{N 2} & a_{N 3} & \cdot & \cdot & \cdot & a_{N N} & a_{N f} \\
- & - & - & - & - & - & - & - & -
\end{array}\right]
$$

$a_{i j}$ is the probability of moving from state s_{i} to state s_{j} :

$$
\begin{gathered}
a_{i j}=P\left(X_{t}=s_{j} \mid X_{t-1}=s_{i}\right) \\
\forall_{i} \sum_{j=0}^{N+1} a_{i j}=1
\end{gathered}
$$

More formal definition of Hidden Markov Models; State Transition Probabilities

A : a state transition probability matrix of size $(N+2) \times(N+2)$.

$$
A=\left[\begin{array}{ccccccccc}
- & a_{01} & a_{02} & a_{03} & \cdot & \cdot & \cdot & a_{0 N} & - \\
- & a_{11} & a_{12} & a_{13} & \cdot & \cdot & \cdot & a_{1 N} & a_{1 f} \\
- & a_{21} & a_{22} & a_{23} & \cdot & \cdot & \cdot & a_{2 N} & a_{2 f} \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & & & & \cdot & \cdot \\
- & a_{N 1} & a_{N 2} & a_{N 3} & \cdot & \cdot & \cdot & a_{N N} & a_{N f} \\
- & - & - & - & - & - & - & - & -
\end{array}\right]
$$

$a_{i j}$ is the probability of moving from state s_{i} to state s_{j} :

$$
\begin{gathered}
a_{i j}=P\left(X_{t}=s_{j} \mid X_{t-1}=s_{i}\right) \\
\forall_{i} \sum_{j=0}^{N+1} a_{i j}=1
\end{gathered}
$$

More formal definition of Hidden Markov Models; Start state s_{0} and end state s_{f}

■ Not associated with "real" observations.

- $a_{0 i}$ describe transition probabilities out of the start state into state s_{i}.
- $a_{i f}$ describe transition probabilities into the end state.
- Transitions into start state $\left(a_{i 0}\right)$ and out of end state $\left(a_{f i}\right)$ undefined.

More formal definition of Hidden Markov Models; Emission Probabilities

$B: \quad$ an emission probability matrix of size $(M+2) \times(N+2)$.

$$
B=\left[\begin{array}{ccccccccc}
b_{0}\left(k_{0}\right) & - & - & - & - & - & - & - & - \\
- & b_{1}\left(k_{1}\right) & b_{2}\left(k_{1}\right) & b_{3}\left(k_{1}\right) & \cdot & \cdot & \cdot & b_{N}\left(k_{1}\right) & - \\
- & b_{1}\left(k_{2}\right) & b_{2}\left(k_{2}\right) & b_{3}\left(k_{2}\right) & \cdot & \cdot & \cdot & b_{N}\left(k_{2}\right) & - \\
- & \cdot & \cdot & \cdot & & & & \cdot & - \\
- & \cdot & \cdot & \cdot & & & & - & - \\
- & \cdot & \cdot & \cdot & & & \cdot & - \\
- & b_{1}\left(k_{M}\right) & b_{2}\left(k_{M}\right) & b_{3}\left(k_{M}\right) & \cdot & \cdot & \cdot & b_{N}\left(k_{M}\right) & - \\
- & - & - & - & - & - & - & & b_{f}\left(k_{f}\right)
\end{array}\right]
$$

$b_{i}\left(k_{j}\right)$ is the probability of emitting vocabulary item k_{j} from state s_{i} :

$$
b_{i}\left(k_{j}\right)=P\left(O_{t}=k_{j} \mid X_{t}=s_{i}\right)
$$

Our HMM is defined by its parameters $\mu=(A, B)$.

More formal definition of Hidden Markov Models; Emission Probabilities

$B: \quad$ an emission probability matrix of size $(M+2) \times(N+2)$.

$$
B=\left[\begin{array}{ccccccccc}
b_{0}\left(k_{0}\right) & - & - & - & - & - & - & - & - \\
- & b_{1}\left(k_{1}\right) & b_{2}\left(k_{1}\right) & b_{3}\left(k_{1}\right) & \cdot & \cdot & \cdot & b_{N}\left(k_{1}\right) & - \\
- & b_{1}\left(k_{2}\right) & b_{2}\left(k_{2}\right) & b_{3}\left(k_{2}\right) & \cdot & \cdot & \cdot & b_{N}\left(k_{2}\right) & - \\
- & \cdot & \cdot & \cdot & & & & \cdot & - \\
- & \cdot & \cdot & \cdot & & & & - & - \\
- & \cdot & \cdot & \cdot & & & \cdot & - \\
- & b_{1}\left(k_{M}\right) & b_{2}\left(k_{M}\right) & b_{3}\left(k_{M}\right) & \cdot & \cdot & . & b_{N}\left(k_{M}\right) & - \\
- & - & - & - & - & - & - & & b_{f}\left(k_{f}\right)
\end{array}\right]
$$

$b_{i}\left(k_{j}\right)$ is the probability of emitting vocabulary item k_{j} from state s_{i} :

$$
b_{i}\left(k_{j}\right)=P\left(O_{t}=k_{j} \mid X_{t}=s_{i}\right)
$$

Our HMM is defined by its parameters $\mu=(A, B)$.

Examples where states are hidden

- Speech recognition

■ Observations: audio signal

- States: phonemes

■ Part-of-speech tagging (assigning tags like Noun and Verb to words)

- Observations: words
- States: part-of-speech tags
- Machine translation
- Observations: target words
- States: source words

Today's task: the dice HMM

- Imagine a fraudulous croupier in a casino where customers bet on dice outcomes.

■ She has two dice - a fair one and a loaded one.

- The fair one has the normal distribution of outcomes $P(O)=\frac{1}{6}$ for each number 1 to 6 .
- The loaded one has a different distribution.
- She secretly switches between the two dice.
- You don't know which dice is currently in use. You can only observe the numbers that are thrown.

Today's task: the dice HMM

- There are two states (fair and loaded), and two special states (start s_{0} and end s_{f}).
- Distribution of observations differs between the states.

Today's task: the dice HMM

- There are two states (fair and loaded), and two special states (start s_{0} and end s_{f}).
- Distribution of observations differs between the states.

Today's task: the dice HMM

- There are two states (fair and loaded), and two special states (start s_{0} and end s_{f}).
- Distribution of observations differs between the states.

Today's task: the dice HMM

- There are two states (fair and loaded), and two special states (start s_{0} and end s_{f}).
- Distribution of observations differs between the states.

Today's task: the dice HMM

- There are two states (fair and loaded), and two special states (start s_{0} and end s_{f}).
- Distribution of observations differs between the states.

Fundamental tasks with HMMs

- Problem 1 (Labelled Learning)
- Given a parallel observation and state sequence O and X, learn the HMM parameters A and $B . \rightarrow$ today
- Problem 2 (Unlabelled Learning)
- Given an observation sequence O (and only the set of emitting states S_{e}), learn the HMM parameters A and B.
- Problem 3 (Likelihood)
- Given an HMM $\mu=(A, B)$ and an observation sequence O, determine the likelihood $P(O \mid \mu)$.
- Problem 4 (Decoding)
- Given an observation sequence O and an $\mathrm{HMM} \mu=(A, B)$, discover the best hidden state sequence $X . \rightarrow$ Task 8

Your Task today

Task 7:
■ Your implementation performs labelled HMM learning, i.e. it has

- Input: dual tape of state and observation (dice outcome) sequences X and O.

$\left(s_{0}\right)$	F	F	F	F	L	L	L	F	F	F	F	L	L	L	L	F	F	$\left(s_{f}\right)$
$\left(k_{0}\right)$	1	3	4	5	6	6	5	1	2	3	1	4	3	5	4	1	2	$\left(k_{f}\right)$

- Output: HMM parameters A, B.

■ Note: you will in a later task use your code for an HMM with more than two states. Either plan ahead now or modify your code later.

Parameter estimation of HMM parameters A, B

- Transition matrix A consists of transition probabilities $a_{i j}$

$$
a_{i j}=P\left(X_{t+1}=s_{j} \mid X_{t}=s_{i}\right) \sim \frac{\text { count }_{\text {trans }}\left(X_{t}=s_{i}, X_{t+1}=s_{j}\right)}{\operatorname{count}_{\text {trans }}\left(X_{t}=s_{i}\right)}
$$

- Emission matrix B consists of emission probabilities $b_{i}\left(k_{j}\right)$

$$
b_{i}\left(k_{j}\right)=P\left(O_{t}=k_{j} \mid X_{t}=s_{i}\right) \sim \frac{\text { count }_{\text {emission }}\left(O_{t}=k_{j}, X_{t}=s_{i}\right)}{\text { count }_{\text {emission }}\left(X_{t}=s_{i}\right)}
$$

■ (Add-one smoothed versions of these)

Literature

■ Jurafsky and Martin, 3rd Edition, section 8.4 (but careful, notation!):
http://web.stanford.edu/~jurafsky/slp3/8.pdf
■ Fosler-Lussier, Eric (1998). Markov Models and Hidden Markov Models: A Brief Tutorial. TR-98-041.

■ Smith, Noah A. (2011). Linguistic Structure Prediction (section 3.3.3)
■ Bockmayr and Reinert (2011). Markov chains and Hidden Markov Models. Discrete Math for Bioinformatics WS 10/11.

