13: Betweenness Centrality
 Machine Learning and Real-world Data (MLRD)

Ryan Cotterell
(based on slides created by Simone Teufel)

Lent 2020

Last session: some simple network statistics

■ You measured the degree of each node and the diameter of the network.

■ Next two sessions:
■ Today: finding gatekeeper nodes via betweenness centrality.

- Next session: using betweenness centrality of edges to split graph into cliques.

■ Reading for social networks (all sessions):
■ Easley and Kleinberg for background: Chapters 1, 2, 3 and first part of Chapter 20.

- Brandes algorithm: two papers by Brandes (links in practical notes).

Intuition behind clique finding

■ Certain nodes/edges are most crucial in linking densely connected regions of the graph: informally gatekeepers.
■ Cutting those edges isolates the cliques/clusters.

Intuition behind clique finding

(7)
(8)

(a) Step 1
(b) Step 2

(12) (13)
(14)
(c) Step 3

Gatekeepers: generalising the notion of local bridge

■ Last time we saw the concept of local bridge: an edge which increased the shortest paths if cut.

Figure 3-16 from Easley and Kleinberg (2010)
■ But, more generally, the nodes that are intuitively the gatekeepers can be determined by betweenness centrality.

Betweenness centrality

https://www.linkedin.com/pulse/wtf-do-you-actually-know-who-influencers-walter-pike
■ The betweenness centrality of a node V is defined in terms of the proportion of shortest paths that go through V for each pair of nodes.

- Here: the red nodes have high betweenness centrality.

■ Note: Easley and Kleinberg talk about 'flow': misleading because we only care about shortest paths.

Betweenness, example

Claudio Rocchini: https://commons.wikimedia.org/wiki/File:Graph_betweenness.svg
■ Betweenness: red is minimum; dark blue is maximum.

Betweenness centrality, formally (from Brandes 2008)

■ Directed graph $G=<V, E>$

- $\sigma(s, t)$: number of shortest paths between nodes s and t

■ $\sigma(s, t \mid v)$: number of shortest paths between nodes s and t that pass through v.

- $C_{B}(v)$, the betweenness centrality of v :

$$
C_{B}(v)=\sum_{s, t \in V} \frac{\sigma(s, t \mid v)}{\sigma(s, t)}
$$

■ If $s=t$, then $\sigma(s, t)=1$
■ If $v \in s, t$, then $\sigma(s, t \mid v)=0$

Number of shortest paths

■ $\sigma(s, t)$ can be calculated recursively:

$$
\sigma(s, t)=\sum_{u \in \operatorname{Pred}(t)} \sigma(s, u)
$$

■ Pred $(t)=\{u:(u, t) \in E, d(s, t)=d(s, u)+1\}$ predecessors of t on shortest path from s

- $d(s, u)$: Distance between nodes s and u

■ This can be done by running Breadth First search with each node as source s once, for total complexity of $O(V(V+E))$.

Pairwise dependencies

- There are a cubic number of pairwise dependencies $\delta(s, t \mid v)$ where:

$$
\delta(s, t \mid v)=\frac{\sigma(s, t \mid v)}{\sigma(s, t)}
$$

- Naive algorithm uses lots of space.
- Brandes (2001) algorithm intuition: the dependencies can be aggregated without calculating them all explicitly.
- Recursive: can calculate dependency of s on v based on dependencies one step further away.

One-sided dependencies

Define one-sided dependencies:

$$
\delta(s \mid v)=\sum_{t \in V} \delta(s, t \mid v)
$$

Then Brandes (2001) shows:

$$
\delta(s \mid v)=\sum_{\substack{(v, w) \in E \\ w: d(s, w)=d(s, v)+1}} \frac{\sigma(s, v)}{\sigma(s, w)} \cdot(1+\delta(s \mid w))
$$

And:

$$
C_{B}(v)=\sum_{s \in V} \delta(s \mid v)
$$

Brandes algorithm

■ Iterate over all vertices s in V
■ Calculate $\delta(s \mid v)$ for all $v \in V$ in two phases:
1 Breadth-first search, calculating distances and shortest path counts from s, push all vertices onto stack as they're visited.
2 Visit all vertices in reverse order (pop off stack), aggregating dependencies according to equation.

Brandes (2008) pseudocode

Shortest-path vertex betweenness (Brandes, 2001).
input: directed graph $G=(V, E)$
data: queue Q, stack S (both initially empty)
and for all $v \in V$:
dist $[v]$: distance from source
Pred $[v]$: list of predecessors on shortest paths from source
$\sigma[v]$: number of shortest paths from source to $v \in V$
$\delta[v]:$ dependency of source on $v \in V$
output: betweenness $c_{B}[v]$ for all $v \in V$ (initialized to 0)
for $s \in V$ do
vingle-source shortest-paths problem
vinitialization
for $w \in V$ do Pred $[w] \leftarrow$ empty list
for $t \in V$ do $\operatorname{dist}[t] \leftarrow \infty ; \quad \sigma[t] \leftarrow 0$
$\operatorname{dist}[s] \leftarrow 0 ; \quad \sigma[s] \leftarrow 1$
enqueue $s \rightarrow Q$
while Q not empty do
dequeue $v \leftarrow Q ; \quad$ push $v \rightarrow S$
foreach vertex w such that $(v, w) \in E$ do
V path discovery $/ /-w$ found for the first time?
if $\operatorname{dist}[w]=\infty$ then
$\operatorname{dist}[w] \leftarrow \operatorname{dist}[v]+1$
enqueue $w \rightarrow Q$
V path counting //-edge (v, w) on a shortest path?
if $\operatorname{dist}[w]=\operatorname{dist}[v]+1$ then
$\sigma \mid w] \leftarrow \sigma[w]+\sigma[v]$
append $v \rightarrow \operatorname{Pred}[w]$

V accumulation // - back-propagation of dependencies
for $v \in V$ do $\delta[v] \leftarrow 0$
while S not empty do
pop $w \leftarrow S$
for $v \in \operatorname{Pred}[w]$ do $\delta[v] \leftarrow \delta[v]+\frac{\sigma[v]}{\sigma[w]} \cdot(1+\delta[w])$
if $w \neq s$ then $c_{B}[w] \leftarrow c_{B}[w]+\delta[w]$

Step 1 - Prepare for BFS tree walk (Node A as s)

Figure 3-18 from Easley and Kleinberg (2010)

Brandes (2008) pseudocode: phase 1

while Q not empty do
dequeue $v \leftarrow Q ; \quad$ push $v \rightarrow S$
foreach vertex w such that $(v, w) \in E$ do
V path discovery $/ /-w$ found for the first time?
if $\operatorname{dist}[w]=\infty$ then
$\operatorname{dist}[w] \leftarrow \operatorname{dist}[v]+1$
enqueue $w \rightarrow Q$
V path counting // -edge ((v, w) on a shortest path?
if $\operatorname{dist}[w]=\operatorname{dist}[v]+1$ then
$\sigma[w] \leftarrow \sigma[w]+\sigma[v]$
append $v \rightarrow \operatorname{Pred}[w]$

Step 2 - Calculate $\sigma(s, v)$, the number of shortest paths between s and v

Step 2 - Calculate $\sigma(s, v)$, the number of shortest paths between s and v

Step 2 - Calculate $\sigma(s, v)$, the number of shortest paths between s and v

Step 2 - Calculate $\sigma(s, v)$, the number of shortest paths between s and v

Brandes (2008) pseudocode: phase 2

V accumulation // - back-propagation of dependencies
for $v \in V$ do $\delta[v] \leftarrow 0$
while S not empty do
pop $w \leftarrow S$
for $v \in \operatorname{Pred}[w]$ do $\delta[v] \leftarrow \delta[v]+\frac{\sigma[v]}{\sigma[w]} \cdot(1+\delta[w])$
if $w \neq s$ then $c_{B}[w] \leftarrow c_{B}[w]+\delta[w]$

Step 3 - Calculate $\delta(s \mid v)$, the dependency of s on v

Step 3 - Calculate $\delta(s \mid v)$, the dependency of s on v

Step 3 - Calculate $\delta(s \mid v)$, the dependency of s on v

Step 3 - Calculate $\delta(s \mid v)$, the dependency of s on v

Step 3 - Calculate $\delta(s \mid v)$, the dependency of s on v

Step 3 - Calculate $\delta(s \mid v)$, the dependency of s on v

Step 3 - Calculate $\delta(s \mid v)$, the dependency of s on v

Step 4 - Calculate betweenness centrality

■ You saw one iteration with $s=A$.
■ Now perform V iterations, once with each node as source.
■ Sum up the $\delta(s \mid v)$ for each node: this gives the node's betweenness centrality.

Brandes (2008) pseudocode

Shortest-path vertex betweenness (Brandes, 2001).
input: directed graph $G=(V, E)$
data: queue Q, stack S (both initially empty)
and for all $v \in V$:
dist $[v]$: distance from source
Pred $[v]$: list of predecessors on shortest paths from source
$\sigma[v]$: number of shortest paths from source to $v \in V$
$\delta[v]:$ dependency of source on $v \in V$
output: betweenness $c_{B}[v]$ for all $v \in V$ (initialized to 0)
for $s \in V$ do
vingle-source shortest-paths problem
vinitialization
for $w \in V$ do Pred $[w] \leftarrow$ empty list
for $t \in V$ do $\operatorname{dist}[t] \leftarrow \infty ; \quad \sigma[t] \leftarrow 0$
$\operatorname{dist}[s] \leftarrow 0 ; \quad \sigma[s] \leftarrow 1$
enqueue $s \rightarrow Q$
while Q not empty do
dequeue $v \leftarrow Q ; \quad$ push $v \rightarrow S$
foreach vertex w such that $(v, w) \in E$ do
V path discovery $/ /-w$ found for the first time?
if $\operatorname{dist}[w]=\infty$ then
$\operatorname{dist}[w] \leftarrow \operatorname{dist}[v]+1$
enqueue $w \rightarrow Q$
V path counting //-edge (v, w) on a shortest path?
if $\operatorname{dist}[w]=\operatorname{dist}[v]+1$ then
$\sigma \mid w] \leftarrow \sigma[w]+\sigma[v]$
append $v \rightarrow \operatorname{Pred}[w]$

V accumulation // - back-propagation of dependencies
for $v \in V$ do $\delta[v] \leftarrow 0$
while S not empty do
pop $w \leftarrow S$
for $v \in \operatorname{Pred}[w]$ do $\delta[v] \leftarrow \delta[v]+\frac{\sigma[v]}{\sigma[w]} \cdot(1+\delta[w])$
if $w \neq s$ then $c_{B}[w] \leftarrow c_{B}[w]+\delta[w]$

Brandes (2008): undirected graphs

■ As specified, this is for directed graphs.

- But undirected graphs are easy: the algorithm works in exactly the same way, except that each pair is considered twice, once in each direction.
■ Therefore: halve the scores at the end for undirected graphs.
- Brandes (2008) has lots of other variants, including edge betweenness centrality, which we'll use in the next session.

Today

- Task 11: Implement the Brandes algorithm for efficiently determining the betweenness of each node.

Literature

■ Detailed notes on the Brandes algorithm on course page / Moodle.
■ Easley and Kleinberg (2010, page 79-82). But this is an informal description.
■ Ulrich Brandes (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology. 25:163-177.
■ Ulrich Brandes (2008) On variants of shortest-path betweenness centrality and their generic computation. Social Networks. 30 (2008), pp. 136-145

