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Arti�cial Intelligence: what have we seen so far?

What did we learn in Arti�cial Intelligence I?

1. We used logic for knowledge representation and reasoning. However we saw
that logic can have drawbacks:
(a) Laziness: it is not feasible to assemble a set of rules that is su�ciently

exhaustive. If we could, it would not be feasible to apply them.
(b) �eoretical ignorance: insu�cient knowledge exists to allow us to write the

rules.
(c) Practical ignorance: even if the rules have been obtained there may be

insu�cient information to apply them.

Instead of considering truth or falsity, deal with degrees of belief .

Probability theory is the perfect tool for application here.

Probability theory allows us to summarise the uncertainty due to laziness
and ignorance.
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Arti�cial Intelligence: what have we seen so far?

What did we learn in Arti�cial Intelligence I?

2. We looked at how to choose a sequence of actions to achieve a goal using
search, adversarial search (game-playing), logical inference (situation calculus),
and planning.
• All these approaches su�er in the same way as inference.
• So all bene�t from considering uncertainty.
• All implicitly deal with time. How is this possible under uncertainty?
• All tend to be trying to reach goals, but these may also be uncertain.

Utility theory is used to assign preferences.

Decision theory combines probability theory and utility theory.

A rational agent should act in order to maximise expected utility as time
passes.
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Arti�cial Intelligence: what have we seen so far?

What did we learn in Arti�cial Intelligence I?

3. We saw some basic ways of learning from examples.
• Again, there was no real mention of uncertainty.
• Learning from labelled examples is only one kind of learning.
• We did not consider how learning might be applied to the other tasks in
AI , such as planning.

We need to look at other ways of learning.

We need to introduce uncertainty into learning.

We need to consider wider applications of learning.

4



Arti�cial Intelligence: what are we going to learn now?

What are we going to learn now?

In moving from logic to probability:

• We replace the knowledge base by a probability distribution that represents
our beliefs about the world.

• We replace the task of logical inference with the task of computing conditional
probabilities.

Both of these changes turn out to be considerably more complex than they sound.

Bayesian networks and Markov random �elds allow us to represent
probability distributions.

Various algorithms can be used to perform e�cient inference.
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General knowledge representation and inference: the BIG PICTURE

�e current approach to uncertainty in AI can be summed up in a few sentences:

Everything of interest in the world is a random variable. �e probabilities asso-
ciated with RVs summarize our uncertainty.

�e world: V = {V1, V2, . . . , Vn}

If the n RVs V = {V1, V2, . . . , Vn} represent everything of interest, then our
knowledge base is the joint distribution

Pr (V) = Pr (V1, V2, . . . , Vn)
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General knowledge representation and inference: the BIG PICTURE

Say we have observed the values of a subset O = {O1, O2, . . . , Om} of m RVs.

In other words, we know that (O1 = o1, O2 = o2, . . . , Om = om).

Also, say we are interested in some subset Q of k query variables.

�e world: V = {V1, V2, . . . , Vn}
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�en inference corresponds to computing a conditional distribution

Pr (Q|o1, o2, . . . , om)
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General knowledge representation and inference: the BIG PICTURE

�e latent variables L are all the RVs not in the sets Q or O.

�e world: V = {V1, V2, . . . , Vn}
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Latent variables
L = {L1, L2, . . .}

To compute a conditional distribution from a knowledge base Pr (V) we have to
sum over the latent variables

Pr (Q|o1, o2, . . . , om) =
∑

L

Pr (Q,L|o1, o2, . . . , om)

=
1

Z

∑

L

Pr (Q,L, o1, o2, . . . , om)︸ ︷︷ ︸
Knowledge base
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General knowledge representation and inference: the BIG PICTURE

Bayes’ theorem tells us how to update an inference when new information is avail-
able.

�e world: V = {V1, V2, . . . , Vn}
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Observed
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Latent variables
L = {L1, L2, . . .}

For example, if we now receive a new observation O′ = o′ then

Pr (Q|o′, o1, o2, . . . , om)︸ ︷︷ ︸
A�er O′ observed

=
1

Z
Pr (o′|Q, o1, o2, . . . , om) Pr (Q|o1, o2, . . . , om)︸ ︷︷ ︸

Before O′ observed
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General knowledge representation and inference: the BIG PICTURE

Simple eh?

HAH‼! No chance…

Even if all your RVs are just Boolean:

• For n RVs knowing the knowledge base Pr (V) means storing 2n numbers.
• So it looks as though storage is O(2n).
• You need to establish 2n numbers to work with.
• Look at the summations. If there are n latent variables then it appears that

time complexity is also O(2n).
• In reality we might well have n > 1000, and of course it’s even worse if vari-
ables are non-Boolean.

And it really is this hard. �e problem in general is #P-complete.

Even ge�ing an approximate solution is provably intractible.
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General knowledge representation and inference: the BIG PICTURE

How can we get around this?

1. You can be clever about representing Pr (V) to avoid storing all O(2n) num-
bers.

2. You can take that a step further and exploit the structure of Pr (V) in speci�c
scenarios to get good time-complexity.

3. You can do approximate inference.

We’ll be looking at all three. . .

11

Arti�cial Intelligence: what are we going to learn now?

What are we going to learn now?

By addressing AI using Bayesian Inference in this way, in addition to general
methods for making inferences:

• We get rigorous methods for supervised learning.
• We get one of the most unreasonably e�ective ideas in computer science: the
hidden Markov model.

• We get methods for unsupervised learning.

Bayesian supervised learning provides a (potentially) optimal method for
supervised learning.

Hidden Markov models allow us to infer (probabilistically) the state of the
world as time passes.

Mixture models form the basis of probabilistic methods for unsupervised
learning.
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Arti�cial Intelligence: what are we going to learn now?

Pu�ing it all together. . .

Ideally we want an agent to be able to:

• Explore the world to see how it works.
• Use the resulting knowledge to form a plan of how to act in the future.
• Achieve both, even when the world is uncertain.

In essence reinforcement learning algorithms allow us to do this.

In practice they o�en employ supervised learners as a subsystem.
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Books

Books recommended for the course:

I suggest you make use of the recommended text for Arti�cial Intelligence I:

Arti�cial Intelligence: A Modern Approach. Stuart Russell and Peter Norvig,
3rd Edition, Pearson, 2010.

and supplement it with one of the following:

1. Pa�ern Recognition and Machine Learning. Christopher M. Bishop, Springer,
2006.

2. Machine Learning: A Probabilistic Perspective. Kevin P. Murphy, �e MIT
Press, 2012.

�e la�er is more comprehensive and goes beyond this course.

Further recommended books, covering speci�c areas in greater detail, can be
found on the course web site.

14

What have we done so far?

We’re going to begin with a review of the material on supervised learning from
Arti�cial Intelligence I .

Cuteness

Furryness

Evil Robot hates ki�ens, and consequently wants to build a ki�en detector .

He thinks he can do this by measuring cuteness and furryness.
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What have we done so far?

Provided he has some examples labelled as ki�en or not ki�en. . .

Cuteness

Furryness

. . . this seems su�cient to �nd a region that identi�es ki�ens.
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What have we done so far?

Of course, when put into practice. . .

Cuteness

Furryness

. . . some non-ki�ens will be labelled as ki�ens.
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What have we done so far?

And conversely. . .

Cuteness

Furryness

. . . some ki�ens will be labelled as non-ki�ens.
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Kinds of learning: supervised learning

Supervised learning:

We have m vectors x1,x2, . . . ,xm each in Rn.

We have corresponding labels {y1, y2, . . . , ym} each in a set Y .

We wish to �nd a hypothesis h : Rn → Y that can be used to predict y from x.

�is may itself be de�ned by a vector w of weights.

To make the la�er point clear the hypothesis will be wri�en hw(x).

If it can do this well it generalizes.

• If Y = R or some other set such that the output can be regarded as continuous
then we’re doing regression.

• If Y has a �nite number K of categories, so Y = {c1, c2, . . . , cK} then we are
doing classi�cation.

• In the case of classi�cation, we might alternatively treat Y as a random vari-
able (RV), and �nd a hypothesis hw : Rn → [0, 1] of the form

hw(x) = Pr (Y = ci|x) .
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What have we done so far?

Supervised learning is essentially curve ��ing:
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�e key issue is to choose the correct degree of complexity.
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What have we done so far?
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�e training data is s =
[
(x1, y1) (x2, y2) · · · (xm, ym)

]
.

Fit a polynomial

hw(x) = w0 + w1x + w2x
2 + · · · + wdx

d

by choosing the weights wi to minimize

E(w) =
1

2

m∑

i=1

(yi − hw(xi))
2.

�e degree d sets how complex the ��ed function can be.
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What have we done so far?

Real problems tend to have more than 1 input.

We can solve problems like this using a perceptron:

∑n
i=0wixi σ

a
z = σ(a) = hw(x)

x0 = 1

w0

x1
w1

x2
w2

xn

wn

�e trick is the same: select the weights wi to minimize some measure of
error E(w) on some training examples.
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What have we done so far?

If we use a very simple function σ(x) = x then we’re back to polynomials with
d = 1 and now

E(w) =
1

2

m∑

i=1

(yi −wTxi)
2

If we can �nd the gradient ∂E(w)
∂w of E(w) then we can minimize the error using

gradient descent

wt+1 = wt − λ
∂E(w)

∂w

∣∣∣∣
wt
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What have we done so far?

Gradient descent: the simplest possible method for minimizing such functions:
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Take small steps downhill until you reach the minimum.

But remember: there might be many minima.

Some minima might be local and some global.

�e step size ma�ers.
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What have we done so far?

For a perceptron with σ(x) = (x) this is easy:

∂E(w)

∂wj
=

1

2

∂

∂wj

(
m∑

i=1

(yi −wTxi)
2

)

=

m∑

i=1

(
(yi −wTxi)

∂

∂wj

(
−wTxi

))

= −
m∑

i=1

(
yi −wTxi

)
x
(j)
i

where x
(j)
i is the jth element of xi. So:

∂E(w)

∂w
= −

m∑

i=1

(yi −wTxi)xi
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�e multilayer perceptron

Real problems tend also to be nonlinear .

We can combine perceptrons to make a multilayer perceptron:

Here, each node is a perceptron and each edge has a weight a�ached.
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�e multilayer perceptron

• �e network computes a function hw(x).
• �e trick remains the same: minimize an error E(w).
• We do that by gradient descent

wt+1 = wt − λ
∂E(w)

∂w

∣∣∣∣
wt

• �is can be achieved using backpropagation.
• Backpropagation is just a method for computing ∂E(w)/∂w.
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Backpropagation

I want to emphasize the last three statements:

Backpropagation is just a method for computing ∂E(w)/∂w.

It’s needed because we’re doing gradient descent

wt+1 = wt − λ
∂E(w)

∂w

∣∣∣∣
wt

In supervised learning, you can get quite a long way using a multilayer percep-
tron.

If you understand backpropagation, you already know the key idea needed for
stu� involving the word ‘deep’.

But this is a long way from being the full story.
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Kinds of learning: unsupervised learning

What if we have no labels?

Unsupervised learning: we have m vectors x1,x2, . . . ,xm each in Rn . . .
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. . . and we want to �nd some regularity.
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Kinds of learning: semi-supervised learning

Semi-supervised learning: we have the same labelled data as for supervised learn-
ing, but. . .

. . . in addition a further m′ input vectors x′1, . . . ,x
′
m′.
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We want to use the extra information to improve the hypothesis obtained.
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Kinds of learning: reinforcement learning

What if we want to learn from rewards rather than labels?

Reinforcement learning works as follows.

1. We are in a state and can perform an action.
2. When an action is performed we move to a new state and receive a reward.

(Possibly zero or negative.)
3. New states and rewards can be uncertain.
4. We have no knowledge in advance of how actions a�ect either the new state

or the reward.
5. We want to learn a policy. �is tells us what action to perform in any state.
6. We want to learn a policy that in some sense maximizes reward obtained over
time.

Note that this can be regarded as a form of planning.
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Matrix notation

We denote by Rn the set of n-dimensional vectors of reals, and by the set Rm×n

the set of m (rows) by n (columns) matrices of reals.

Vectors are denoted using lower-case bold and matrices in upper-case bold.

It is conventional to assume that vectors are column vectors and to denote the
transpose using superscripted T . So for x ∈ Rn we write

xT =
[
x1 x2 · · · xn

]

and for X ∈ Rm×n we write

X =




x11 x12 · · · x1n
x21 x22 · · · x2n... ... . . . ...
xm1 xm2 · · · xmn




Denote by Xi? and X?j the ith row and jth column of X respectively.
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Matrix notation

If we havem vectors x1,x2, . . . ,xm then the jth element of the ith vector is x
(j)
i .

We may also form the matrix

X =




xT1
xT2...
xTm


 =




x
(1)
1 x

(2)
1 · · · x

(n)
1

x
(1)
2 x

(2)
2 · · · x

(n)
2... ... . . . ...

x
(1)
m x

(2)
m · · · x

(n)
m




Similarly we can write
XT =

[
x1 x2 · · · xm

]

�e identity matrix is as usual

I =




1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1




�e inverse of X is X−1 and its determinant is |X|.
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General notation

An RV can take on one of a set of values. For example, X is an RV with values
{x1, x2, . . . , xn}.
By convention random variables (RVs) are denoted using upper-case and their
values using lower-case.

�e probability that X takes a speci�c value x ∈ {x1, x2, . . . , xn} is Pr (X = x).
�is will generally be abbreviated to just Pr (x)

Sometimes we need to sum over all possible values. We write this using the usual
notation. So for example the expected value of X is

E [X ] =
∑

x∈X
xPr (x) =

∑

X

XPr (X) .

We extend this to vector-valued RVs in the obvious way.

So for example we might de�ne an RV X taking values in Rn and refer to a
speci�c value x ∈ Rn.

(But remember: asking about something like Pr (X = x) now makes li�le sense
if x ∈ Rn.)
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General notation for supervised learning

• Inputs are in n dimensions and are denoted by

xT =
[
x1 x2 · · · xn

]

Each element xi is a feature.
• A training sequence hasm elements. �em inputs are x1, . . . ,xm and can be

collected into the matrix

X =




xT1
xT2...
xTm




• �e labels in the training sequence are denoted by

yT =
[
y1 y2 · · · ym

]

with each yi in a set Y depending on the type of problem.
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General notation for supervised learning

• For regression problems we have Y = R.
• For classi�cation problems with two classes we have Y = B.
• For two classes it is sometimes convenient to use labels {+1,−1} and some-

times {0, 1}. We shall therefore denote these sets byB and rely on the context.
• For classi�cation problems with K > 2 classes we have Y = {c1, . . . , cK}.

Inputs and labels are collected together and wri�en

sT =
[
(x1, y1) (x2, y2) . . . (xm, ym)

]
.

�is is the training sequence.
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Machine Learning and Bayesian Inference

Major subject number one:

Making learning probabilistic.

It will turn out that in order to talk about optimal methods for machine
learning we’ll have to put it into a probabilistic context.

As a bonus, this leads to a much be�er understanding of what happens
when we choose weights by minimizing an error function.

And it turns out that choosing weights in this way is suboptimal. . .

. . . although, intriguingly, that’s not a reason not to do it.
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Probabilistic models for generating data

I’m going to start with a very simple, but very informative approach.

Typically, we can think of individual examples as being generated according to
some distribution p(X, Y ).

We generally make the simplifying assumption that examples are independent
and identically distributed (iid). �us the training data

sT =
[
(x1, y1) (x2, y2) · · · (xm, ym)

]

represents m iid samples from the relevant distribution.

As the examples are iid we can write

p(s) =

m∏

i=1

p(xi, yi).
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Example: simple regression

Here’s how I generated the regression data for the initial examples:
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We have spoken of an unknown underlying function f used to generate the data.
In fact, this is the hypothesis hw that we want to identify by choosing w.

I chose hw to be a polynomial with parameters w — this is the dashed blue
line.

So in fact the unknown function is hw(x), emphasizing that w determines a
speci�c function f .

Remember: you don’t know what w is: you need to identify it by analysing s.
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�e Normal Distribution
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Gaussian, d = 1, mean and variance (0, 1), (1, 0.5) and (−3, 5).

In 1 dimension N (µ, σ2) is

p(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)

with mean µ and variance σ2.

40



Example: simple regression

To make s:

For the ith example:

1. I sampled xi according to the uniform density on [0, 3]. So there is a distribu-
tion p(x).

2. I computed the value hw(xi).
3. I sampled εi ∼ N (0, σ2) with σ2 = 0.1 and formed yi = hw(xi) + εi.

Combining steps 2 and 3 gives you p(yi|xi,w).

p(yi|xi,w) = N (hw(xi), σ
2)

=
1√

2πσ2
exp

(
− 1

2σ2
(yi − hw(xi))

2

)
.
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�e likelihood function

�e quantity p(yi|xi,w) is important: it is known as the likelihood.

You will sometimes see it re-arranged and wri�en as the likelihood function

L(w|xi, yi) = p(yi|xi,w).

Note that its form depends on how you model the data. �ere are di�erent like-
lihood functions depending on what assumptions you make.

Now let’s image w is �xed (but hidden!) from the outset and extend the
likelihood to the whole data set s. . .
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�e likelihood function

�e likelihood for the full data set is:

p(s|w) =

m∏

i=1

p(xi, yi|w)

=

m∏

i=1

p(yi|xi,w)p(xi|w)

=

m∏

i=1

p(yi|xi,w)p(xi)

�e last step involves the reasonable assumption that xi itself never depends on
w.
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Maximizing likelihood

�is expression, roughly translated, tells us how probable the data s would be if
a particular vector w had been used to generate it.

�is immediately suggests a way of choosing w:

Choose

wopt = argmax
w

p(s|w).

�is is called (surprise surprise) a maximum likelihood algorithm.

How would we solve this maximization problem?
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Maximizing likelihood

�is is surprisingly easy:

wopt = argmax
w

p(s|w)

= argmax
w

(
m∏

i=1

p(yi|xi,w)p(xi)

)

= argmax
w

(
m∑

i=1

log p(yi|xi,w) +

m∑

i=1

log p(xi)

)

= argmax
w

m∑

i=1

log p(yi|xi,w)

We’ve used three standard tricks:

1. To maximize something you can alternatively maximize its logarithm.
2. Logarithms turn products into sums.
3. You can drop parts of the expression that don’t depend on the variable you’re
maximizing over
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Maximizing likelihood

�en:

wopt = argmax
w

[
m∑

i=1

log
1√

2πσ2
− 1

2σ2

m∑

i=1

(yi − hw(xi))
2

]

= argmin
w

1

2σ2

m∑

i=1

(yi − hw(xi))
2

So we’ve just shown that:

To choose w by maximizing likelihood. . .

. . .we minimize the sum of squared errors.

Result!
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Maximizing likelihood

It’s worth re�ecting on that for a moment:

• Originally, we plucked

E(w) =

m∑

i=1

(yi − hw(xi))
2

pre�y much out of thin air because it seemed to make sense.
• We’ve just shown that hidden inside it is an assumption: that noise in the data

is Gaussian.
• We’ve also uncovered a second assumption: that maximizing the likelihood is

the right thing to do.

Of course, assumptions such as these are open to question. . .
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Maximizing the posterior

For example, what if we don’t regard w as being �xed in advance but instead
make it an RV as well?

�at means we need a distribution p(w), generally known as the prior on w. How
about our old friend the normal? In d dimensions w ∼ N (µ,Σ) looks like
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p(w) =
1√

|Σ|(2π)d
exp

(
−1

2
(w − µ)TΣ−1(w − µ)

)

with mean vector µ and covariance matrix Σ.
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Maximizing the posterior

�is suggests another natural algorithm for choosing a good w, called the max-
imum a posteriori (MAP) algorithm. Let’s choose w ∼ N (0, λ−1I) so

p(w) =
1√

λ−d(2π)d
exp

(
−λ

2
wTw

)

�en

wopt = argmax
w

p(w|s)

= argmax
w

p(s|w)p(w)

p(s)

= argmax
w

[log p(s|w) + log p(w)]

�e maximization of log p(s|w) proceeds as before, and we end up with

wopt = argmin
w

[
1

2σ2

m∑

i=1

(
(yi − hw(xi))

2
)

+
λ

2
||w||2

]
.

49

Maximizing the posterior

�is appears in the literature under names such as weight decay.

• It was o�en proposed, again on the basis that it seemed sensible, as a sensible-
looking way of controlling the complexity of hw.

• �e idea was to use λ to achieve this.
• We’ll be seeing later how to do this.

Once again, we can now see that it hides certain assumptions.

In addition to the assumptions made by maximum likelihood:

• We are assuming that some kinds of w are more likely than others.
• We are assuming that the distribution governing this is Gaussian.

And again, these assumptions may or may not be appropriate.
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�e likelihood for classi�cation problems

For regression problems just adding noise to the labels seems reasonable:
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�e likelihood p(y|x,w) is in fact a density and can take any value in R as long
as the density is non-negative and integrates to 1.

(�ink of the Gaussian as usual. . . ).

But what about for classi�cation problems?
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�e likelihood for classi�cation problems

For simplicity, let’s just consider two-class classi�cation with labels in {0, 1}.
For a classi�cation problem the likelihood is now a distribution Pr (Y |x,w). It has
two non-negative values, and

Pr (Y = 1|x,w) = 1− Pr (Y = 0|x,w) .

So you can’t just add noise to the underlying hw.

Fix: de�ne the likelihood as

Pr (Y = 1|x,w) = σθ(hw(x))

and use something like

σθ(z) =
1

1 + exp(−θz)

to impose the above property.
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�e likelihood for classi�cation problems
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�e likelihood for classi�cation problems
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�e likelihood for classi�cation problems

So: if we’re given a training sequence s, what is the probability that it was gener-
ated using some w?

For an example (x, y)

Pr (Y |x,w) =

{
σθ(hw(x)) if Y = 1

1− σθ(hw(x)) if Y = 0

Consequently when Y has a known value we can write

Pr (Y |x,w) = [σθ(hw(x))]Y [1− σθ(hw(x))](1−Y )

If we assume that the examples are iid then the probability of seeing the labels
in a training sequence s is straightforward.
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�e likelihood for classi�cation problems

�e likelihood is now

p(s|w) =

m∏

i=1

p(yi|xi,w)p(xi)

=

m∏

i=1

[σθ(hw(xi))]
yi [1− σθ(hw(xi))]

(1−yi) p(xi)

where the �rst line comes straight from an earlier slide.

Note that:

• Whereas previously we had the noise variance σ2 we now have the parameter
θ. Both serve a similar purpose.

• From this expression we can directly derive maximum-likelihood and MAP
learning algorithms for classi�ers.
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�e next step…

We have so far concentrated throughout our coverage of machine learning on
choosing a single hypothesis.

Are we asking the right question though?

Ultimately, we want to generalise.

�is means �nding a hypothesis that works well for previously unseen
examples.

�at means we have to de�ne what good generalization is and ask what
method might do it the best.

Is it reasonable to expect a single hypothesis to provide the optimal answer?

We need to look at what the optimal solution to this kind of problem might be…
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Bayesian decision theory

What is the optimal approach to this problem?

Put another way: how should we make decisions in such a way that the outcome
obtained is, on average, the best possible? Say we have:

• A�ribute vectors x ∈ Rd.
• A set of K classes {c1, . . . , cK}.
• A set of L actions {α1, . . . , αL}.

�ere is essentially nothing new here.

�e actions can be thought of as saying ‘assign x to class c1’ and so on. We may
have further actions, for example the action ‘I don’t know how to classify x’.

�ere is also a loss λij associated with taking action ai when the class is in
fact cj.

Sometimes we will need to write λ(ai, cj) for λij.
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Bayesian decision theory

�e ability to speci�y losses in this way can be important, For example:

• In learning to diagnose cancer we might always assign a loss of 0 when the
action is ‘say the patient has cancer’, assuming the patient does in fact have
cancer.

• A loss of 0 is also appropriate if we take action ‘say the patient is healthy’
when the patient actually is healthy.

• �e subtlety appears when our action is wrong. We should probably assign a
bigger penalty (higher loss) if we tell a patient they are heathy when they’re
sick, than if we tell a patient they’re sick when they’re healthy.

Having extra actions can also be useful.

Also, sometimes we want the system to defer to a human.
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Bayesian decision theory

Say we can further model the world as follows:

• Classes have probabilities Pr (C) of occurring.
• �ere are probability densities p(X|C) for seeing X when the class is C .

So now we have a slightly di�erent, though equivalent way of modelling how
labelled examples are generated: nature chooses classes at random using Pr (C)
and selects a vector using p(X|C).

p(X, C) = p(X|C)Pr (C)︸ ︷︷ ︸
current model

= Pr (C|X) p(X)︸ ︷︷ ︸
previous model

As usual Bayes rule tells us that

Pr (C|X) =
1

Z
p(X|C)Pr (C)

where

Z = p(X) =

K∑

i=1

p(X|ci)Pr (ci) .
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Bayesian decision theory

Say nature shows us x and we take action ai.

If we always take action ai when we see x then the average loss on seeing x is

R(ai|x) = Ec∼p(C|x) [λij|x] =

K∑

j=1

λijPr (cj|x) .

�e quantity R(ai|x) is called the conditional risk.

Note that this particular x is �xed.
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Bayesian decision theory

Now say we have a decision rule D : Rd → {a1, . . . , aL} telling us what action to
take on seeing any x ∈ Rd.

�e average loss, or risk, is

R = E(x,c)∼p(X,C) [λ(D(x), c)]

= Ex∼p(X)

[
Ec∼Pr(C|x) [λ(D(x), c)|x]

]

= Ex∼p(x) [R(D(x)|x)]

=

∫
R(D(x)|x)p(x)dx.

Here we have used the standard result from probability theory that

E [E [X|Y ]] = E [X ] .

(See the supplementary notes for a proof.)
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Bayesian decision theory

Clearly the risk is minimised by the following decision rule:

Given any x ∈ Rd: D(x) outputs the action ai that minimises R(ai|x)

�is D provides us with the minimum possible risk, or Bayes risk R?.

�e rule speci�ed is called the Bayes decision rule.
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Example: minimum error rate classi�cation

In supervised learning our aim is o�en to work in such a way that we minimise
the probability of making an error when predicting the label for a previously unseen
example.

What loss should we consider in these circumstances?

From basic probability theory, we know that for any event E

Pr (E) = E [I [E]]

where I [] denotes the indicator function

I [E] =

{
1 if E happens
0 otherwise

.

(See the supplementary notes for a proof.)
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Example: minimum error rate classi�cation

So if we are addressing a supervised learning problem with

• K classes {c1, . . . , cK}.
• L = K corresponding actions {a1, . . . , aK}
• We interpret action ai as meaning ‘the input is in class ci’.
• �e loss is de�ned as

λij =

{
1 if i 6= j

0 otherwise

then. . .

�e risk R is

R = E(x,c)∼p(X,C) [λ(D(x), C)]

= Pr (D(x) chooses the wrong class)

so the Bayes decision rule minimises the probability of error .
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Example: minimum error rate classi�cation

What is the Bayes decision rule in this case?

R(ai|x) =

K∑

j=1

λijPr (cj|x))

=
∑

i 6=j
Pr (cj|x))

= 1− Pr (ci|x)

so D(x) should be the class that maximises Pr (C|x).

THE IMPORTANT SUMMARY : Given a new x to classify, choosing the class
that maximises Pr (C|x) is the best strategy if your aim is to minimize the

probability of error .
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Bayesian supervised learning

But what about the training sequence s?

Shouldn’t the Bayes optimal classi�er depend on that as well?

• Yes, it should if there is uncertainty about the mechanism used to generate the
data.

• (All of the above assumes that the mechanism is �xed, so seeing examples has
no e�ect on the optimal classifer.)

• In our case we don’t know what underlying h was used. �ere is a prior p(h).
• If you carry through the above derivation le�ing the conditional risk be con-

ditional on both x and s then you �nd that. . .
• . . . to minimize error probability you should maximize Pr (C|x, s).

You should now work through the related exercise.
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Bayesian supervised learning

But the uncertain underlying hypothesis h used to assign classes still doesn’t ap-
pear!

Well, we want to maximize Pr (C|x, s):

Pr (C|x, s) =
∑

h

Pr (C, h|x, s)

=
∑

h

Pr (C|h,x, s) Pr (h|x, s)

=
∑

h

Pr (C|h,x)︸ ︷︷ ︸
Likelihood

Pr (h|s)︸ ︷︷ ︸
Posterior

.

Here we have re-introduced h using marginalisation.
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Bayesian supervised learning

So our classi�cation should be

C = argmax
C∈{c1,...,cK}

∑

h

Pr (C|h,x)) Pr (h|s)

Of course, when dealing with hypotheses de�ned by weights w the sum becomes
an integral

C = argmax
C∈{c1,...,cK}

∫

RW
Pr (C|w,x) p(w|s) dw

where W is the number of weights. �e key point:

• You can also write these equations in the form

C = argmax
C∈{c1,...,cK}

Eh∼Pr(h|s) [Pr (C|h,x)]

• We are not choosing a single h.
• We are averaging the predictions of all possible functions h.
• In doing this we are weighting according to how probable they are.
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A word of caution

We know the optimal classi�er, so we’ve solved supervised learning right?

WRONG‼!

In practice, solving

C = argmax
C∈{c1,...,cK}

Eh∼Pr(h|s) [Pr (C|h,x)]

is intractible in all but the simplest of cases.

�ou shalt beware Bayesians bearing gi�s.

�ey may well be too good to be true. . .
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Machine Learning and Bayesian Inference

Major subject number two:

�e road to Support Vector Machines (SVMs).

It is worth remembering that not all state-of-the-art machine learning is inherently
probabilistic.

�ere is good reason for this: you can almost never actually compute

C = argmax
C∈{c1,...,cK}

Eh∼Pr(h|s) [Pr (C|h,x)]

So before we go any further, let’s see how far it’s possible to get using only
linear methods.

�is is generally a good idea.

Why? Because linear methods are EASY!
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�e problem with linear classi�ers

Purely linear classi�ers or regressors are great for some problems but awful for
others:

-1 -0.5 0 0.5 1 1.5 2

x1

-1

-0.5

0

0.5

1

1.5

2

x
2

Linearly separable data

-1 -0.5 0 0.5 1 1.5 2

x1

-1

-0.5

0

0.5

1

1.5

2

x
2

Simple, but not linearly separable, data

�is example actually killed neural network research for many years.
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�e kernel trick

One way of ge�ing around this problem is to employ the kernel trick:
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Map the data into a bigger space and hope it’s more separable there.

Here, we’ve added one new dimension by introducing a new feature equal to x1x2.
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machine Learning Commandments

�ou shalt not rely on toy data.

Resources such as the UCI Machine Learning Repository are there for a very good
reason:

https://archive.ics.uci.edu/ml/index.php

�ou shalt not rebrand the kernel trick.
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�e kernel trick

Here is a linear hypothesis learned to separate the two classes in the new space.

�is was obtained using the Iterative Recursive Least Squares (IRLS) algorithm.

We’ll be deriving this in a moment. . .
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Linear classi�ers

We’ve already seen the linear classi�er

hw(x) = σ

(
w0 +

n∑

i=1

wixi

)

Or hw(x) = σ(wTx) if we add an extra element having constant value 1 to x.

Make it nonlinear by introducing basis functions φi:

ΦT (x) =
[
φ1(x) φ2(x) · · · φk(x)

]

hw(x) = σ

(
w0 +

k∑

i=1

wiφi(x)

)

or assuming there’s a basis function φ(x) = 1

hw(x) = σ(wTΦ(x)).
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Linear regression

We’ve already seen linear regression. We use σ(x) = x and we have training data

sT =
[
(x1, y1) (x2, y2) · · · (xm, ym)

]
.

I want to minimize
E(w) =

1

2

m∑

i=1

(yi − hw(xi))
2.

Last year we would have found the gradient of E(w) and used gradient descent

wt+1 = wt − λ
∂E(w)

∂w

∣∣∣∣
wt

.

But for linear regression there is an easier way. We can directly solve the
equation

∂E(w)

∂w
= 0.
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Calculus with matrices

It is much easier to handle this kind of calculation in matrix/vector format than
by writing it out in full.

For example, if a and x are both vectors in Rn we can verify that
∂aTx

∂x
=
[
∂aTx
∂x1

∂aTx
∂x2
· · · ∂aTx

∂xn

]T
= a

because for each element xj
∂aTx

∂xj
=

∂

∂xj
(a1x1 + a2x2 + · · · + anxn) = aj

You should verify for yourself that most standard manipulations involving
derivatives carry over directly.

Exercise: Show that if A ∈ Rn×n is symmetric then
∂xTAx

∂x
= 2Ax

78

Linear regression

Write

Φ =




ΦT (x1)

ΦT (x2)...
ΦT (xm)




so

E(w) =
1

2
(y −Φw)T (y −Φw)

=
1

2

(
yTy − 2yTΦw + wTΦTΦw

)

and
∂E(w)

∂w
= ΦTΦw −ΦTy
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Linear regression

So the optimum solution is obtained by solving

ΦTΦw = ΦTy

giving

wopt = (ΦTΦ)−1ΦTy

�is is the maximum likelihood solution to the problem, assuming noise is Gaus-
sian.

Recall that we can also consider the maximum a posteriori (MAP) solution. . .
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Linear regression: the MAP solution

We saw earlier that to get the MAP solution we minimize the error

E(w) =
1

2

m∑

i=1

(
(yi − hw(xi))

2
)

+
λ

2
||w||2.

It is an exercise to show that the solution is:

wopt = (ΦTΦ + λI)−1ΦTy

�is is regularized linear regression or ridge regression.
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Linear regression: the MAP solution

�is can make a huge di�erence.

Revisiting our earlier simple example and training using di�erent values for λ:
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How can we choose λ? We’ll address this a li�le later. . .
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Iterative re-weighted least squares

What about if we’re classifying rather than doing regression?

We now need to use a non-linear σ, typically the sigmoid function, so

hw(x) = σθ(w
TΦ(x)).

We saw earlier that to get the maximum likelihood solution we should maximize
the likelihood

p(s|w) =

m∏

i=1

[
σθ(w

TΦ(xi))
]yi [1− σθ(wTΦ(xi))

](1−yi) p(xi).

Assuming you’ve been completing the exercises you now know that this
corresponds to minimizing the error

E(w) = −
[

m∑

i=1

yi log σθ(w
TΦ(xi)) + (1− yi) log(1− σθ(wTΦ(xi)))

]
.
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Iterative re-weighted least squares

Introducing the extra nonlinearity means we can no longer minimize

E(w) = −
[

m∑

i=1

yi log σθ(w
TΦ(xi)) + (1− yi) log(1− σθ(wTΦ(xi)))

]
.

just by computing a derivative and solving. (Sad, but I suggest you get used to it!)

We need to go back to an iterative solution: this time using the Newton-Raphson
method.

Given a function f : R→ R, to �nd where f (x) = 0 iterate as

xt+1 = xt −
f (xt)

f ′(xt)
.

Obviously, to �nd a minimum we can iterate as

xt+1 = xt −
f ′(xt)

f ′′(xt)
.

�is works for 1 dimension. How about many dimensions?
84



Iterative re-weighted least squares

�e Newton-Raphson method generalizes easily to functions of a vector :

To minimize E : Rn → R iterate as follows:

wt+1 = wt −H−1(wt)
∂E(w)

∂w

∣∣∣∣
wt

.

Here the Hessian is the matrix of second derivatives of E(w)

Hij(w) =
∂2E(w)

∂wi∂wj
.

All we need to do now is to work out the derivatives. . .
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Iterative re-weighted least squares

E(w) = −
[

m∑

i=1

yi log σθ(w
TΦ(xi)) + (1− yi) log(1− σθ(wTΦ(xi)))

]
.

Simplifying slightly we use θ = 1 and de�ne zi = σ(wTΦ(xi)). So

∂E(w)

∂wk
= −

[
m∑

i=1

yi
1

zi

∂zi
∂wk

+ (1− yi)
−1

1− zi
∂zi
∂wk

]

=

m∑

i=1

∂zi
∂wk

(
1− yi
1− zi

− yi
zi

)

=

m∑

i=1

∂zi
∂wk

zi − yi
zi(1− zi)

.
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Iterative re-weighted least squares

So
∂E(w)

∂wk
=

m∑

i=1

∂zi
∂wk

zi − yi
zi(1− zi)

.

�us using the fact that
σ′(.) = σ(.)(1− σ(.))

we have
∂zi
∂wk

=
∂

∂wk
σ(wTΦ(xi)) = zi(1− zi)φk(xi)

and therefore

∂E(w)

∂w
= ΦT (z− y).
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Iterative re-weighted least squares

It is an exercise to show that

Hij(w) =

m∑

k=1

zk(1− zk)φi(xk)φj(xk)

and therefore

H(w) = ΦTZΦ

where Z is a diagonal matrix with diagonal elements zk(1− zk).
�is gives us the iterative re-weighted least squares algorithm (IRLS)

wt+1 = wt −
[
ΦTZΦ

]−1
ΦT (z− y).
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Iterative re-weighted least squares
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Gaussian processes: inference with functions instead of parameters

�ere is an alternative approach to Bayesian regression and classi�cation:

�e fundamental idea is to not think in terms of weights w that specify
functions.

Instead the idea is to deal with functions directly.

Fundamental to this is the concept of a Gaussian process.
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Gaussian processes: inference with functions instead of parameters

We will continue to omit the dependencies on x and X to keep the notation
simple.

We have seen that inference can be performed by:

1. Computing the posterior density p(w|y) of the parameters given the ob-
served labels.

2. Computing the Bayes-optimal prediction

p(Y |y) =

∫
p(Y |w)p(w|y) dw

which is the expected value of the likelihood for a new point x.
3. Choosing any hyperparameters p using the evidence p(y|p).

But shouldn’t we deal with functions directly, not via parameters?
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Gaussian processes: inference with functions instead of parameters

What happens if we deal directly with functions f , rather than choosing them via
parameters?
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Can we change the equation for prediction to

p(Y |y) =

∫
p(Y |f )p(f |y) df

in any sensible way?
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Gaussian processes: inference with functions instead of parameters

Can we change the equation for prediction to

p(Y |y) =

∫
p(Y |f )p(f |y) df

in any sensible way?

�is obviously requires us to talk about probability densities over functions. �at
is probably not something you have ever seen before.

In the diagram: four samples f ∼ p(F )
from a probability density de�ned on
functions.

-5 0 5

x

-3

-2

-1

0

1

2

3

4

f
(x
)

�is is quite straightforward, using the concept of a Gaussian process (GP).
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Gaussian processes: inference with functions instead of parameters

De�nition: say we have a set of RVs. �is set forms a Gaussian process if any
�nite subset of them is jointly Gaussian distributed.

�e same four samples f ∼ p(F ),
where F is in fact a GP.

�e crosses mark the values of the sam-
pled functions at four di�erent values of
x.
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Because F is a GP any such �nite set of values has a jointly Gaussian
distribution.
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Gaussian processes: inference with functions instead of parameters

What happens when we randomly select a function that is a GP?

• We are only ever interested in a �nite number of its values.
• �is is because we only need to deal with the values in the training set and

for any new points we want to predict.
• Consequently we can use a GP as a prior rather than having a prior p(w).

Note again the key point: we are randomly selecting functions and we can say
something about their behaviour for any �nite collection of arguments.

And that is enough, as we only ever have �nite quantities of data.
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Gaussian processes: inference with functions instead of parameters

To specify a GP on vectors in Rn, we just need:

1. A mean functionm : Rn → R.
2. A covariance function k : Rn × Rn → R.

m(x) = Ef∼F [f (x)]

k(x1,x2) = Ef∼F [(f (x1)−m(x1))(f (x2)−m(x2))]

We then write
F ∼ GP(m, k)

to denote that F is a GP.

By specifying m and k we get di�erent kinds of function when sampling F .
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GP priors
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Squared exponential prior, l = 1/2
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γ-exponential prior, l = γ = 1/2
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Neural network prior, σ1 = 15, σ2 = 10
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Covariance functions

Polynomial;
k(x1,x2) = (c + xT1 x2)

k

Exponential:

k(x1,x2) = exp

(
−|x1 − x2|

l

)

Squared exponential:

k(x1,x2) = exp

(
−|x1 − x2|2

2l2

)

Gamma exponential:

k(x1,x2) = exp

(
−
(|x1 − x2|

l

)γ)
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Covariance functions

Rational quadratic;

k(x1,x2) =

(
1 +
|x1 − x2|2

2αl2

)−α

Exponential:

k(x1,x2) = sin−1
(

2(x′1)
TΣx′2

((1 + 2(x′1)
TΣx′1)(1 + 2(x′2)

TΣx′2))
1/2

)

where (x′)T =
[
1 xT

]
.

As usual these have associated hyperparameters.

�ese have to be dealt with correctly as always.
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Gaussian processes: generating data

Say we have some data
yi = f (xi)

for i = 1, . . . ,m and f ∼ GP(m, k). (Remember, the xi are �xed, not RVs.)

Any �nite set of points must be jointly Gaussian. So

p(y) = N (m,K)

where

mT =
[
m(x1) · · · m(xm)

]

and K is the Gram matrix Kij = k(xi,xj).

Note 1: this is not p(y|f ). We can completely remove the need for integration!

Note 2: from now on we will assume m(x) = 0. (It is straightforward to incorpo-
rate a non-zero mean.)
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Gaussian processes: generating data with noise

Now add noise to the data.

Say we add Gaussian noise so

yi = f (xi) + εi.

Again, i = 1, . . . ,m and f ∼ GP(m, k), but now we also have

εi ∼ N (0, σ2).

As we are adding Gaussian RVs, we have

p(y) = N (0,K + σ2I).

BUT: in order to do prediction we actually need to involve a new point x′, for
which we want to predict the corresponding value y′.
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Gaussian processes: prediction

SO: we incorporate x′, for which we want to predict the corresponding value y′.

By exactly the same argument

p(y′,y) = N (0,K′)

where

K′ =

[
k kT

k K + σ2I

]

kT =
[
k(x′,x1) · · · k(x′,xm)

]

k = k(x′,x′) + σ2.

Note 1: all we’ve done here is to expand the Gram matrix by an extra row and
column to get K′.

Note 2: whether or not you include σ2 in k is a ma�er of choice. What di�erence
does it make? (�is is an Exercise.)
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Gaussian density: marginals and conditionals

For a normal RV x ∼ N (µ,Σ)

p(x) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Split x so

x =

[
x1

x2

]

and correspondingly

µ =

[
µ1

µ2

]
Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

What are p(x1) and p(x1|x2)?

103

Gaussian density: marginals and conditionals

De�ne the precision matrix

Λ = Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
.

It is possible to show that

p(x1) = N (µ1,Σ11)

p(x1|x2) = N (µ1 −Λ−111 Λ12(x2 − µ2),Λ
−1
11 ).
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Inverting a block matrix

In the last slide, we see:
Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
.

Re-writing Σ as

Σ =

[
A B
C D

]

it is possible to show (it is an Exercise to do this) that

Λ11 = A′

Λ12 = −A′BD−1

Λ21 = −D−1CA′

Λ22 = D−1 + D−1CA′BD−1

where

A′ = (A−BD−1C)−1.
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GP regression

To do prediction all that’s le� is to compute p(y′|y) .

Because everything is Gaussian this turns out to be easy:

p(y′,y) = N (0,K′)

K′ =

[
k kT

k L

]

L = K + σ2I.

From these we want to know p(y′|y).

Only two things are needed: the inverse formula for a block matrix and the for-
mula for obtaining a conditional from a joint Gaussian. Using these we can show
(it is an Exercise to derive this) that

p(y′|y) = N (kTL−1y︸ ︷︷ ︸
Mean

, k − kTL−1k︸ ︷︷ ︸
Variance

).
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GP regression

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1

0

1

2

3

4

5

f
(x
)

Squared exponential prior, l = 1/2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-3

-2

-1

0

1

2

3

4

5

f
(x
)

γ-exponential prior, l = γ = 1/2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1

0

1

2

3

4

5

6

f
(x
)

Rational quadratic prior, l = a = 3
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Neural network prior, σ1 = 15, σ2 = 10
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Learning the hyperparameters

A nice side-e�ect of this formulation is that we get a usable expression for the
marginal likelihood.

If we incorporate the hyperparameters p, which in this case are any parameters
associated with k(x1,x2) along with σ2, then we’ve just computed

p(y′|y,p) =
p(y′,y|p)

p(y|p)
.

�e denominator is the marginal likelihood, and we computed it above on slide
44:

p(y|p) = N (0,L) =
1√

(2π)m|L|
exp

(
−1

2
yTL−1y

)
.
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Learning the hyperparameters

As usual this looks nicer if we consider its log

log p(y|p) = −1

2
log |L| − 1

2
yTL−1y − m

2
log 2π.

�is is a rare beast:

1. It’s a sensible formula that tells you how good a set p of hyperparameters is.
2. �at means you can use it as an alternative to cross-validation to search for

hyperparameters.
3. As a bonus you can generally di�erentiate it so it’s possible to use gradient-
based search.
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�e maximum margin classi�er

Suggestion: why not drop all this probability nonsense and just do this:

x2

x1

γ

γ

Draw the boundary as far away from the examples as possible.

�e distance γ is the margin, and this is the maximum margin classi�er .
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�e maximum margin classi�er

If you completed the exercises for AI I then you’ll know that linear classi�ers have
a very simple geometry. For

f (x) = wTx + b

x2

x1

x′

|f(x′)|
||w||

f(x) = 0

w

|b|
||w||

For x′ on one side of the line f (x) = 0 we have f (x′) > 0 and on the other
side f (x′) < 0.
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�e maximum margin classi�er

Problems:

• Given the usual training data s, can we now �nd a training algorithm for
obtaining the weights?

• What happens when the data is not linearly separable?

To derive the necessary training algorithm we need to know something
about constrained optimization.

We can address the second issue with a simple modi�cation. �is leads to
the Support Vector Machine (SVM).

Despite being decidedly “non-Bayesian” the SVM is currently a gold-standard:

Do we need hundreds of classi�ers to solve real world classi�cation problems,
Fernández-Delgardo at al., Journal of Machine Learning Research 2014.

113

Constrained optimization

You are familiar with maximizing and minimizing a function f (x). �is is un-
constrained optimization. We want to extend this:

1. Minimize a function f (x) with the constraint that g(x) = 0.
2. Minimize a function f (x) with the constraints that g(x) = 0 and h(x) ≥ 0.

Ultimately we will need to be able to solve problems of the form: �nd xopt
such that

xopt = argmin
x

f (x)

under the constraints

gi(x) = 0 for i = 1, 2, . . . , n

and

hj(x) ≥ 0 for j = 1, 2, . . . ,m.
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Constrained optimization

For example:

f(x, y) and constraint g(x, y) = 0
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f(x, y) along g(x, y) = 0

Minimize the function

f (x, y) = −
(
2x + y2 + xy

)

subject to the constraint

g(x, y) = x + 2y − 1 = 0.
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Constrained optimization

Step 1: introduce the Lagrange multiplier λ and form the Langrangian

L(x, y, λ) = f (x, y)− λg(x, y)

Necessary condition: it can be shown that if (x′, y′) is a solution then ∃λ′ such
that

∂L(x′, y′, λ′)

∂x
= 0

∂L(x′, y′, λ′)

∂y
= 0

So for our example we need

2 + y + λ = 0

2y + x + 2λ = 0

x + 2y − 1 = 0

where the last is just the constraint.
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Constrained optimization

Step 2: solving these equations tells us that the solution is at:

f(x, y) and constraint g(x, y) = 0
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With multiple constraints we follow the same approach, with a Lagrange multi-
plier for each constraint.
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Constrained optimization

How about the full problem? Find

xopt = argmin
x

f (x) such that gi(x) = 0 for i = 1, 2, . . . , n

hj(x) ≥ 0 for j = 1, 2, . . . ,m

�e Lagrangian is now

L(x,λ,α) = f (x)−
n∑

i=1

λigi(x)−
m∑

j=1

αjhj(x)

and the relevant necessary conditions are more numerous.
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Constrained optimization

�e necessary conditions now require that when x′ is a solution ∃λ′,α′ such
that

1.
∂L(x′,λ′,α′)

∂x
= 0.

2. �e equality and inequality constraints are satis�ed at x′.
3. α′ ≥ 0.
4. α′jhj(x′) = 0 for j = 1, . . . ,m.

�ese are called the Karush-Kuhn-Tucker (KKT) conditions.

�e KKT conditions tell us some important things about the solution.

We will only need to address this problem when the constraints are all inequali-
ties.
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Constrained optimization

What we’ve seem so far is called the primal problem.

�ere is also a dual version of the problem. Simplifying a li�le by dropping the
equality constraints.

1. �e dual objective function is

L̃(α) = inf
x
L(x,α).

2. �e dual optimization problem is

max
α

L̃(α) such that α ≥ 0.

Sometimes it is easier to work by solving the dual problem and this allows us to
obtain actual learning algorithms.

We won’t be looking in detail at methods for solving such problems, only the
minimum needed to see how SVMs work.

For the full story seeNumerical Optimization, Jorge Nocedal and Stephen J. Wright,
Second Edition, Springer 2006.

120



�e maximum margin classi�er

It turns out that with SVMs we get particular bene�ts when using the kernel trick.

So we work, as before, in the extended space, but now with:

fw,w0(x) = w0 + wTΦ(x)

hw,w0(x) = sgn (fw,w0(x))

where

sgn(z) =

{
+1 if z > 0

−1 otherwise.
Note the following:

1. �ings are easier for SVMs if we use labels {+1,−1} for the two classes.
(Previously we used {0, 1}.)

2. It also turns out to be easier if we keep w0 separate rather than rolling it
into w.

3. We now classify using a “hard” threshold sgn, rather than the “so�” thresh-
old σ.
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�e maximum margin classi�er

Consider the geometry again. Step 1:

φ2(x)

φ1(x)

Φ(x′)

γ

|fw,w0 (x
′)|

||w||

fw,w0(x) = 0

w

|w0|
||w||

1. We’re classifying using the sign of
the function

fw,w0(x) = w0 + wTΦ(x).

2. �e distance from any point Φ(x′)
in the extended space to the line is

|fw,w0(x
′)|

||w|| .
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�e maximum margin classi�er

Step 2:

φ2(x)

φ1(x)

Φ(x′)

γ

|fw,w0 (x
′)|

||w||

fw,w0(x) = 0

w

|w0|
||w||

• But we also want the examples to
fall on the correct side of the line ac-
cording to their label.

• Noting that for any labelled example
(xi, yi) the quantity yifw,w0(xi) will
be positive if the resulting classi�ca-
tion is correct. . .

• . . . the aim is to solve:

(w, wo) = argmax
w,w0

[
min
i

yifw,w0(xi)

||w||

]
.
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�e maximum margin classi�er

YUK‼!

(With bells on. . . )
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�e maximum margin classi�er

Solution, version 1: convert to a constrained optimization. For any c ∈ R

fw,w0(x) = 0⇐⇒ w0 + wTΦ(x) = 0

⇐⇒ cw0 + cwTΦ(x) = 0.

�at means you can �x ||w|| to be anything you like! (Actually, �x ||w||2 to
avoid a square root.)

φ2(x)

φ1(x)

Φ(x′)

γ

|fw,w0 (x
′)|

||w||

fw,w0(x) = 0

w

|w0|
||w||

Version 1:

(w, wo, γ) = argmax
w,w0,γ

γ

subject to the constraints

yifw,w0(xi) ≥ γ, i = 1, 2, . . . ,m

||w||2 = 1.
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�e maximum margin classi�er

Solution, version 2: still, convert to a constrained optimization, but instead of �xing
||w||:

Fix min{yifw,w0(xi)} to be anything you like!

φ2(x)

φ1(x)

Φ(x′)

γ

|fw,w0 (x
′)|

||w||

fw,w0(x) = 0

w

|w0|
||w||

Version 2:

(w, wo) = argmin
w,w0

1

2
||w||2

subject to the constraints

yifw,w0(xi) ≥ 1, i = 1, 2, . . . ,m.

(�is works because maximizing γ now corresponds to minimizing ||w||.)
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�e maximum margin classi�er

We’ll use the second formulation. (You can work through the �rst as an exercise.)

�e constrained optimization problem is:

Minimize 1
2||w||2

such that

yifw,w0(xi) ≥ 1 for i = 1, . . . ,m .

Referring back, this means the Lagrangian is

L(w, w0,α) =
1

2
||w||2 −

m∑

i=1

αi (yifw,w0(xi)− 1)

and a necessary condition for a solution is that
∂L(w, w0,α)

∂w
= 0

∂L(w, w0,α)

∂w0
= 0.
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�e maximum margin classi�er

Working these out is easy:

∂L(w, w0,α)

∂w
=

∂

∂w

(
1

2
||w||2 −

m∑

i=1

αi (yifw,w0(xi)− 1)

)

= w −
m∑

i=1

αiyi
∂

∂w

(
wTΦ(xi) + w0

)

= w −
m∑

i=1

αiyiΦ(xi)

and
∂L(w, w0,α)

∂w0
= − ∂

∂w0

(
m∑

i=1

αiyifw,w0(xi)

)

= − ∂

∂w0

(
m∑

i=1

αiyi
(
wTΦ(xi) + w0

)
)

= −
m∑

i=1

αiyi.
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�e maximum margin classi�er

Equating those to 0 and adding the KKT conditions tells us several things:

1. �e weight vector can be expressed as

w =

m∑

i=1

αiyiΦ(xi)

with α ≥ 0. �is is important: we’ll return to it in a moment.
2. �ere is a constraint that

m∑

i=1

αiyi = 0.

�is will be needed for working out the dual Lagrangian.
3. For each example

αi[yifw,w0(xi)− 1] = 0.
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�e maximum margin classi�er

�e fact that for each example

αi[yifw,w0(xi)− 1] = 0

means that:

Either yifw,w0(xi) = 1 or αi = 0.

�is means that examples fall into two groups.

1. �ose for which yifw,w0(xi) = 1.
As the contraint used to maximize the margin was yifw,w0(xi) ≥ 1 these are
the examples that are closest to the boundary.
�ey are called support vectors and they can have non-zero weights.

2. �ose for which yifw,w0(xi) 6= 1.
�ese are non-support vectors and in this case it must be that αi = 0.
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�e maximum margin classi�er

Support vectors:

x2

x1

1. Circled examples: support vectors with αi > 0.
2. Other examples: have αi = 0.
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�e maximum margin classi�er

Remember that

w =

m∑

i=1

αiyiΦ(xi).

so the weight vector w only depends on the support vectors.

ALSO: the dual parameters α can be used as an alternative set of weights. �e
overall classi�er is

hw,w0(x) = sgn
(
w0 + wTΦ(x)

)

= sgn

(
w0 +

m∑

i=1

αiyiΦ
T (xi)Φ(x)

)

= sgn

(
w0 +

m∑

i=1

αiyiK(xi,x)

)

where K(xi,x) = ΦT (xi)Φ(x) is called the kernel.
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�e maximum margin classi�er

Remember where this process started:

�e kernel is computing
K(x,x′) = ΦT (x)Φ(x′)

=

k∑

i=1

φi(x)φi(x
′)

�is is generally called an inner product.
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�e maximum margin classi�er

If it’s a hard problem then you’ll probably want lots of basis functions so k is BIG:

hw,w0(x) = sgn
(
w0 + wTΦ(x)

)

= sgn

(
w0 +

k∑

i=1

wiφi(x)

)

= sgn

(
w0 +

m∑

i=1

αiyiΦ
T (xi)Φ(x)

)

= sgn

(
w0 +

m∑

i=1

αiyiK(xi,x)

)

What if K(x,x′) is easy to compute even if k is HUGE? (In particular k >> m.)

1. We get a de�nite computational advantage by using the dual version with
weights α.

2. Mercer’s theorem tells us exactly when a function K has a corresponding set
of basis functions {φi}.
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�e maximum margin classi�er

Designing good kernels K is a subject in itself.

Luckily for the majority of the time you will tend to see one of the following:

1. Polynomial:
Kc,d(x,x

′) = (c + xTx′)d

where c and d are parameters.
2. Radial basis function (RBF):

Kσ2(x,x
′) = exp

(
− 1

2σ2
||x− x′||2

)

where σ2 is a parameter.

�e last is particularly prominent. Interestingly, the corresponding set of basis
functions is in�nite. (So we get an improvement in computational complexity
from in�nite to linear in the number of examples!)
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Maximum margin classi�er: the dual version

Collecting together some of the results up to now:

1. �e Lagrangian is

L(w, w0,α) =
1

2
||w||2 −

∑

i

αi(yifw,w0(xi)− 1).

2. �e weight vector is
w =

∑

i

αiyiΦ(xi).

3. �e KKT conditions require
∑

i

αiyi = 0.

It’s easy to show (this is an exercise) that the dual optimization problem is to
maximize

L̃(α) =
∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyjK(xi,xj)

such that α ≥ 0.
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Support Vector Machines

�ere is one thing still missing:

Problem: so far we’ve only covered the linearly separable case.

Even though that means linearly separable in the extended space it’s still not
enough.

By dealing with this we get the Support Vector Machine (SVM).

x2

x1

137

Support Vector Machines

Fortunately a small modi�cation allows us to let some examples be misclassi�ed.

x2

x1

y′fw,w0(x
′) ≥ 1− ξi

|fw,w0 (x
′)|

||w||

We introduce the slack variables ξi, one for each example.

Although y′fw,w0(x
′) < 0 we have y′fw,w0(x

′) ≥ 1 − ξi and we try to force ξi to
be small.
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Support Vector Machines

�e constrained optimization problem was:

argminw,w0

1
2||w||2 such that yifw,w0(xi) ≥ 1 for i = 1, . . . ,m.

�e constrained optimization problem is now modi�ed to:

argmin
w,w0,ξ

1

2
||w||2
︸ ︷︷ ︸

Maximize the margin

+ C

m∑

i=1

ξi

︸ ︷︷ ︸
Control misclassi�cation

such that

yifw,w0(xi) ≥ 1− ξi and ξi ≥ 0 for i = 1, . . . ,m.

�ere is a further new parameter C that controls the trade-o� between maximiz-
ing the margin and controlling misclassi�cation.
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Support Vector Machines

Once again, the theory of constrained optimization can be employed:

1. We get the same insights into the solution of the problem, and the same con-
clusions.

2. �e development is exactly analogous to what we’ve just seen.

However as is o�en the case it is not straightforward to move all the way to
having a functioning training algorithm.

For this some a�ention to good numerical computing is required. See:

Fast training of support vector machine using sequential minimal
optimization, J. C. Pla�, Advances in Kernel Methods, MIT Press 1999.
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Support Vector Machines
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Supervised learning in practice

We now look at several issues that need to be considered when applying machine
learning algorithms in practice:

• We o�en have more examples from some classes than from others.
• �e obvious measure of performance is not always the best.
• Much as we’d love to have an optimal method for �nding hyperparameters,

we don’t have one, and it’s unlikely that we ever will.
• We need to exercise care if we want to claim that one approach is superior

to another.

�is part of the course has an unusually large number of Commandments.

�at’s because so many people get so much of it wrong! .
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Supervised learning

As usual, we want to design a classi�er .

hθ(x)
x

Classi�er
LabelA�ribute vector

It should take an a�ribute vector

xT =
[
x1 x2 · · · xn

]

and label it.

We now denote a classi�er by hθ(x) where θT =
(

w p
)

denotes any weights
w and (hyper)parameters p.

To keep the discussion and notation simple we assume a classi�cation problem
with two classes labelled +1 (positive examples) and −1 (negative examples).
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Supervised learning

Previously, the learning algorithm was a box labelled L.

hθ = L(s)

x
hθ(x)

Training sequence

Label

s

Learner
L

Classi�er
A�ribute vector

and tears
Blood, sweat

Unfortunately that turns out not to be enough, so a new box has been added.
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Machine Learning Commandments

We’ve already come across the Commandment:

�ou shalt try a simple method. Preferably many simple methods.

Now we will add:

�ou shalt use an appropriate measure of performance.
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Measuring performance

How do you assess the performance of your classi�er?

1. �at is, a�er training, how do you know how well you’ve done?
2. In general, the only way to do this is to divide your examples into a smaller
training set s of m examples and a test set s′ of m′ examples.

Original s

s s′

s′m′sm s′1s3s2s1

�e GOLDEN RULE: data used to assess performance must NEVER have been
seen during training.

�is might seem obvious, but it was a major �aw in a lot of early work.
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Measuring performance

How do we choose m and m′? Trial and error!

Assume the training is complete, and we have a classi�er hθ obtained using only
s. How do we use s′ to assess our method’s performance?

�e obvious way is to see how many examples in s′ the classi�er classi�es cor-
rectly:

êrs′(hθ) =
1

m′

m′∑

i=1

I [hθ(x′i) 6= y′i]

where
s′ =

[
(x′1, y

′
1) (x′2, y

′
2) · · · (x′m′, y

′
m′)
]T

and
I [z] =

{
1 if z = true
0 if z = false .

�is is just an estimate of the probability of error and is o�en called the accuracy.
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Unbalanced data

Unfortunately it is o�en the case that we have unbalanced data and this can make
such a measure misleading. For example:

If the data is naturally such that almost all examples are negative (medical
diagnosis for instance) then simply classifying everything as negative gives a

high performance using this measure.

We need more subtle measures.

For a classi�er h and any set s of size m containing m+ positive examples and
m− negative examples…
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Unbalanced data

De�ne

1. �e true positives

P+ = {(x,+1) ∈ s|h(x) = +1}, and p+ = |P+|

2. �e false positives

P− = {(x,−1) ∈ s|h(x) = +1}, and p− = |P−|

3. �e true negatives

N+ = {(x,−1) ∈ s|h(x) = −1}, and n+ = |N+|

4. �e false negatives

N− = {(x,+1) ∈ s|h(x) = −1}, and n− = |N−|

�us êrs(h) = (p+ + n+)/m.

�is allows us to de�ne more discriminating measures of performance.
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Performance measures

Some standard performance measures:

1. Precision/Positive predictive value (PPV) p+

p++p− .

2. Negative predictive value (NPR) n+

n++n− .

3. Recall/Sensitivity/True positive rate (TPR) p+

p++n− .

4. Speci�city/True negative rate (TNR) n+

n++p− .

5. False positive rate (FPR) p−
p−+n+ .

6. False negative rate (FNR) n−
n−+p+

7. False discovery rate p−
p−+p+ .

In addition, plo�ing sensitivity (true positive rate) against the false positive rate
while a parameter is varied gives the receiver operating characteristic (ROC) curve.
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Performance measures

�e following speci�cally take account of unbalanced data:

1. Ma�hews Correlation Coe�cient (MCC)

MCC =
p+n+ − p−n−√

(p+ + p−)(n+ + n−)(p+ + n−)(n+ + p−)

2. F1 score
F1 =

2× precision× recall
precision + recall

When data is unbalanced these are preferred over the accuracy.
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Machine Learning Commandments

�ou shalt not use default parameters.

�ou shalt not use parameters chosen by an unprincipled formula.

�ou shalt not avoid this issue by clicking on ‘Learn’ and hoping it works.

�ou shalt either choose them carefully or integrate them out.
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Bad hyperparameters give bad performance

153

Bad hyperparameters give bad performance
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Validation and crossvalidation

�e next question: how do we choose hyperparameters?

Answer: try di�erent values and see which values give the best (estimated)
performance.

�ere is however a problem:

If I use my test set s′ to �nd good hyperparameters, then I can’t use it to get a
�nal measure of performance. (See the Golden Rule above.)

Solution 1: make a further division of the complete set of examples to obtain a
third, validation set:

v

vm′′v1

Original s

s s′

s′1s1 s2 s3 sm s′m′
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Validation and crossvalidation

Now, to choose the value of a hyperparameter p:

For some range of values p1, p2, . . . , pn

1. Run the training algorithm using training data s and with the hyperparameter
set to pi.

2. Assess the resulting hθ by computing a suitable measure (for example accu-
racy, MCC or F1) using v.

Finally, select the hθ with maximum estimated performance and assess its actual
performance using s′.
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Validation and crossvalidation

�is was originally used in a similar way when deciding the best point at which
to stop training a neural network.

Stop training here

Estimated error on v

Estimated error on s

Es
tim

at
ed

er
ro

r

Time

�e �gure shows the typical scenario.
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Crossvalidation

�e method of crossvalidation takes this a step further.

We our complete set into training set s and testing set s′ as before.

But now instead of further subdividing s just once we divide it into n folds s(i)

each having m/n examples.

Original s

s

s′s(n)

s′m′

s(2)s(1)

s′1

Typically n = 10 although other values are also used, for example if n = m we
have leave-one-out cross-validation.
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Crossvalidation

Let s−i denote the set obtained from s by removing s(i).

Let êrs(i)(h) denote any suitable error measure, such as accuracy, MCC or F1,
computed for h using fold i.

LetLs−i,p be the classi�er obtained by running learning algorithmL on examples
s−i using hyperparameters p.

�en,
1

n

n∑

i=1

êrs(i)(Ls−i,p)

is the n-fold crossvalidation error estimate.

So for example, let s
(i)
j denote the jth example in the ith fold. �en using accuracy

as the error estimate we have

1

m

n∑

i=1

m/n∑

j=1

I
[
Ls−i,p(x

(i)
j ) 6= y

(i)
j

]

159

Crossvalidation

Two further points:

1. What if the data are unbalanced? Strati�ed crossvalidation chooses folds such
that the proportion of positive examples in each fold matches that in s.

2. Hyperparameter choice can be done just as above, using a basic search.

What happens however if we have multiple hyperparameters?

1. We can search over all combinations of values for speci�ed ranges of each
parameter.

2. �is is the standard method in choosing parameters for support vector machines
(SVMs).

3. With SVMs it is generally limited to the case of only two hyperparameters.
4. Larger numbers quickly become infeasible.
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Crossvalidation

�is is what we get for an SVM applied to the two spirals:

0

15

0.2

0.4

10 0

0.6

Using crossvalidation to optimize the hyperparameters C and σ
2.

log2 C

0.8

5 -5

log2 σ
2

1

0 -10

-5 -15
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Machine Learning Commandments

�ou shalt provide evidence before claiming that thy method is the best.

�ou shalt take extra notice of this Commandment if thou considers thyself a
True And Pure Bayesian.

�ou shalt even take notice of this Commandment if thou considers thyself to
be DEEP .
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Comparing classi�ers

Imagine I have compared the AIMLBlockChain Classi�cator and the DeepHype
Discriminotron and found that:

1. �e Classi�cator has estimated accuracy 0.981 on the test set.
2. �e Discriminotron has estimated accuracy 0.982 on the test set.

Can I claim that the Discriminotron is the be�er classi�er?

Answer:

NO! NO! NO! NO! NO! NO! NO! NO! NO‼‼‼‼‼‼‼
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Comparing classi�ers

NO‼‼‼!

Note for next year: include photo of grumpy-looking cat.
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Assessing a single classi�er

From Mathematical Methods for Computer Science:

�e Central Limit �eorem: If we have independent identically distributed (iid)
random variables X1, X2, . . . , Xn with mean

E [X ] = µ

and variance
E
[
(X − µ)2

]
= σ2

then as n→∞
X̂n − µ
σ/
√
n
→ N(0, 1)

where
X̂n =

1

n

n∑

i=1

Xi.
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Assessing a single classi�er

We have tables of values zp such that if x ∼ N(0, 1) then

Pr (−zp ≤ x ≤ zp) > p.

Rearranging this using the equation from the previous slide we have that with
probability p

µ ∈
[
X̂n ± zp

√
σ2

n

]
.

We don’t know σ2 but it can be estimated using

σ2 ' 1

n− 1

n∑

i=1

(
Xi − X̂n

)2
.

Alternatively, when X takes only values 0 or 1

σ2 = E
[
(X − µ)2

]
= E

[
X2
]
− µ2 = µ(1− µ) ' X̂n(1− X̂n).
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Assessing a single classi�er

�e actual probability of error for a classi�er h is

er(h) = E [I [h(x) 6= y]]

and we are estimating er(h) using the accuracy

êrs(h) =
1

m

m∑

i=1

I [h(xi) 6= yi]

for a test set s.

We can �nd a con�dence interval for this estimate using precisely the derivation
above, simply by noting that the Xi are the random variables

Xi = I [h(xi) 6= yi] .
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Assessing a single classi�er

Typically we are interested in a 95% con�dence interval, for which zp = 1.96.

�us, when m > 30 (so that the central limit theorem applies) we know that,
with probability 0.95

er(h) = êrs(h)± 1.96

√
êrs(h)(1− êrs(h)))

m
.

Example: I have 100 test examples and my classi�er makes 18 errors. With prob-
ability 0.95 I know that

er(h) = 0.18± 1.96

√
0.18(1− 0.18)

100
= 0.18± 0.075.

�is should perhaps raise an alarm regarding our suggested comparison of clas-
si�ers above.
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Assessing a single classi�er

�ere is an important distinction to be made here:

1. �e mean of X is µ and the variance of X is σ2.
2. We can also ask about the mean and variance of X̂n.
3. �e mean of X̂n is

E
[
X̂n

]
= E

[
1

n

n∑

i=1

Xi

]

=
1

n

n∑

i=1

E [Xi]

= µ.

4. It is le� as an exercise to show that the variance of X̂n is

σ2
X̂n

=
σ2

n
.
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Comparing classi�ers

We are using the values zp such that if x ∼ N(0, 1) then

Pr(−zp ≤ x ≤ zp) > p.

�ere is an alternative way to think about this.

1. Say we have a random variable Y with variance σ2Y and mean µY .
2. �e random variable Y − µY has variance σ2Y and mean 0.
3. It is a straightforward exercise to show that dividing a random variable hav-

ing variance σ2 by σ gives us a new random variable with variance 1.
4. �us the random variable Y−µY

σY
has mean 0 and variance 1.

So: with probability p
Y = µY ± zpσY
µY = Y ± zpσY .

Compare this with what we saw earlier. You need to be careful to keep track of
whether you are considering the mean and variance of a single RV or a sum of RVs.
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Comparing classi�ers

Now say I have classi�ers h1 (Bloggs Classi�cator 2000) and h2 (CleverCorp Dis-
criminotron) and I want to know something about the quantity

d = er(h1)− er(h2).

I estimate d using
d̂ = êrs1(h1)− êrs2(h2)

where s1 and s2 are two independent test sets.

Notice:

1. �e estimate of d is a sum of random variables, and we can apply the central
limit theorem.

2. �e estimate is unbiased

E [êrs1(h1)− êrs2(h2)] = d.
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Comparing classi�ers

Also notice:

1. �e two parts of the estimate êrs1(h1) and êrs2(h2) are each sums of random
variables and we can apply the central limit theorem to each.

2. �e variance of the estimate is the sum of the variances of êrs1(h1) and êrs2(h2).
3. Adding Gaussians gives another Gaussian.
4. We can calculate a con�dence interval for our estimate.

With probability 0.95

d = d̂± 1.96

√
êrs1(h1)(1− êrs1(h1))

m1
+

êrs2(h2)(1− êrs2(h2))

m2
.

In fact, if we are using a split into training set s and test set s′ we can generally
obtain h1 and h2 using s and use the estimate

d̂ = êrs′(h1)− êrs′(h2).
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Comparing classi�ers—hypothesis testing

�is still doesn’t tell us directly about whether one classi�er is be�er than an-
other—whether h1 is be�er than h2.

What we actually want to know is whether

d = er(h1)− er(h2) > 0.

Say we’ve measured D̂ = d̂. �en:

• Imagine the actual value of d is 0.
• Recall that the mean of D̂ is d.
• So larger measured values d̂ are less likely, even though some random varia-

tion is inevitable.
• If it is highly unlikely that when d = 0 a measured value of d̂ would be

observed, then we can be con�dent that d > 0.
• �us we are interested in

Pr(D̂ > d + d̂).

�is is known as a one-sided bound.
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One-sided bounds

Given the two-sided bound

Pr(−zε ≤ x ≤ zε) = 1− ε
we actually need to know the one-sided bound

Pr(x ≤ zε).
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Pr(−z ≤ x ≤ z) = 1−ε
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Pr(−∞ ≤ x ≤ z) = 1−ε/2

Clearly, if our random variable is Gaussian then Pr(x ≤ zε) = 1− ε/2.
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Comparing algorithms: paired t-tests

We now know how to compare hypotheses h1 and h2.

But we still haven’t properly addressed the comparison of algorithms.

• Remember, a learning algorithm L maps training data s to hypothesis h.
• So we really want to know about the quantity

d = Es∈Sm [er(L1(s))− er(L2(s))] .

• �is is the expected di�erence between the actual errors of the two di�erent
algorithms L1 and L2 .

Unfortunately, we have only one set of data s available and we can only estimate
errors er(h)—we don’t have access to the actual quantities.

We can however use the idea of crossvalidation.
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Comparing algorithms: paired t-tests

Recall, we subdivide s into n folds s(i) each having m/n examples

s

s(n)s(2)s(1)

and denote by s−i the set obtained from s by removing s(i). �en

1

n

n∑

i=1

êrs(i)(L(s−i))

is the n-fold crossvalidation error estimate. Now we estimate d using

d̂ =
1

n

n∑

i=1

[
êrs(i)(L1(s−i))− êrs(i)(L2(s−i))

]
.
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Comparing algorithms: paired t-tests

As usual, there is a statistical test allowing us to assess how likely this estimate is
to mislead us.

We will not consider the derivation in detail. With probability p

d ∈
[
d̂± tp,n−1σd̂

]
.

�is is analogous to the equations seen above, however:

• �e parameter tp,n−1 is analogous to zp.
• �e parameter tp,n−1 is related to the area under the Student’s t-distribution

whereas zp is related to the area under the normal distribution.
• �e relevant estimate of standard deviation is

σd̂ =

√√√√ 1

n(n− 1)

n∑

i=1

(
di − d̂

)2

where
di = êrs(i)(L1(s−i))− êrs(i)(L2(s−i)).
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Where now?

�ere are some simple take-home messages from the study of SVMs:

You can get state-of-the-art performance.

You can do this using the kernel trick to obtain a non-linear model.

You can do this without invoking the full machinery of the Bayes-optimal
classi�er .

BUT:

You don’t have anything keeping you honest regarding which assumptions
you’re making.

As we shall see, by using the full-strength probabilistic framework we gain
some useful extras.

In particular, the ability to assign con�dences to our predictions.
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�e Bayesian approach to neural networks

We’re now going to see how the idea of the Bayes-optimal classi�er can be applied
to neural networks.

We have:

• A neural network computing a function hw(x). (In fact this can be pre�ymuch
any parameterized function we like.)

• A training sequence sT =
[
(x1, y1) . . . (xm, ym)

]
, split into

y = ( y1 y2 · · · ym )

and
X = ( x1 x2 · · · xm ).
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�e Bayesian approach to neural networks

We’re only going to consider regression. Classi�cation can also be done this way,
but it’s a bit more complicated.

For classi�cation we derived the Bayes-optimal classi�er as the maximizer of:

Pr (C|x, s) =

∫
Pr (C|w,x) p(w|s) dw

For regression the Bayes-optimal classi�er ends up having the same expression
as we’ve already seen. We want to compute:

p(Y |x, s) =

∫
p(Y |w,x)︸ ︷︷ ︸

Likelihood

p(w|s)︸ ︷︷ ︸
Posterior

dw

s is the training set.

x is a new example to be classi�ed.

Y is the RV representing the prediction for x.
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�e Bayesian approach to neural networks

It turns out that if you try to incorporate the density p(x) modelling how feature
vectors are generated, things can get complicated. So:

1. We regard all input vectors as �xed: they are not treated as random variables.
2. �is means that, strictly speaking, they should no longer appear in expres-

sions like p(Y |w,x).
3. However, this seems to be uniformly disliked—writing p(Y |w) for an expres-

sion that still depends on x seems confusing.
4. Solution: write p(Y |w; x) instead. Note the semi-colon!

So we’re actually going to look at

p(Y |y; x,X) =

∫
p(Y |w; x)︸ ︷︷ ︸

Likelihood

p(w|y; X)︸ ︷︷ ︸
Posterior

dw

NOTE: this is a notational hack. �ere’s nothing new, just an a�empt at clarity.
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What’s going on? Turning prior into posterior

Let’s make a brief sidetrack into what’s going on with the posterior density
p(w|y; X) ∝ p(y|w; X)p(w).

Typically, the prior starts wide and as we see more data the posterior narrows
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What’s going on? Turning prior into posterior

�is can be seen very clearly if we use real numbers:
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�e Bayesian approach to neural networks

So now we have three things to do:

1. STEP 1: remind ourselves what p(Y |w; x) is.
2. STEP 2: remind ourselves what p(w|y; X) is.
3. STEP 3: do the integral. (�is is the fun bit. . . )

�e �rst two steps are straightforward as we’ve already derived them when
looking at maximum-likelihood and MAP learning.
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�e Bayesian approach to neural networks

STEP 1: assuming Gaussian noise is added to the labels so

y = hw(x) + ε

where ε ∼ N (0, σ2n) we have the usual likelihood

p(Y |w; x) =
1√

2πσ2n
exp

(
− 1

2σ2n
(Y − hw(x))2

)
.

Here, the subscript in σ2n reminds us that it’s the variance of the noise.

Traditionally this is re-wri�en using the hyperparameter

β =
1

σ2n

so the likelihood is

p(Y |w; x) ∝ exp

(
−β

2
(Y − hw(x))2

)
.
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�e Bayesian approach to neural networks

STEP 2: the posterior is also exactly as it was when we derived the MAP learning
algorithms.

p(w|y; X) ∝ p(y|w; X)p(w)

and as before, the likelihood is

p(y|w; X) ∝ exp

(
−β

2

m∑

i=1

(yi − hw(xi))
2

)

= exp (−βE(w))

and using a Gaussian prior with mean 0 and covariance Σ = σ2I gives

p(w) ∝ exp
(
−α

2
||w||2

)

where traditionally the second hyperparameter is α = 1/σ2. Combining these

p(w|y; X) =
1

Z(α, β)
exp

(
−
(
α||w||2

2
+ βE(w)

))
.
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What’s going on? Turning prior into posterior

Considering the central part of p(w|y; X):

α||w||2
2

+ βE(w).

What happens as the number m of examples increases?

• �e �rst term corresponding to the prior remains �xed.
• �e second term corresponding to the likelihood increases.

So for small training sequences the prior dominates, but for large ones wML is a
good approximation to wMAP.
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�e Bayesian approach to neural networks

Step 3: pu�ing together steps 1 and 2, the integral we need to evaluate is:

I ∝
∫

exp

(
−β

2
(Y − hw(x))2

)

︸ ︷︷ ︸
Likelihood

exp

(
−
(
α||w||2

2
+ βE(w)

))

︸ ︷︷ ︸
Posterior

dw.

Obviously this gives us all a sad face because there is no solution.

So what can we do now. . . ?
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�e Bayesian approach to neural networks

In order to make further progress it’s necessary to perform integrals of the gen-
eral form

∫
F (w)p(w|y; X) dw

for various functions F and this is generally not possible.

�ere are two ways to get around this:

1. We can use an approximate form for p(w|y; X).
2. We can use Monte Carlo methods.

We’ll be taking a look at both possibilities.
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Method 1: approximation to p(w|y; X)

I ∝
∫

exp

(
−β

2
(Y − hw(x))2

)

︸ ︷︷ ︸
Likelihood p(Y |w;x)

exp

(
−
(
α||w||2

2
+ βE(w)

))

︸ ︷︷ ︸
Posterior p(w|y;X)

dw.

�e �rst approach introduces a Gaussian approximation to p(w|y; X) by using a
Taylor expansion of

S(w) =
α||w||2

2
+ βE(w)

at the maximum a posteriori weights wMAP.

�is allows us to use a standard integral.

�e result will be approximate but we hope it’s good!

Let’s recall how Taylor series work…
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Reminder: Taylor expansion

In one dimension the Taylor expansion about a point x0 ∈ R for a function f :
R→ R is

f (x) ≈ f (x0) +
1

1!
(x− x0)f ′(x0)

+
1

2!
(x− x0)2f ′′(x0)

+ · · · + 1

k!
(x− x0)kf k(x0).

What does this look like for the kinds of function we’re interested in? As an
example We can try to approximate

exp (−f (x))

where
f (x) = x4 − 1

2
x3 − 7x2 − 5

2
x + 22.

�is has a form similar to S(w), but in one dimension.
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Reminder: Taylor expansion

�e functions of interest look like this:
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p
(−

f
(x
))

The function exp(−f(x))

By replacing −f (x) with its Taylor expansion about its maximum, which is at

xmax = 2.1437

we can see what the approximation to exp(−f (x)) looks like. Note that the exp
hugely emphasises peaks.
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Reminder: Taylor expansion

Here are the approximations for k = 1, k = 2 and k = 3.
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exp(−f(x)) using Taylor expansion for k = 2

�e use of k = 2 looks promising…
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Reminder: Taylor expansion

In multiple dimensions the Taylor expansion for k = 2 is

f (x) ≈ f (x0) +
1

1!
(x− x0)

T ∇f (x)|x0
+

1

2!
(x− x0)

T ∇2f (x)
∣∣
x0

(x− x0)

where ∇ denotes gradient

∇f (x) =
(

∂f(x)
∂x1

∂f(x)
∂x2
· · · ∂f(x)

∂xn

)

and ∇2f (x) is the matrix with elements

Mij =
∂2f (x)

∂xi∂xj

(Looks complicated, but it’s just the obvious extension of the 1-dimensional case.)
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Method 1: approximation to p(w|y; X)

Applying this to S(w) and expanding around wMAP

S(w) =
α||w||2

2
+ βE(w) ≈ S(wMAP) +

1

2
(w −wMAP)TA(w −wMAP).

• As wMAP minimises the function the �rst derivatives are zero and the corre-
sponding term in the Taylor expansion disappears.

• �e quantity A = ∇∇S(w)|wMAP
can be simpli�ed.

�is is because

A = ∇∇
(
α||w||2

2
+ βE(w)

)∣∣∣∣
wMAP

= αI + β∇∇E(wMAP).
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Method 1: approximation to p(w|y; X)

We actually already know something about how to get wMAP:

1. A method such as backpropagation can be used to compute∇S(w).
2. �e vector wMAP can then be obtained using any standard optimisation

method (such as gradient descent).

It’s also likely to be straightforward to compute ∇∇E(w):

�e quantity ∇∇E(w) can be evaluated using an extended form of
backpropagation.
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A useful integral

Dropping for this slide only the special meaning usually given to the vector x,
here is a useful standard integral:

If A ∈ Rn×n is symmetric then for b ∈ Rn and c ∈ R
∫

Rn
exp

(
−1

2

(
xTAx + xTb + c

))
dx

= (2π)n/2|A|−1/2 exp

(
−1

2

(
c− bTA−1b

4

))
.

You’re not expected to know how to evaluate this, but see the handout on the
course web page if you’re curious1.

To make this easy to refer to, let’s call it the BIG INTEGRAL.

1No, I won’t ask you to evaluate it in the exam. . .
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Method 1: approximation to p(w|y; X)

De�ning
∆w = w −wMAP

we now have an approximation

p(w|y; X) ≈
1

Z
exp

(
−S(wMAP)− 1

2
∆wTA∆w

)
.

Using the BIG INTEGRAL

Z = (2π)W/2|A|−1/2 exp(−S(wMAP))

where W is the number of weights.

Let’s plug this approximation back into the expression for the Bayes-optimum and
see what we get. . .
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Method 1: approximation to p(w|y; X)

I ∝
∫

exp

(
−β

2
(Y − hw(x))2

)

︸ ︷︷ ︸
Likelihood p(Y |w;x)

exp

(
−1

2
∆wTA∆w

)

︸ ︷︷ ︸
Approximation to p(w|y;X)

dw.

�ere is still no solution! We need another approximation…

We can introduce a linear approximation2 of hw(x) at wMAP:

hw(x) ≈ hwMAP(x) + gT∆w

where g = ∇hw(x)|wMAP
.

(By linear approximation we just mean the Taylor expansion for k = 1.)

2We really are making assumptions here—this is OK if we assume that p(w|y;X) is narrow, which depends on A.
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Method 1: second approximation

�is leads to

p(Y |y; x,X) ∝
∫

exp

(
−β

2

(
Y − hwMAP(x)− gT∆w

)2 − 1

2
∆wTA∆w

)
dw.

SUCCESS‼!

�is integral can be evaluated (this is an exercise) using the BIG INTEGRAL to
give THE ANSWER…

p(Y |y; x,X) ' 1√
2πσ2Y

exp

(
−(Y − hwMAP(x))2

2σ2Y

)

where

σ2Y =
1

β
+ gTA−1g.
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Method 1: �nal expression

Hooray! But what does it mean?

�is is a Gaussian density, so we can now see that:

p(Y |y; x,X) peaks at hwMAP(x).

�at is, the MAP solution.

�e variance σ2Y can be interpreted as a measure of certainty:

�e �rst term of σ2Y is 1/β and corresponds to the noise.

�e second term of σ2Y is gTA−1g and corresponds to the width of
p(w|y; X).
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Method 1: �nal expression

Hooray! But what does it mean? Interpreted graphically:
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Typical behaviour of the Bayesian solution

Plo�ing ±2σY around the prediction gives a measure of certainty.
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Method II: Markov chain Monte Carlo (MCMC) methods

�e second solution to the problem of performing integrals

I =

∫
F (w)p(w|y; X)dw

is to use Monte Carlo methods. �e basic approach is to make the approximation

I ≈
1

N

N∑

i=1

F (wi)

where the wi have distribution p(w|y; X). Unfortunately, generating wi with a
given distribution can be non-trivial.
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MCMC methods

A simple technique is to introduce a random walk, so

wi+1 = wi + ε

where ε is zero mean spherical Gaussian and has small variance. Obviously the
sequence wi does not have the required distribution. However, we can use the
Metropolis algorithm, which does not accept all the steps in the random walk:

1. If p(wi+1|y; X) > p(wi|y; X) then accept the step.

2. Else accept the step with probability p(wi+1|y;X)
p(wi|y;X) .

In practice, the Metropolis algorithm has several shortcomings, and a great deal
of research exists on improved methods, see:

R. Neal, “Probabilistic inference using Markov chain Monte Carlo methods,”
University of Toronto, Department of Computer Science Technical Report

CRG-TR-93-1, 1993.
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A (very) brief introduction to how to learn hyperparameters

So far in our coverage of the Bayesian approach to neural networks, the hyper-
parameters α and β were assumed to be known and �xed.

• But this is not a good assumption because…
• …α corresponds to the width of the prior and β to the noise variance.
• So we really want to learn these from the data as well.
• How can this be done?

We now take a look at one of several ways of addressing this problem.

Note: from now on I’m going to leave out the dependencies on x and X as
leaving them in starts to make everything clu�ered.
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�e Bayesian approach to neural networks

�e prior and likelihood depend on α and β respectively so we now make this
clear and write

p(w|y, α, β) =
p(y|w, β)p(w|α)

p(y|α, β)
.

Don’t worry about recalling the actual expressions for the prior and likelihood—
we’re not going to delve deep enough to need them.

Let’s write down directly something that might be useful to know:

p(α, β|y) =
p(y|α, β)p(α, β)

p(y)
.
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Hierarchical Bayes and the evidence

If we know p(α, β|y) then a straightforward approach is to use the values for α
and β that maximise it:

argmax
α,β

p(α, β|y).

Here is a standard trick: assume that the prior p(α, β) is �at, so that we can just
maximise

p(y|α, β).

�is is called type II maximum likelihood and is one common way of doing
the job.
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Hierarchical Bayes and the evidence

�e quantity

p(y|α, β)

is called the evidence or marginal likelihood.

When we re-wrote our earlier equation for the posterior density of the weights,
making α and β explicit, we found

p(w|y, α, β) =
p(y|w, β)p(w|α)

p(y|α, β)
.

So the evidence is the denominator in this equation.

�is is the common pa�ern and leads to the idea of hierarchical Bayes: the
evidence for the hyperparameters at one level is the denominator in the

relevant application of Bayes’ theorem.
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Machine Learning and Bayesian Inference

�e next major subject:

Unsupervised learning

In which we see that

• We can learn from unlabelled data. �is kind of learning is o�en known as
clustering.

• We can do this using a simple, obvious algorithm known as K-means.
• We can also approach it probabilistically using maximum likelihood.
• �is is less straightforward, but there is a general algorithm called Expectation
Maximization (EM) that can be applied.
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Unsupervised learning

Can we �nd regularity in data without the aid of labels?
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Is this one cluster? Or three? Or some other number?
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�e K-means algorithm

�e example on the last slide was obtained using the classicalK-means algorithm.

Given a set {xi} of m points, guess that there are K clusters. Here K = 3.

Chose at random K centre points cj for the clusters. �en iterate as follows:

1. Divide {xi} into K clusters, so each point is associated with the closest
centre:

xi ∈ Cj ⇐⇒ ∀k ||xi − cj|| ≤ ||xi − ck||.
Call these clusters C1, . . . , CK .

2. Update the cluster centres to be the average of the associated points:

cj =
1

|Cj|
∑

xi∈Cj
xi.
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�e K-means algorithm
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Clustering as maximum-likelihood

We saw in the introductory lectures that data from K clusters can be modelled
probabilistically as

p(x|θ) =

K∑

k=1

πkp(x|µk,Σk)

where θ = {π,µ1,Σ1, . . . ,µK,ΣK} and typically p(x|µ,Σ) = N (µ,Σ).
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Clustering as maximum-likelihood

�is leads to a log-likelihood for m points of

log p(X|θ) = log

m∏

i=1

p(xi|θ)

=

n∑

i=1

log p(xi|θ)

=

n∑

i=1

log

K∑

k=1

πkp(xi|µk,Σk)

which tends to be hard to maximise directly. (You can �nd stationary points but
they depend on one-another.)
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Clustering as maximum-likelihood

We can however introduce some latent variables.

m

zi

xi

θ

µ Σ

For each xi introduce the latent variable zi where

zTi =
[
z
(1)
i · · · z(K)

i

]

and

z
(j)
i =

{
1 if xi was generated by cluster j
0 otherwise
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Clustering as maximum-likelihood

Having introduced the zi we can use the marginalization trick and write

log p(X|θ) = log
∑

Z

p(X,Z|θ)

= log
∑

Z

p(X|Z,θ)p(Z|θ)

where the �nal step has given us probabilities that are reasonably tractable.

Why is this?

First, if I know which cluster generated x then its probability is just that for the
corresponding Gaussian

p(x|z,θ) =

K∏

k=1

[p(x|µk,Σk)]
z
(k)
i

and similarly

p(z|θ) =

K∏

k=1

[πk]
z
(k)
i
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Clustering as maximum-likelihood

In other words, if you treat the zi as observed rather than latent

m

zi

xi

θ

µ Σ

then you can write

p(x, z|θ) =

K∏

k=1

[p(x|µk,Σk)πk]
z
(k)
i

log p(X,Z|θ) = log

m∏

i=1

p(xi, zi|θ)

= log

m∏

i=1

K∏

k=1

[p(xi|µk,Σk)πk]
z
(k)
i

219

Clustering as maximum-likelihood

Consequently

log p(X,Z|θ) =

m∑

i=1

K∑

k=1

z
(k)
i (log p(xi|µk,Σk) + log πk)

What have we achieved so far?

1. We want to maximize the log-likelihood log p(X|θ) but this is intractable.
2. We introduce some latent variables Z.
3. �at gives us a tractable log-likelihood log p(X,Z|θ).

But how do we link them together?
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�e EM algorithm

�e Expectation Maximization (EM) algorithm provides a general way of maxi-
mizing likelihood for problems like this.

Let’s do something a li�le strange. Let q(Z) be any distribution on the latent
variables. Write

∑

Z

q(Z) log
p(X,Z|θ)

q(Z)
=
∑

Z

q(Z) log
p(Z|X,θ)p(X|θ)

q(Z)

=
∑

Z

q(Z)

(
log

p(Z|X,θ)

q(Z)
+ log p(X|θ)

)

= −DKL[q(Z)||p(Z|X,θ)] +
∑

Z

q(Z) log p(X|θ)

= −DKL[q(Z)||p(Z|X,θ)] + log p(X|θ)

DKL is the Kullback-Leibler (KL) distance.
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�e Kullback-Leibler (KL) distance

�e Kullback-Leibler (KL) distance measures the distance between two probabil-
ity distributions. For discrete distributions p and q it is

DKL[p||q] =
∑

x

p(x) log
p(x)

q(x)
.

It has the important properties that:

1. It is non-negative
DKL(p||q) ≥ 0.

2. It is 0 precisely when the distributions are equal

DKL[p||q] = 0 if and only if p = q.
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�e EM algorithm

If we also de�ne
L[q,θ] =

∑

Z

q(Z) log
p(X,Z|θ)

q(Z)

then we can re-arrange the last expression to get
log p(X|θ) = L[q,θ] + DKL[q||p]

and we know that DKL[q||p] ≥ 0 so that gives us an upper bound

L[q,θ] ≤ log p(X|θ).

�e EM algorithm works as follows:

• We iteratively maximize L[q,θ].
• We do this by alternately maximizing with respect to q and θ while keeping

the other �xed.
• Maximizing with respect to q is the E step.
• Maximizing with respect to θ is the M step.
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�e EM algorithm

Let’s look at the two steps separately.

Say we have θt at time t in the iteration.

For the E step, we have θt �xed and

log p(X|θt) = L[q,θt] + DKL[q||p]

so this is easy!

1. As θt is �xed, so is log p(X|θt).
2. So to maximize L[q,θt] we must minimize DKL[q||p].
3. And we know that DKL[q||p] is minimized and equal to 0 when q = p.

So in the E step we just choose

qt+1(Z) = p(Z|X,θt).
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�e EM algorithm

For the M step we have

L[q,θ] =
∑

Z

q(Z) log p(X,Z|θ)−
∑

Z

q(Z) log q(Z)

where the second term (the entropy of q(Z)) doesn’t depend on θ.

We �x qt+1(Z) = p(Z|X,θt). We now choose θt+1 as

θt+1 = argmax
θ

∑

Z

p(Z|X,θt) log p(X,Z|θt)

= argmax
θ

EZ [log p(X,Z|θt)]

225

�e EM algorithm

We saw earlier that

log p(X,Z|θt) =

m∑

i=1

K∑

k=1

z
(k)
i (log p(xi|µk,Σk) + log πk)

where θ collects all the parameters

θt = {π,µ1,Σ1, . . . ,µK,ΣK}.

Note that the parameters π, µi and Σi all have an implicit time t a�ached, but
we avoid writing it to keep the notation managable.

So: this step looks a li�le tricker: we need to maximize the expected value of this
expression for the distribution p(Z|X,θt).
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�e EM algorithm

It’s not as bad as it looks:

• Take the expected value inside the sums.

• �e only part of the expression that depends on Z is z
(k)
i .

• So we only have to compute EZ

[
z
(k)
i

]
.

�us
EZ

[
z
(k)
i

]
=
∑

Z

z
(k)
i p(Z|X,θt)

=
∑

z1

· · ·
∑

zm

z
(k)
i p(z1, . . . , zm|X,θt)

=
∑

zi

z
(k)
i p(zi|X,θt) (marginalizing)

=
∑

z
(k)
i ∈{0,1}

z
(k)
i p(z

(k)
i |X,θt) (marginalizing again)

= p(z
(k)
i = 1|X,θt)
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�e EM algorithm

So

EZ

[
z
(k)
i

]
= p(z

(k)
i = 1|X,θt)

=
p(z

(k)
i = 1,xi|θt)
p(xi|θ)

using conditional independence

=
πkp(xi|µk,Σk)∑K
k=1 πkp(xi|µk,Σk)

As a shorthand, de�ne

γ
(k)
i =

πkp(xi|µk,Σk)∑K
k=1 πkp(xi|µk,Σk)

so the expression we’ve arrived at is

θt+1 = argmax
θ

m∑

i=1

K∑

k=1

γ
(k)
i (log p(xi|µk,Σk) + log πk)
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�e EM algorithm

�e EM algorithm for a mixture model summarized:

• We want to �nd θ to maximize log p(X|θ).
• But that’s not tractable.
• So we introduce an arbitrary distribution q and obtain a lower bound

L(q,θ) ≤ log p(X|θ).

• We maximize the lower bound iteratively in two steps:
1. E step: keep θ �xed and maximize with respect to q. �is always results

in q(Z) = p(Z|X,θ).
2. M step: keep q �xed and maximize with respect to θ. For the mixture

model this is

θt+1 = argmax
θ

m∑

i=1

K∑

k=1

γ
(k)
i (log p(xi|µk,Σk) + log πk)
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�e EM algorithm for a mixture of Gaussians

We leave the derivation of the rest of the M Step as an exercise.

You will �nd that the relevant updates to obtain

θt+1 = {π′,µ′1,Σ′1, . . . ,µ′K,Σ′K}.

are:

π′j =

∑m
i=1 γ

(j)
i

m

µ′j =

∑m
i=1 γ

(j)
i xi∑m

i=1 γ
(j)
i

Σ′j =

∑m
i=1 γ

(j)
i (xi − µ′j)(xi − µ′j)

T

∑m
i=1 γ

(j)
i

.
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�e EM algorithm for a mixture of Gaussians
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Uncertainty: Probability as Degree of Belief

At the start of the course, I presented a uniform approach to knowledge represen-
tation and reasoning using probability.

�e world: V = {V1, V2, . . . , Vn}

�
er

y

Q
=
{Q

1
, Q

2
, .
. .
, Q

q
}

Observed

o
=
o
1 , o

2 , . . . , o
m }

Latent variables
L = {L1, L2, . . . , Ll}

�e world is represented by RVs V = {V1, V2, . . . , Vn}. �ese are partitioned:

1. �ery variables Q = {Q1, Q2, . . . , Qq}. We want to compute a distribution
over these.

2. Observed variables O = {o1, o2, . . . , om}. We know the values of these.
3. Latent variables L = {L1, L2, . . . , Ll}. Everything else.
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General knowledge representation and inference: the BIG PICTURE

�e latent variables L are all the RVs not in the sets Q or O.

�e world: V = {V1, V2, . . . , Vn}

�
er

y

Q
=
{Q

1
, Q

2
, .
. .
, Q

q
}

Observed

o
=
o
1 , o

2 , . . . , o
m }

Latent variables
L = {L1, L2, . . . , Ll}

To compute a conditional distribution from a knowledge base Pr (V) we have to
sum over the latent variables

Pr (Q|o1, o2, . . . , om) =
∑

L

Pr (Q,L|o1, o2, . . . , om)

=
1

Z

∑

L

Pr (Q,L, o1, o2, . . . , om)︸ ︷︷ ︸
Knowledge base
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General knowledge representation and inference: the BIG PICTURE

Bayes’ theorem tells us how to update an inference when new information is avail-
able.

�e world: V = {V1, V2, . . . , Vn}

�
er

y

Q
=
{Q

1
, Q

2
, .
. .
, Q

q
}

Observed

o
=
o
1 , o

2 , . . . , o
m }

Latent variables
L = {L1, L2, . . . , Ll}

For example, if we now receive a new observation O′ = o′ then

Pr (Q|o′, o1, o2, . . . , om)︸ ︷︷ ︸
A�er O′ observed

=
1

Z
Pr (o′|Q, o1, o2, . . . , om) Pr (Q|o1, o2, . . . , om)︸ ︷︷ ︸

Before O′ observed
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General knowledge representation and inference: the BIG PICTURE

Simple eh?

HAH‼! No chance…

Even if all your RVs are just Boolean:

• For n RVs knowing the knowledge base Pr (V) means storing 2n numbers.
• So it looks as though storage is O(2n).
• You need to establish 2n numbers to work with.
• Look at the summations. If there are n latent variables then it appears that

time complexity is also O(2n).
• In reality we might well have n > 1000, and of course it’s even worse if vari-
ables are non-Boolean.

And it really is this hard. �e problem in general is #P-complete.

Even ge�ing an approximate solution is provably intractable.
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Bayesian Networks

Having seen that in principle, if not in practice, the full joint distribution alone
can be used to perform any inference of interest, we now examine a practical
technique.

• We introduce the Bayesian Network (BN) as a compact representation of
the full joint distribution.

• We examine the way in which a BN can be constructed.
• We examine the semantics of BNs.
• We look brie�y at how inference can be performed.
• We brie�y introduce theMarkov random�eld (MRF) as an alternative means

of representing a distribution.
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Conditional probability—a brief aside. . .

A brief aside on the dangers of interpreting implication versus conditional prob-
ability:

• Pr (X = x|Y = y) = 0.1 does not mean that if Y = y is then Pr (X = x) =
0.1.

• Pr (X) is a prior probability. It applies when you haven’t seen the value of
Y .

• �e notation Pr (X|Y = y) is for use when y is the entire evidence.
• Pr (X|Y = y ∧ Z = z) might be very di�erent.

Conditional probability is not analogous to logical implication.
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Implication and conditional probability

In general, it is di�cult to relate implication to conditional probability.

Pr(A→ B) = Pr(¬A ∨B)

A AB B

Pr(A|B) = Pr(A∧B)
Pr(B)

Imagine that fish are very rare, and most �sh can swim.

With implication,
Pr (fish→ ¬swim) = Pr (¬fish ∨ ¬swim) = LARGE!

With conditional probability,

Pr (¬swim|fish) =
Pr (¬swim ∧ fish)

Pr (fish)
= SMALL!
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Bayesian networks: exploiting independence

One of the key reasons for the introduction of Bayesian networks is to let us
exploit independence.

�e initial pay-o� is that this makes it easier to represent Pr (V).

A further pay-o� is that it introduces structure that can lead to more e�cient
inference.

Here is a very simple example.

If I toss a coin and roll a die, the full joint distribution of outcomes requires
2× 6 = 12 numbers to be speci�ed.

H 0.014 0.028 0.042 0.057 0.071 0.086
T 0.033 0.067 0.1 0.133 0.167 0.2

Here Pr (Coin = H) = 0.3 and the die has probability i/21 for the ith outcome.
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Exploiting independence

BUT : if we assume the outcomes are independent then

Pr (Coin,Dice) = Pr (Coin) Pr (Dice)

Where Pr (Coin) has two numbers and Pr (Dice) has six.

So instead of 12 numbers we only need 8.
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Exploiting independence

A slightly more complex example:

CP ¬CP
SB ¬SB SB ¬SB

HD 0.024 0.006 0.016 0.004
¬HD 0.0019 0.0076 0.1881 0.7524

• HD = Heart disease
• CP = Chest pain
• SB = Shortness of breath

Similarly, say instead of just considering HD, SB and CP we also consider the
outcome of the Oxford versus Cambridge tiddlywinks competition TC:

TC = {Oxford,Cambridge,Draw}.
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Exploiting independence

Now

Pr (HD,SB,CP,TC) = Pr (TC|HD,SB,CP) Pr (HD,SB,CP) .

Assuming that the patient is not an extraordinarily keen fan of tiddlywinks, their
cardiac health has nothing to do with the outcome, so

Pr (TC|HD,SB,CP) = Pr (TC)

and 2× 2× 2× 3 = 24 numbers has been reduced to 3 + 8 = 11.
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Conditional independence

However although in this case we might not be able to exploit independence
directly we can say that

Pr (CP,SB|HD) = Pr (CP|HD) Pr (SB|HD)

which simpli�es ma�ers.

Conditional independence: A ⊥ B|C

• A is conditionally independent of B given C , wri�en A ⊥ B|C , if

Pr (A,B|C) = Pr (A|C) Pr (B|C) .

• If we know that C is the case then A and B are independent.
• Equivalently Pr (A|B,C) = Pr (A|C). (Prove this!)

Although CP and SB are not independent, they do not directly in�uence one
another in a patient known to have heart disease.

�is is much nicer!
Pr (HD|CP,SB) ∝ Pr (CP|HD) Pr (SB|HD) Pr (HD)
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Bayesian networks

A�er a regre�able incident involving an in�atable gorilla, a famous College has
decided to install an alarm for the detection of roof climbers.

• �e alarm is very good at detecting climbers.
• Unfortunately, it is also sometimes triggered when one of the extremely fat
geese that lives in the College lands on the roof.

• One porter’s lodge is near the alarm, and inhabited by a chap with excellent
hearing and a pathological hatred of roof climbers: he always reports an alarm.
His hearing is so good that he sometimes thinks he hears an alarm, even when
there isn’t one.

• Another porter’s lodge is a good distance away and inhabited by an old chap
with dodgy hearing who likes to listen to his collection of DEATH METAL
with the sound turned up.
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Bayesian networks

No: 0.8

a
¬a ¬a

a
0.001

Y
N
Y

N
Y

Y
N

N

Alarm

Climber Goose

Lodge1 Lodge2

Pr(A|C,G)

0.98
0.08
0.96
0.2

0.60.99

0.08

Pr(L1|A) Pr(L2|A)

Pr(A|C,G)C G

Pr(Goose)Pr(Climber)

No: 0.95
Yes: 0.05 Yes: 0.2
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Bayesian networks

Also called probabilistic/belief/causal networks or knowledge maps.

• Each node is a random variable (RV).
• Each node Ni has a distribution

Pr (Ni|parents(Ni))

• A Bayesian network is a directed acyclic graph.
• Roughly speaking, an arrow from N to M means N directly a�ects M .
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Bayesian networks

Note that:

• In the present example all RVs are discrete (in fact Boolean) and so in all cases
Pr (Ni|parents(Ni)) can be represented as a table of numbers.

• Climber and Goose have only prior probabilities.
• All RVs here are Boolean, so a node with p parents requires 2p numbers.

A BN with n nodes represents the full joint probability distribution for those
nodes as

Pr (N1 = n1, N2 = n2, . . . , Nn = nn) =

n∏

i=1

Pr (Ni = ni|parents(Ni)) .

For example

Pr (¬C,¬G,A,L1,L2) = Pr (L1|A) Pr (L2|A) Pr (A|¬C,¬G) Pr (¬C) Pr (¬G)

= 0.99× 0.6× 0.08× 0.95× 0.8.
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Semantics

In general Pr (A,B) = Pr (A|B) Pr (B) so

Pr (N1, . . . , Nn) = Pr (Nn|Nn−1, . . . , N1) Pr (Nn−1, . . . , N1) .

Repeating this gives

Pr (N1, . . . , Nn) = Pr (Nn|Nn−1, . . . , N1) Pr (Nn−1|Nn−2, . . . , N1) · · · Pr (N1)

=

n∏

i=1

Pr (Ni|Ni−1, . . . , N1) .

Now compare equations. We see that BNs make the assumption

Pr (Ni|Ni−1, . . . , N1) = Pr (Ni|parents(Ni))

for each node, assuming that parents(Ni) ⊆ {Ni−1, . . . , N1}.

Each Ni is conditionally independent of its predecessors given its parents .
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Semantics

• When constructing a BN we want to make sure the preceding property holds.
• �is means we need to take care over ordering.
• In general causes should directly precede e�ects.

· · ·

Ni

parents(Ni)

Here, parents(Ni) contains all preceding nodes having a direct in�uence on Ni.
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Semantics

But its not quite that straightforward: what if we want to talk about nodes other
than predecessors and parents?

For example, it is possible to show:

A

P2P1

N1 N2

Any node A is conditionally independent of the Ni—its
non-descendants—given the Pi—its parents.

251

Semantics

It is also possible to show:

A

M7 M6 M5

M4M8

M1 M2 M3

Any node A is conditionally independent of all other nodes given the
Markov blanket Mi—that is, its parents, its children and its childrens’ parents.
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Semantics: what’s REALLY going on here?

�ere is a general method for inferring exactly what conditional independences are
implied by a Bayesian network.

Let X , Y and Z be disjoint subsets of the RVs.

Consider a path p consisting of directed (in any orientation) edges from some
x ∈ X to some y ∈ Y . For example

x · · · y

�e path p is said to be blocked by Z if one of three conditions holds. . .
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Semantics: what’s REALLY going on here?

Path p is blocked with respect to Z if:

1. p contains a node z ∈ Z that is tail-to-tail:

x · · · z ∈ Z y

2. p contains a node z ∈ Z that is head-to-tail:

x · · · z ∈ Z y

(Similarly if the node is tail-to-head.)
3. p contains a node N that is head-to-head, N /∈ Z , and none of N ’s descen-

dents is in Z :
x · · · y

...
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Semantics: what’s REALLY going on here?

Finally:

1. X and Y are d-separated by Z if all paths p from some x ∈ X to some
y ∈ Y are blocked.

2. If X and Y are d-separated by Z then X ⊥ Y |Z .
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More complex nodes

How do we represent
Pr (Ni|parents(Ni))

when nodes can denote general discrete and/or continuous RVs?

• BNs containing both kinds of RV are called hybrid BNs.
• Naive discretisation of continuous RVs tends to result in both a reduction

in accuracy and large tables.
• O(2p) might still be large enough to be unwieldy.
• We can instead a�empt to use standard and well-understood distributions,

such as the Gaussian.
• �is will typically require only a small number of parameters to be speci-

�ed.
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More complex nodes

Example: a continuous RV with one continuous and one discrete parent.

Pr (Speed of car|Throttle position,Tuned engine)

where SC and TP are continuous and TE is Boolean.

• For a speci�c se�ing of ET = true it might be the case that SC increases
with TP, but that some uncertainty is involved

Pr (SC|TP,et) = N(getTP + cet, σ
2
et).

• For an un-tuned engine we might have a similar relationship with a di�erent
behaviour

Pr (SC|TP,¬et) = N(g¬etTP + c¬et, σ
2
¬et).

�ere is a set of parameters {g, c, σ} for each possible value of the discrete RV.
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More complex nodes

Example: a discrete RV with a continuous parent

Pr (Go roofclimbing|Size of fine) .

We could for example use the probit distribution

Pr (Go roofclimbing = true|size) = Φ

(
t− size

s

)

where
Φ(x) =

∫ x

−∞
N(y)dy

and N is the Gaussian density with zero mean and variance 1.
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More complex nodes

-10 -5 0 5 10

x

0

0.5

1

Φ
(x
)

The probit distribution

90 95 100 105 110

size

0

0.5

1

Φ
(t
−
s
i
z
e
/s
)

Pr(GRC = true|size) with t = 100 and different values of s
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Basic inference

We saw earlier that the full joint distribution can be used to perform all inference
tasks:

Pr (Q|o1, o2, . . . , om) =
1

Z

∑

L

Pr (Q,L, o1, o2, . . . , om)

where

• Q is the query.
• o1, o2, . . . , om are the observations.
• L are the latent variables.
• 1/Z normalises the distribution.
• �e query, observations and latent variables are a partition of the set V =
{V1, V2, . . . , Vn} of all variables.
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Basic inference

As the BN fully describes the full joint distribution

Pr (Q,L, o1, o2, . . . , om) =

n∏

i=1

Pr(Vi|parents(Vi))

it can be used to perform inference in the obvious way

Pr (Q|o1, o2, . . . , om) ∝
∑

L

n∏

i=1

Pr(Vi|parents(Vi))

but this is in practice problematic for obvious reasons.

• More sophisticated algorithms aim to achieve this more e�ciently.
• For complex BNs we resort to approximation techniques.
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Performing exact inference

Pr (Q,L, o1, . . . , om) has a particular form expressing conditional independences:

No: 0.8

a
¬a ¬a

a
0.001

Y
N
Y

N
Y

Y
N

N

Alarm

Climber Goose

Lodge1 Lodge2

Pr(A|C,G)

0.98
0.08
0.96
0.2

0.60.99

0.08

Pr(L1|A) Pr(L2|A)

Pr(A|C,G)C G

Pr(Goose)Pr(Climber)

No: 0.95
Yes: 0.05 Yes: 0.2

Pr (C,G,A, L1, L2) = Pr (C) Pr (G) Pr (A|C,G) Pr (L1|A) Pr (L2|A) .
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Performing exact inference

Consider the computation of the query Pr (C|l1, l2)

We have

Pr (C|l1, l2) ∝
∑

A

∑

G

Pr (C) Pr (G) Pr (A|C,G) Pr (l1|A) Pr (l2|A) .

Here there are 5 multiplications for each set of values that appears for summa-
tion, and there are 4 such values.

In general this gives time complexity O(n2n) for n Boolean RVs.

�e naive implementation of this approach yields the Enumerate-Joint-Ask algo-
rithm, which unfortunately requires O(2n) time and space for n Boolean RVs.

�e enumeration-ask algorithm improves ma�ers to O(2n) time and O(n) space
by performing the computation depth-�rst.

However ma�ers can be improved further by avoiding duplication of computa-
tions.
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Performing exact inference

Looking more closely we see that

Pr (C|l1, l2) ∝
∑

A

∑

G

Pr (C) Pr (G) Pr (A|C,G) Pr (l1|A) Pr (l2|A)

=
1

Z
Pr (C)

∑

A

Pr (l1|A) Pr (l2|A)
∑

G

Pr (G) Pr (A|C,G)

=
1

Z
Pr (C)

∑

G

Pr (G)
∑

A

Pr (A|C,G) Pr (l1|A) Pr (l2|A) .

�ere is some freedom in terms of how we factorize the expression.

�is is a result of introducing assumptions about conditional independence.
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Performing exact inference: variable elimination

Taking the second possibility:

Pr (C)︸ ︷︷ ︸
C

∑

G

Pr (G)︸ ︷︷ ︸
G

∑

A

Pr (A|C,G)︸ ︷︷ ︸
A

Pr (l1|A)︸ ︷︷ ︸
L1

Pr (l2|A)︸ ︷︷ ︸
L2

where C , G, A, L1, L2 denote the relevant factors.

�e basic idea is to evaluate this from right to le� (or in terms of the tree, bo�om
up) storing results as we progress and re-using them when necessary.

Pr (l1|A) depends on the value of A. We store it as a table FL1(A). Similarly
for Pr (l2|A).

FL1(A) =

(
0.99
0.08

)
FL2(A) =

(
0.6

0.001

)

as Pr (l1|a) = 0.99, Pr (l1|¬a) = 0.08 and so on.
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Performing exact inference: variable elimination

Similarly for Pr (A|C,G), which is dependent on A, C and G

FA(A,C,G) =

A C G FA(A,C,G)
> > > 0.98
> > ⊥ 0.96
> ⊥ > 0.2
> ⊥ ⊥ 0.08
⊥ > > 0.02
⊥ > ⊥ 0.04
⊥ ⊥ > 0.8
⊥ ⊥ ⊥ 0.92

Can we write Pr (A|C,G) Pr (l1|A) Pr (l2|A) as

FA(A,C,G)FL1(A)FL2(A)

in a reasonable way?
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Performing exact inference: variable elimination

Yes, provided multiplication of factors is de�ned correctly. Looking at

Pr (C)
∑

G

Pr (G)
∑

A

Pr (A|C,G) Pr (l1|A) Pr (l2|A)

note that:

1. �e values of the product

Pr (A|C,G) Pr (l1|A) Pr (l2|A)

in the summation over A depend on the values of C and G external to it,
and the values of A.

2. So
FA(A,C,G)FL1(A)FL2(A)

should be a table collecting values where correspondences between RVs
are maintained.

�is leads to a de�nition for multiplication of factors best given by example.
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Performing exact inference: variable elimination

F(A,B)F(B,C) = F(A,B,C)

where

A B F(A,B) B C F(B,C) A B C F(A,B,C)
> > 0.3 > > 0.1 > > > 0.3× 0.1
> ⊥ 0.9 > ⊥ 0.8 > > ⊥ 0.3× 0.8
⊥ > 0.4 ⊥ > 0.8 > ⊥ > 0.9× 0.8
⊥ ⊥ 0.1 ⊥ ⊥ 0.3 > ⊥ ⊥ 0.9× 0.3

⊥ > > 0.4× 0.1
⊥ > ⊥ 0.4× 0.8
⊥ ⊥ > 0.1× 0.8
⊥ ⊥ ⊥ 0.1× 0.3
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Performing exact inference: variable elimination

�is process gives us

FA(A,C,G)FL1(A)FL2(A) =

A C G
> > > 0.98× 0.99× 0.6
> > ⊥ 0.96× 0.99× 0.6
> ⊥ > 0.2× 0.99× 0.6
> ⊥ ⊥ 0.08× 0.99× 0.6
⊥ > > 0.02× 0.08× 0.001
⊥ > ⊥ 0.04× 0.08× 0.001
⊥ ⊥ > 0.8× 0.08× 0.001
⊥ ⊥ ⊥ 0.92× 0.08× 0.001
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Performing exact inference: variable elimination

How about

FA,L1,L2(C,G) =
∑

A

FA(A,C,G)FL1(A)FL2(A)

To denote the fact that A has been summed out we place a bar over it in the
notation.∑

A

FA(A,C,G)FL1(A)FL2(A) =FA(a, C,G)FL1(a)FL2(a)

+ FA(¬a, C,G)FL1(¬a)FL2(¬a)

where

FA(a, C,G) =

C G
> > 0.98
> ⊥ 0.96
⊥ > 0.2
⊥ ⊥ 0.08

FL1(a) = 0.99 FL2(a) = 0.6

and similarly for FA(¬a, C,G), FL1(¬a) and FL2(¬a).
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Performing exact inference: variable elimination

FA(a, C,G)FL1(a)FL2(a) =

C G
> > 0.98× 0.99× 0.6
> ⊥ 0.96× 0.99× 0.6
⊥ > 0.2× 0.99× 0.6
⊥ ⊥ 0.08× 0.99× 0.6

FA(¬a, C,G)FL1(¬a)FL2(¬a) =

C G
> > 0.02× 0.08× 0.001
> ⊥ 0.04× 0.08× 0.001
⊥ > 0.8× 0.08× 0.001
⊥ ⊥ 0.92× 0.08× 0.001

FA,L1,L2(C,G) =

C G
> > (0.98× 0.99× 0.6) + (0.02× 0.08× 0.001)
> ⊥ (0.96× 0.99× 0.6) + (0.04× 0.08× 0.001)
⊥ > (0.2× 0.99× 0.6) + (0.8× 0.08× 0.001)
⊥ ⊥ (0.08× 0.99× 0.6) + (0.92× 0.08× 0.001)
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Performing exact inference: variable elimination

Now, say for example we have ¬c, g. �en doing the calculation explicitly would
give
∑

A

Pr (A|¬c, g)Pr (l1|A)) Pr (l2|A)

= Pr (a|¬c, g) Pr (l1|a) Pr (l2|a) + Pr (¬a|¬c, g) Pr (l1|¬a) Pr (l2|¬a)

= (0.2× 0.99× 0.6) + (0.8× 0.08× 0.001)

which matches!

Continuing in this manner form

FG,A,L1,L2(C,G) = FG(G)FA,L1,L2(C,G)

sum out G to obtain FG,A,L1,L2(C) =
∑

G FG(G)FA,L1,L2(C,G), form

FC,G,A,L1,L2 = FC(C)FG,A,L1,L2(C)

and normalise.
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Performing exact inference: variable elimination

What’s the computational complexity now?

• For Bayesian networks with suitable structure we can perform inference
in linear time and space.

• However in the worst case it is still #P -hard.

Consequently, we may need to resort to approximate inference.
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Approximate inference for Bayesian networks

Markov chain Monte Carlo (MCMC) methods also provide a method for perform-
ing approximate inference in Bayesian networks.

Say a system can be in a state S and moves from state to state in discrete time
steps according to a probabilistic transition

Pr (S→ S′) .

Let πt(S) be the probability distribution for the state a�er t steps, so

πt+1(S
′) =

∑

s

Pr (s→ S′) πt(s).

If at some point we obtain πt+1(s) = πt(s) for all s then we have reached a
stationary distribution π. In this case

∀s′π(s′) =
∑

s

Pr (s→ s′) π(s).

�ere is exactly one stationary distribution for a given Pr (S→ S′) provided the
la�er obeys some simple conditions.
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Approximate inference for Bayesian networks

�e condition of detailed balance
∀s, s′π(s)Pr (s→ s′) = π(s′)Pr (s′ → s)

is su�cient to provide a π that is a stationary distribution. To see this simply
sum: ∑

s

π(s)Pr (s→ s′) =
∑

s

π(s′)Pr (s′ → s)

= π(s′)
∑

s

Pr (s′ → s)

︸ ︷︷ ︸
=1

= π(s′)

If all this is looking a li�le familiar, it’s because we now have another
excellent application for the material in Mathematical Methods for Computer

Science.

�at course used the alternative term local balance.
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Approximate inference for Bayesian networks

Recalling once again the basic equation for performing probabilistic inference

Pr (Q|o1, o2, . . . , om) ∝
∑

L

Pr (Q,L, o1, o2, . . . , om)

where

• Q is the query.
• o1, o2, . . . , om are the observations.
• L are the latent variables.
• 1/Z normalises the distribution.
• �e query, observations and latent variables are a partition of the set V =
{V1, V2, . . . , Vn} of all variables.

We are going to consider obtaining samples from the distribution
Pr (Q,L|o1, o2, . . . , om).
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Approximate inference for Bayesian networks

�e observations are �xed. Let the state of our system be a speci�c set of values
for a query variable and the latent variables

S = (S1, S2, . . . , Sl+1) = (Q,L1, L2, . . . , Ll)

and de�ne Si to be the state vector with Si removed

Si = (S1, . . . , Si−1, Si+1, . . . , Sn+1).

To move from s to s′ we replace one of its elements, say si, with a new value
s′i sampled according to

s′i ∼ Pr (Si|si, o1, . . . , om)

�is has detailed balance, and has Pr (Q,L|o1, . . . , om) as its stationary
distribution.

It is known as Gibbs sampling.
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Approximate inference for Bayesian networks

To see that Pr (Q,L|o) is the stationary distribution we just demonstrate detailed
balance:

π(s)Pr (s→ s′) = Pr (s|o) Pr (s′i|si,o)

= Pr (si, si|o) Pr (s′i|si,o)

= Pr (si|si,o) Pr (si|o) Pr (s′i|si,o)

= Pr (si|si,o) Pr (s′i, si|o)

= Pr (s′ → s) π(s′).

As a further simpli�cation we can exploit conditional independence.

For example, sampling from Pr (Si|si,o) may be equivalent to sampling Si con-
ditional on some smaller set.
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Approximate inference for Bayesian networks

So:

• We successively sample the query variable and the unobserved variables, con-
ditional on the remaining variables.

• �is gives us a sequence s1, s2, . . . sampled according to Pr (Q,L|o).

Finally, note that as

Pr (Q|o) =
∑

l

Pr (Q, l|o)

we can just ignore the values obtained for the unobserved variables. �is
gives us q1, q2, . . . with

qi ∼ Pr (Q|o) .
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Approximate inference for Bayesian networks

To see that the �nal step works, consider what happens when we estimate the
expected value of some function of Q.

E[f (Q)|o] =
∑

q

f (q)Pr (q|o)

=
∑

q

f (q)
∑

l

Pr (q, l|o)

=
∑

q

∑

l

f (q)Pr (q, l|o)

so sampling using Pr (q, l|o) and ignoring the values for l obtained works exactly
as required.
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Markov random �elds

Markov random �elds (MRFs) (sometimes called undirected graphical models or
Markov networks) provide an alternative approach to representing a probability
distribution while expressing conditional independence assumptions.

We now have:

1. An undirected graph G = (N,E).
2. G has a node Ni for each RV .
3. For each maximal clique c inG there is a clique potential φc(Nc) > 0 where
Nc is the set of nodes in c.

4. �e probability distribution expressed by G is

Pr (N) ∝
∏

c

φc(Nc).
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Markov random �elds

Example: 3 maximal cliques of size 2, 2 of size 3 and 1 of size 4.

φ1

φ2

φ3

φ5

φ6

φ4
N9

N1

N2

N4 N5

N6 N7

N3

N8

Pr (N1, . . . , N9) ∝ φ1(N1, N4)× φ2(N3, N6)× φ3(N7, N8)× φ4(N1, N2, N3)

× φ5(N3, N8, N9)× φ6(N4, N5, N6, N7).
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Markov random �elds—conditional independence

�e test for conditional independence is now simple: if X , Y and Z are disjoint
subsets of the RVs then:

1. Remove the nodes in Z and any a�ached edges from the graph.
2. If there are no paths from any variable in X to any variable in Y then

X ⊥ Y |Z.

Final things to note:

1. MRFs have their own algorithms for inference.
2. �ey are an alternative to BNs for representing a probability distribution.
3. �ere are trade-o�s that might make a BN or MRF more or less favourable.
4. For example: potentials o�er �exibility because they don’t have to represent
conditional distributions. . .

5. . . . BUT you have to normalize the distribution you’re representing.
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