Logic and Proof

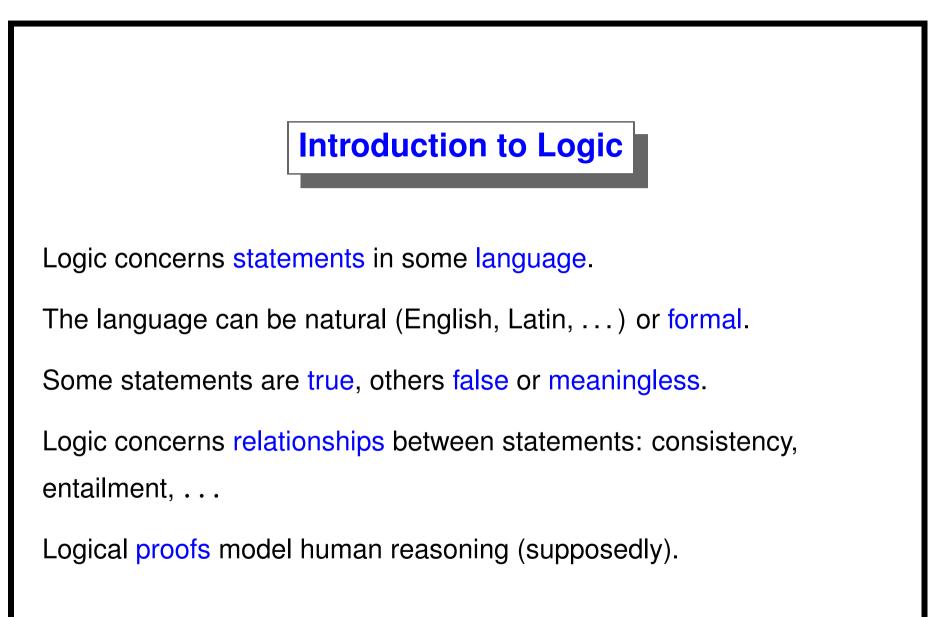
Computer Science Tripos Part IB Lent Term

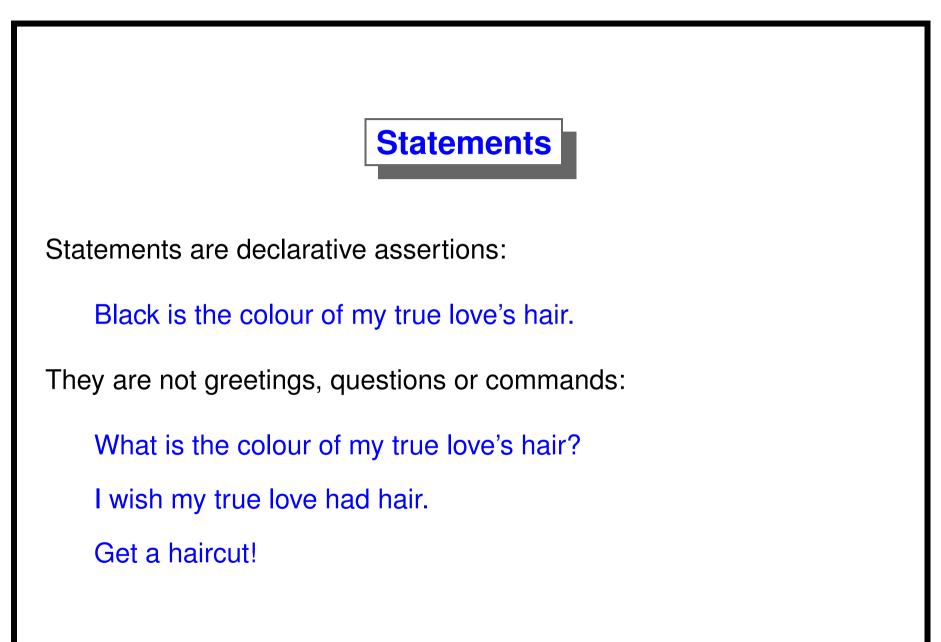
Lawrence C Paulson

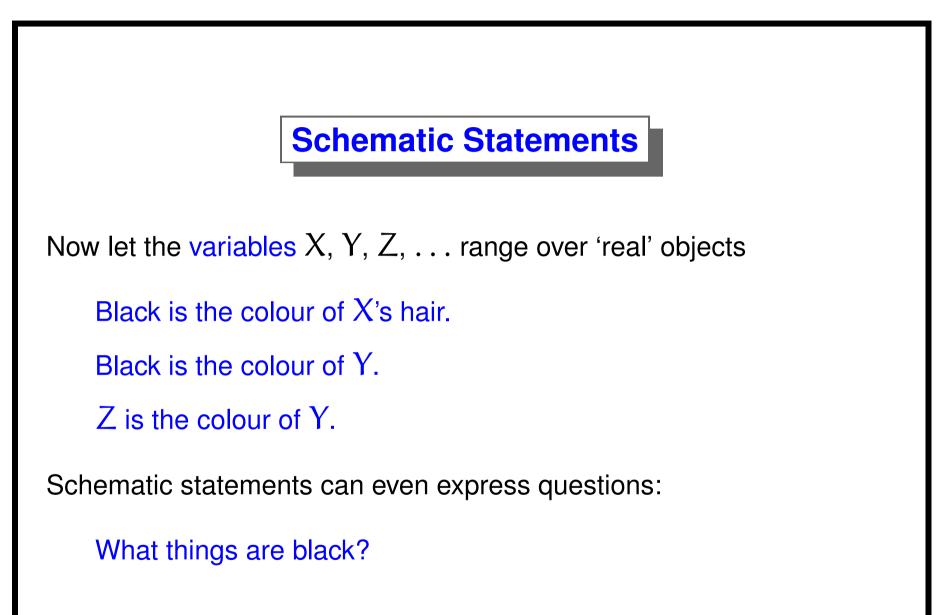
Computer Laboratory University of Cambridge

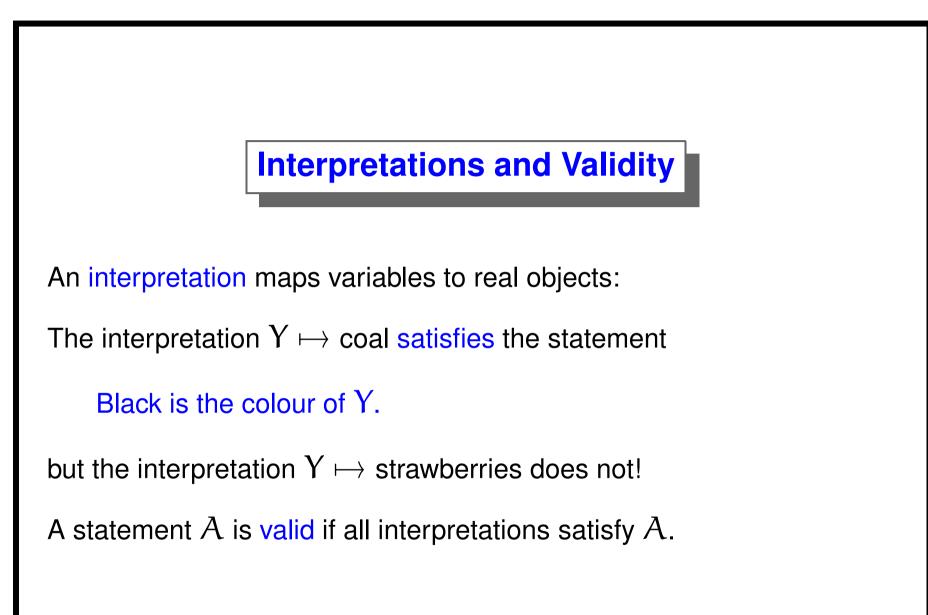
lp15@cam.ac.uk

Copyright © 2019 by Lawrence C. Paulson









Consistency, or Satisfiability

A set S of statements is consistent if some interpretation satisfies all elements of S at the same time. Otherwise S is inconsistent.

Examples of inconsistent sets:

{n is a positive integer, $n \neq 1, n \neq 2, ...$ }

Satisfiable means the same as consistent.

Unsatisfiable means the same as inconsistent.

Entailment, or Logical Consequence

A set S of statements entails A if every interpretation that satisfies all elements of S, also satisfies A. We write $S \models A$.

{X part of Y, Y part of Z} \models X part of Z

 $\{n \neq 1, n \neq 2, \ldots\} \models n \text{ is NOT a positive integer}$

 $S \models A$ if and only if $\{\neg A\} \cup S$ is inconsistent.

If S is inconsistent, then $S \models A$ for any A.

 \models A if and only if A is valid, if and only if $\{\neg A\}$ is inconsistent.

Inference: Proving a Statement

We want to show that A is valid. We can't test infinitely many cases.

Let $\{A_1, \ldots, A_n\} \models B$. If A_1, \ldots, A_n are true then B must be true. Write this as the inference rule

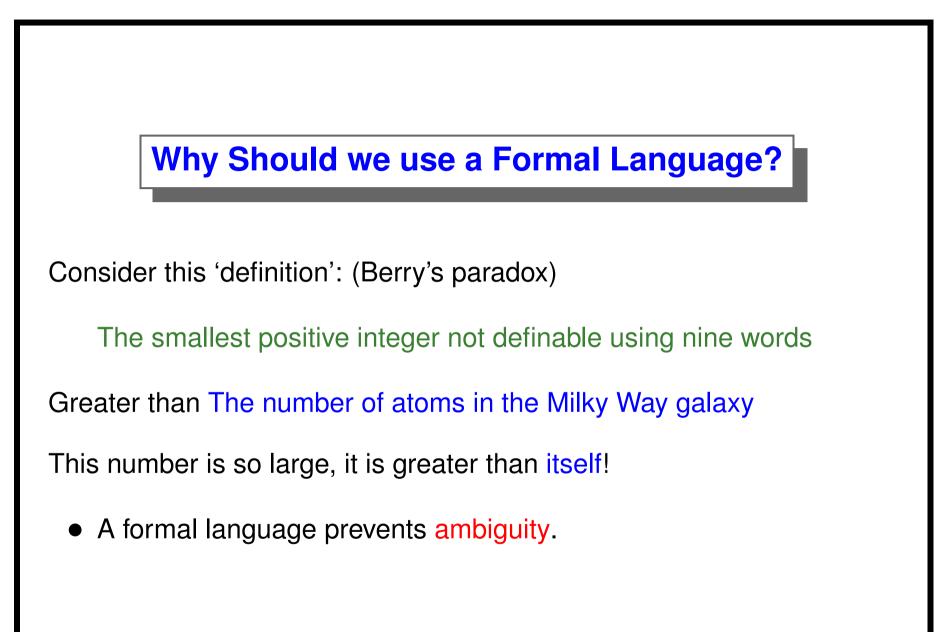
$$\frac{A_1 \quad \dots \quad A_n}{B}$$

We can use inference rules to construct finite proofs!

Schematic Inference Rules

$$\frac{X \text{ part of } Y \qquad Y \text{ part of } Z}{X \text{ part of } Z}$$

- A proof is correct if it has the right syntactic form, regardless of
- Whether the conclusion is desirable
- Whether the premises or conclusion are true
- Who (or what) created the proof



propositional logic is traditional boolean algebra.

first-order logic can say for all and there exists.

higher-order logic reasons about sets and functions.

modal/temporal logics reason about what must, or may, happen.

type theories support constructive mathematics.

All have been used to prove correctness of computer systems.

- P, Q, R, ... propositional letter
 - t true
 - f false
 - $\neg A$ not A
 - $A \wedge B \quad A \text{ and } B$
 - $A \lor B \quad \ \ A \text{ or } B$
 - $A \to B \quad \text{ if } A \text{ then } B$
 - $A \leftrightarrow B \quad \ \ A \text{ if and only if } B$

Semantics of Propositional Logic

 \neg , \land , \lor , \rightarrow and \leftrightarrow are truth-functional: functions of their operands.

A	В	¬A	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \leftrightarrow B$
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1 1	0
0	0	1	0	0	1	1

An interpretation is a function from the propositional letters to $\{1, 0\}$.

Interpretation I satisfies a formula A if it evaluates to 1 (true).

Write $\models_I A$

A is valid (a tautology) if every interpretation satisfies A.

Write $\models A$

S is satisfiable if some interpretation satisfies every formula in S.

Implication, Entailment, Equivalence

$$A \rightarrow B$$
 means simply $\neg A \lor B$.

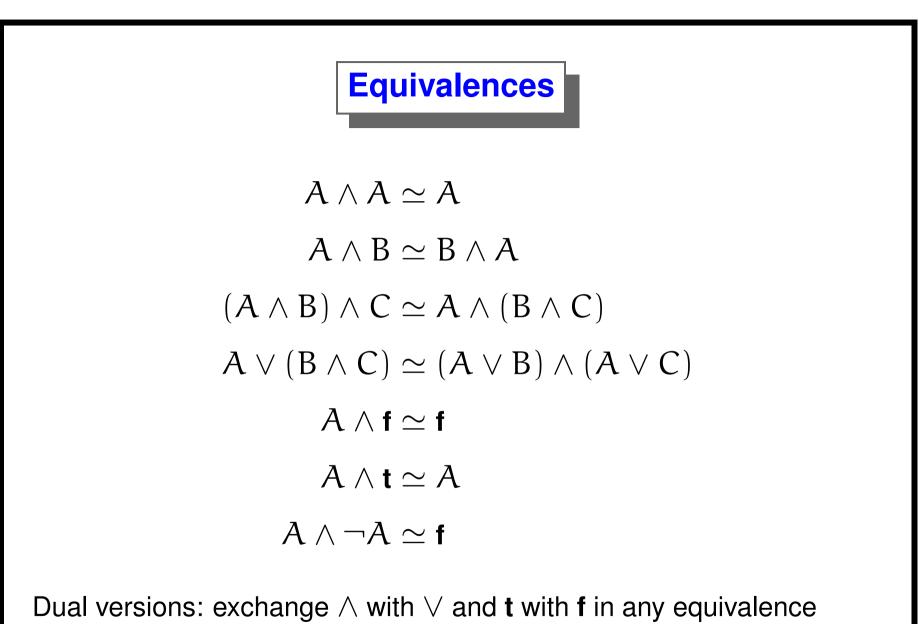
 $A \models B$ means if $\models_I A$ then $\models_I B$ for every interpretation I.

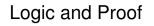
$$A \models B$$
 if and only if $\models A \rightarrow B$.

Equivalence

$$\mathsf{A}\simeq\mathsf{B}$$
 means $\mathsf{A}\models\mathsf{B}$ and $\mathsf{B}\models\mathsf{A}.$

$$A \simeq B$$
 if and only if $\models A \leftrightarrow B$.





Negation Normal Form

1. Get rid of \leftrightarrow and \rightarrow , leaving just \wedge, \vee, \neg :

$$A \leftrightarrow B \simeq (A \rightarrow B) \land (B \rightarrow A)$$

$$A \to B \simeq \neg A \lor B$$

2. Push negations in, using de Morgan's laws:

$$\neg \neg A \simeq A$$
$$\neg (A \land B) \simeq \neg A \lor \neg B$$
$$\neg (A \lor B) \simeq \neg A \land \neg B$$

3. Push disjunctions in, using distributive laws:

$$A \lor (B \land C) \simeq (A \lor B) \land (A \lor C)$$
$$(B \land C) \lor A \simeq (B \lor A) \land (C \lor A)$$

4. Simplify:

- $\bullet\,$ Delete any disjunction containing P and $\neg P$
- Delete any disjunction that includes another: for example, in $(P \lor Q) \land P$, delete $P \lor Q$.
- Replace $(P \lor A) \land (\neg P \lor A)$ by A

 $\mathsf{P} \lor Q \to Q \lor \mathsf{R}$

- 1. Elim \rightarrow : $\neg(P \lor Q) \lor (Q \lor R)$
- 2. Push \neg in: $(\neg P \land \neg Q) \lor (Q \lor R)$
- 3. Push \lor in: $(\neg P \lor Q \lor R) \land (\neg Q \lor Q \lor R)$

4. Simplify: $\neg P \lor Q \lor R$

Not a tautology: try $P \mapsto t, \ Q \mapsto f, \ R \mapsto f$

Tautology checking using CNF

$$\begin{array}{ll} ((P \rightarrow Q) \rightarrow P) \rightarrow P \\ 1. \ \mathsf{Elim} \rightarrow : & \neg [\neg (\neg P \lor Q) \lor P] \lor P \\ 2. \ \mathsf{Push} \neg \ \mathsf{in}: & [\neg \neg (\neg P \lor Q) \land \neg P] \lor P \\ & [(\neg P \lor Q) \land \neg P] \lor P \\ 3. \ \mathsf{Push} \lor \ \mathsf{in}: & (\neg P \lor Q \lor P) \land (\neg P \lor P) \\ 4. \ \mathsf{Simplify}: & \mathsf{t} \land \mathsf{t} \\ & \mathsf{t} & \textit{It's a tautology!} \end{array}$$

A Simple Proof System

Axiom Schemes

$$\mathsf{K} \qquad \mathsf{A} \to (\mathsf{B} \to \mathsf{A})$$

$$\mathsf{S} \qquad (\mathsf{A} \to (\mathsf{B} \to \mathsf{C})) \to ((\mathsf{A} \to \mathsf{B}) \to (\mathsf{A} \to \mathsf{C}))$$

$$\mathsf{DN} \quad \neg \neg A \to A$$

Inference Rule: Modus Ponens

$$\frac{A \to B \qquad A}{B}$$

$$(A \to ((D \to A) \to A)) \to ((A \to A)) \to (A \to A)) \to (A \to A)) \quad \text{by S}$$

$$A \to ((D \to A) \to A) \quad \text{by K} \tag{2}$$

$$(A \rightarrow (D \rightarrow A)) \rightarrow (A \rightarrow A)$$
 by MP, (1), (2) (3)

$$A \to (D \to A)$$
 by K (4)

$$A \rightarrow A$$
 by MP, (3), (4) (5)

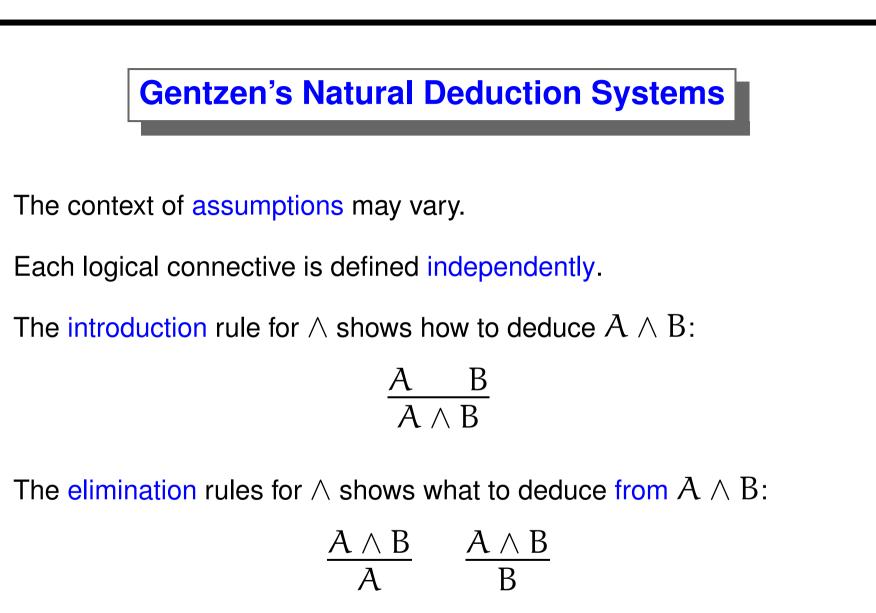
Some Facts about Deducibility

A is deducible from the set S if there is a finite proof of A starting from elements of S. Write $S \vdash A$.

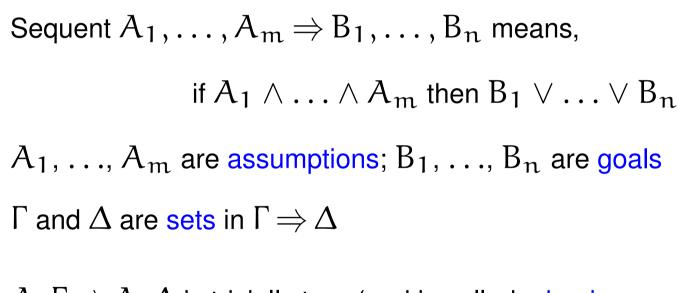
Soundness Theorem. If $S \vdash A$ then $S \models A$.

Completeness Theorem. If $S \models A$ then $S \vdash A$.

Deduction Theorem. If $S \cup \{A\} \vdash B$ then $S \vdash A \rightarrow B$.



The Sequent Calculus



 $A, \Gamma \Rightarrow A, \Delta$ is trivially true (and is called a basic sequent).

Sequent Calculus Rules

$$\frac{\Gamma \Rightarrow \Delta, A \qquad A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \quad (cut)$$

$$\frac{\Gamma \Rightarrow \Delta, A}{\neg A, \Gamma \Rightarrow \Delta} (\neg \iota) \qquad \frac{A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg A} (\neg r)$$

$$\frac{A, B, \Gamma \Rightarrow \Delta}{A \land B, \Gamma \Rightarrow \Delta} \stackrel{(\land l)}{\longrightarrow} \frac{\Gamma \Rightarrow \Delta, A \qquad \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \land B} \stackrel{(\land r)}{\longrightarrow}$$

More Sequent Calculus Rules

$$\frac{A,\Gamma \! \Rightarrow \! \Delta \qquad B,\Gamma \! \Rightarrow \! \Delta}{A \lor B,\Gamma \! \Rightarrow \! \Delta} (\lor \iota) \qquad \frac{\Gamma \! \Rightarrow \! \Delta,A,B}{\Gamma \! \Rightarrow \! \Delta,A \lor B} (\lor r)$$

$$\frac{\Gamma \Rightarrow \Delta, A \qquad B, \Gamma \Rightarrow \Delta}{A \to B, \Gamma \Rightarrow \Delta} \xrightarrow{(\to l)} \frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \to B} \xrightarrow{(\to r)}$$

Easy Sequent Calculus Proofs

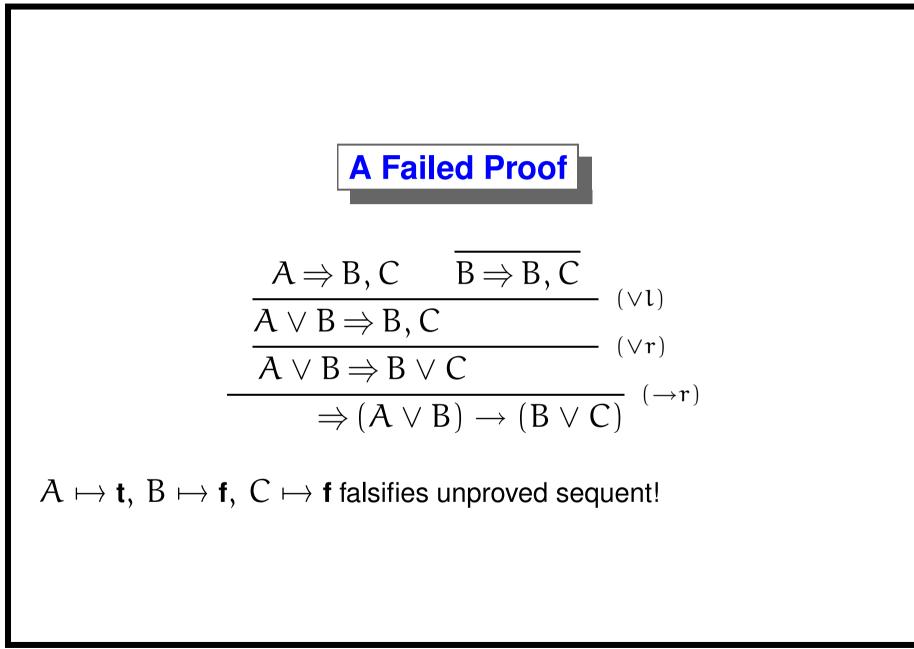
$$\frac{A, B \Rightarrow A}{A \land B \Rightarrow A} (\land \iota)$$
$$\Rightarrow (A \land B) \rightarrow A (\rightarrow r)$$

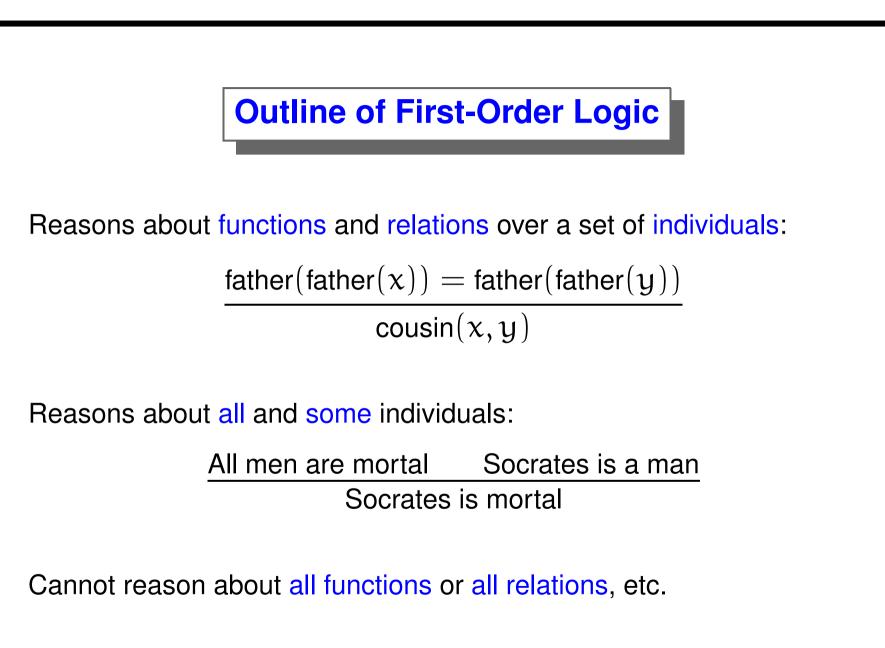
$$\frac{A, B \Rightarrow B, A}{A \Rightarrow B, B \rightarrow A} \xrightarrow[(\rightarrow r)]{(\rightarrow r)}
\Rightarrow A \rightarrow B, B \rightarrow A} \xrightarrow[(\rightarrow r)]{(\rightarrow r)}
\Rightarrow (A \rightarrow B) \lor (B \rightarrow A) (\lor r)$$

Part of a Distributive Law

$$\frac{\overline{A \Rightarrow A, B}}{A \Rightarrow A, B} \quad \frac{\overline{B, C \Rightarrow A, B}}{B \land C \Rightarrow A, B} \stackrel{(\land l)}{(\lor l)} \\
\frac{A \lor (B \land C) \Rightarrow A, B}{A \lor (B \land C) \Rightarrow A \lor B} \stackrel{(\lor r)}{(\lor r)} \\
\frac{A \lor (B \land C) \Rightarrow A \lor B}{A \lor B} \quad (\land r) \\
\frac{A \lor (B \land C) \Rightarrow (A \lor B) \land (A \lor C)}{A \lor (B \land C) \Rightarrow (A \lor B) \land (A \lor C)} \quad (\land r)$$

Second subtree proves $A \vee (B \wedge C) \,{\Rightarrow}\, A \vee C$ similarly





Each function symbol stands for an n-place function.

A constant symbol is a 0-place function symbol.

A variable ranges over all individuals.

A term is a variable, constant or a function application

 $f(t_1,\ldots,t_n)$

where f is an n-place function symbol and t_1, \ldots, t_n are terms.

We choose the language, adopting any desired function symbols.

Relation Symbols; Formulae

Each relation symbol stands for an n-place relation.

Equality is the 2-place relation symbol =

An atomic formula has the form $R(t_1, \ldots, t_n)$ where R is an n-place relation symbol and t_1, \ldots, t_n are terms.

A formula is built up from atomic formulæ using \neg , \land , \lor , and so forth.

Later, we can add quantifiers.

The Power of Quantifier-Free FOL

It is surprisingly expressive, if we include strong induction rules.

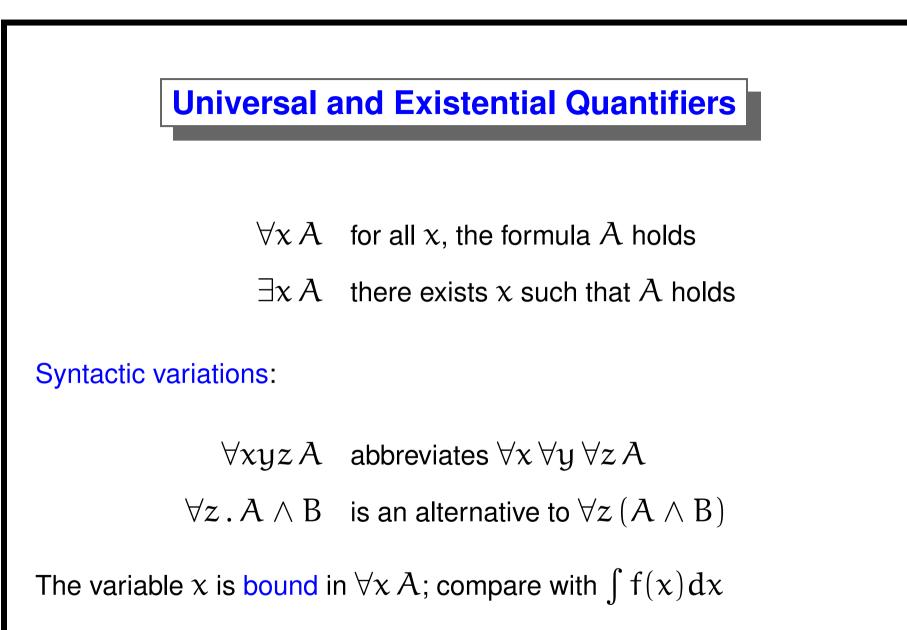
We can easily prove the equivalence of mathematical functions:

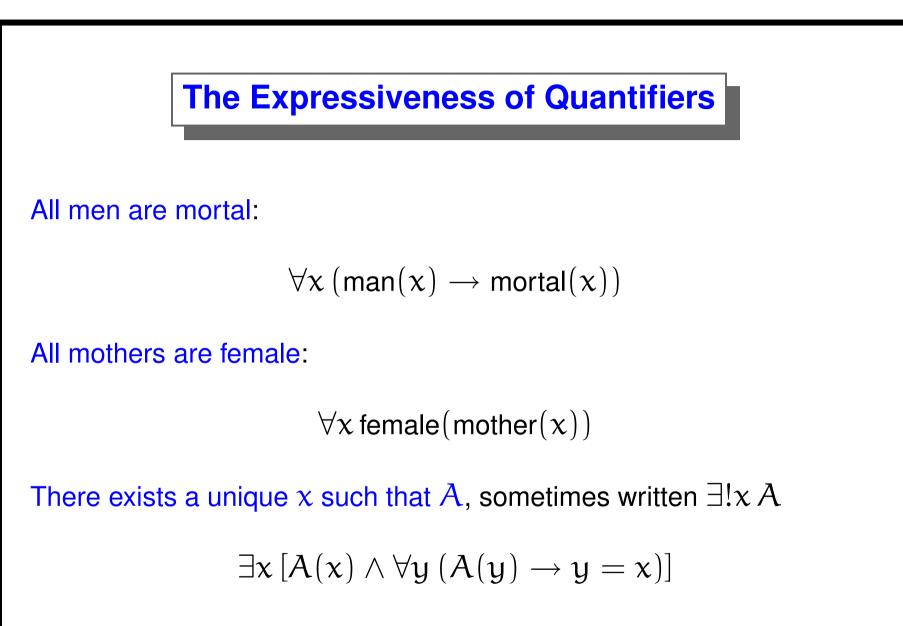
$$p(z,0) = 1 \qquad q(z,1) = z$$

$$p(z,n+1) = p(z,n) \times z \qquad q(z,2 \times n) = q(z \times z,n)$$

$$q(z,2 \times n+1) = q(z \times z,n) \times z$$

The prover ACL2 uses this logic to do major hardware proofs.





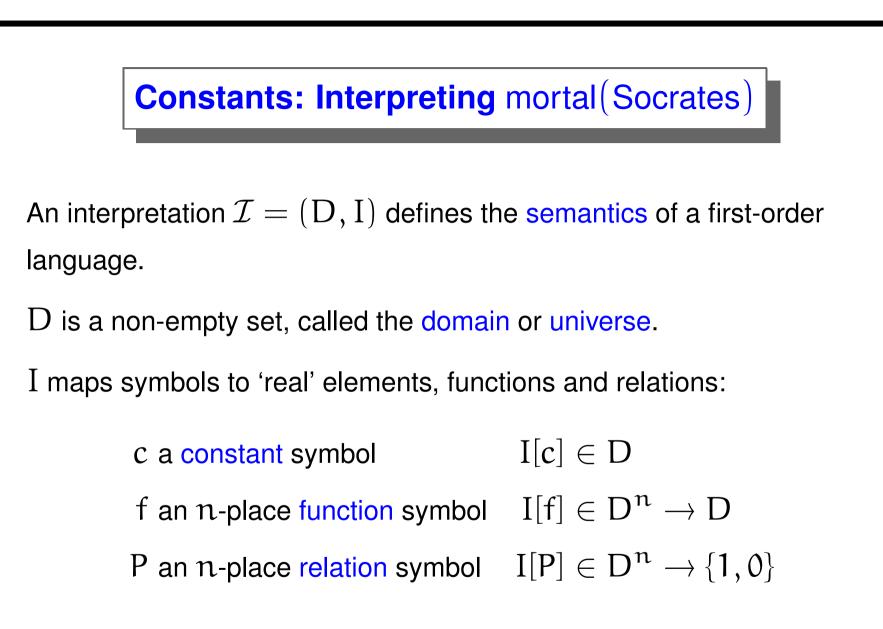
The Point of Semantics

We have to attach meanings to symbols like 1, +, <, etc.

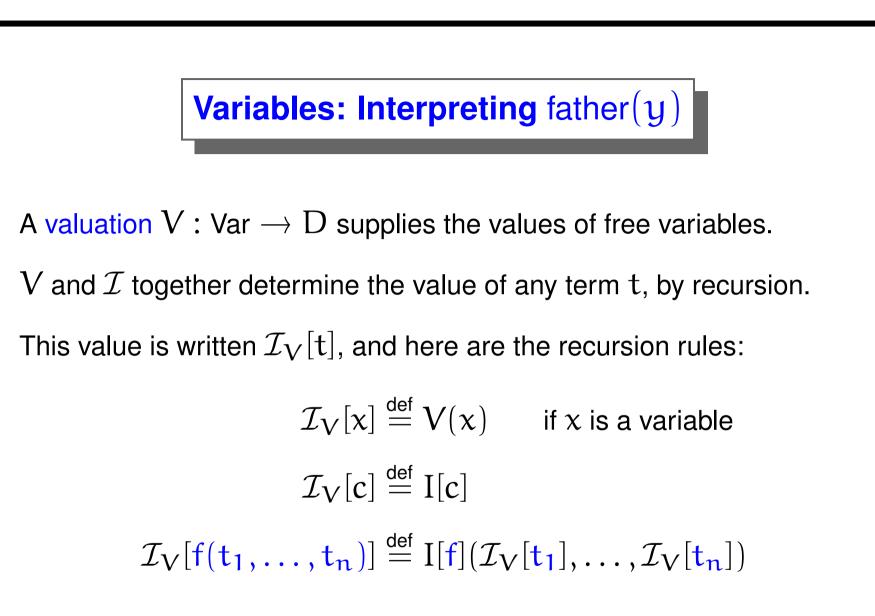
Why is this necessary? Why can't 1 just mean 1??

The point is that mathematics derives its flexibility from allowing different interpretations of symbols.

- A group has a unit 1, a product $x \cdot y$ and inverse x^{-1} .
- In the most important uses of groups, 1 isn't a number but a 'unit permutation', 'unit rotation', etc.



IV



Tarski's Truth-Definition

An interpretation \mathcal{I} and valuation function V similarly specify the truth value (1 or 0) of any formula A.

Quantifiers are the only problem, as they bind variables.

 $V{a/x}$ is the valuation that maps x to a and is otherwise like V.

With the help of V{a/x}, we now formally define $\models_{\mathcal{I}, V} A$, the truth value of A.

The Meaning of Truth—In FOL!

For interpretation \mathcal{I} and valuation V, define $\models_{\mathcal{I}, V}$ by recursion.

- $\models_{\mathcal{I}, \mathbf{V}} P(t) \qquad \quad \text{if } I[P](\mathcal{I}_{\mathbf{V}}[t]) \text{ equals 1 (is true)}$
- $\models_{\mathcal{I},V} t = \mathfrak{u} \qquad \text{ if } \mathcal{I}_V[t] \text{ equals } \mathcal{I}_V[\mathfrak{u}]$
- $\models_{\mathcal{I},V} A \land B \qquad \text{ if } \models_{\mathcal{I},V} A \text{ and } \models_{\mathcal{I},V} B$
- $\models_{\mathcal{I},V} \exists x \, A \qquad \quad \text{if} \models_{\mathcal{I},V\{m/x\}} A \text{ holds for some } m \in D$

Finally, we define

 $\models_{\mathcal{I}} A \qquad \qquad \text{if } \models_{\mathcal{I},V} A \text{ holds for all } V.$

A closed formula A is satisfiable if $\models_{\mathcal{I}} A$ for some \mathcal{I} .

411

All occurrences of x in $\forall x \ A$ and $\exists x \ A$ are bound

An occurrence of x is free if it is not bound:

 $\forall \mathbf{y} \exists \mathbf{z} \, \mathbf{R}(\mathbf{y}, \mathbf{z}, \mathbf{f}(\mathbf{y}, \mathbf{x}))$

In this formula, y and z are bound while x is free.

We may rename bound variables without affecting the meaning:

$$\forall w \exists z' \mathsf{R}(w, z', \mathsf{f}(w, x))$$

Substitution for Free Variables

A[t/x] means substitute t for x in A:

 $(B \land C)[t/x] \text{ is } B[t/x] \land C[t/x]$ $(\forall x B)[t/x] \text{ is } \forall x B$ $(\forall y B)[t/x] \text{ is } \forall y B[t/x] \quad (x \neq y)$ (P(u))[t/x] is P(u[t/x])

When substituting A[t/x], no variable of t may be bound in A!

Example: $(\forall y \ (x = y)) \ [y/x]$ is not equivalent to $\forall y \ (y = y)$

Some Equivalences for Quantifiers

$$\neg(\forall x A) \simeq \exists x \neg A$$
$$\forall x A \simeq \forall x A \land A[t/x]$$
$$(\forall x A) \land (\forall x B) \simeq \forall x (A \land B)$$

But we do not have $(\forall x A) \lor (\forall x B) \simeq \forall x (A \lor B)$.

Dual versions: exchange \forall with \exists and \land with \lor

These hold only if x is not free in B.

$$(\forall x A) \land B \simeq \forall x (A \land B)$$
$$(\forall x A) \lor B \simeq \forall x (A \lor B)$$
$$(\forall x A) \rightarrow B \simeq \exists x (A \lor B)$$

These let us expand or contract a quantifier's scope.

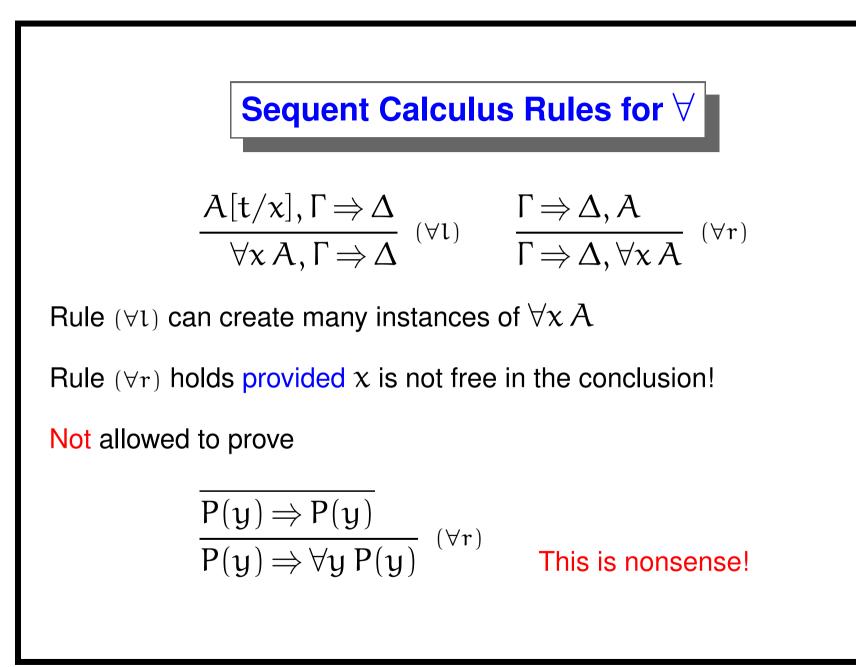
504

Reasoning by Equivalences

$$\exists x (x = a \land P(x)) \simeq \exists x (x = a \land P(a))$$
$$\simeq \exists x (x = a) \land P(a)$$
$$\simeq P(a)$$

$$\exists z (P(z) \to P(a) \land P(b)) \\ \simeq \forall z P(z) \to P(a) \land P(b) \\ \simeq \forall z P(z) \land P(a) \land P(b) \to P(a) \land P(b) \\ \simeq t$$

V



V

$$\frac{\overline{P(f(y)) \Rightarrow P(f(y))}}{\forall x P(x) \Rightarrow P(f(y))} (\forall \iota)
\overline{\forall x P(x) \Rightarrow \forall y P(f(y))} (\forall r)$$

A Not-So-Simple Example of the \forall Rules

$$\begin{array}{c|c} \hline P \Rightarrow Q(y), P & \hline P, Q(y) \Rightarrow Q(y) \\ \hline P, P \to Q(y) \Rightarrow Q(y) & (\to l) \\ \hline P, \forall x \left(P \to Q(x) \right) \Rightarrow Q(y) & (\forall l) \\ \hline P, \forall x \left(P \to Q(x) \right) \Rightarrow \forall y Q(y) & (\forall r) \\ \hline \forall x \left(P \to Q(x) \right) \Rightarrow P \to \forall y Q(y) & (\to r) \end{array}$$

In $(\forall \iota)$, we must replace x by y.

Sequent Calculus Rules for \exists

$$\frac{A,\Gamma \Rightarrow \Delta}{\exists x A,\Gamma \Rightarrow \Delta} (\exists \iota) \qquad \frac{\Gamma \Rightarrow \Delta, A[t/x]}{\Gamma \Rightarrow \Delta, \exists x A} (\exists r)$$

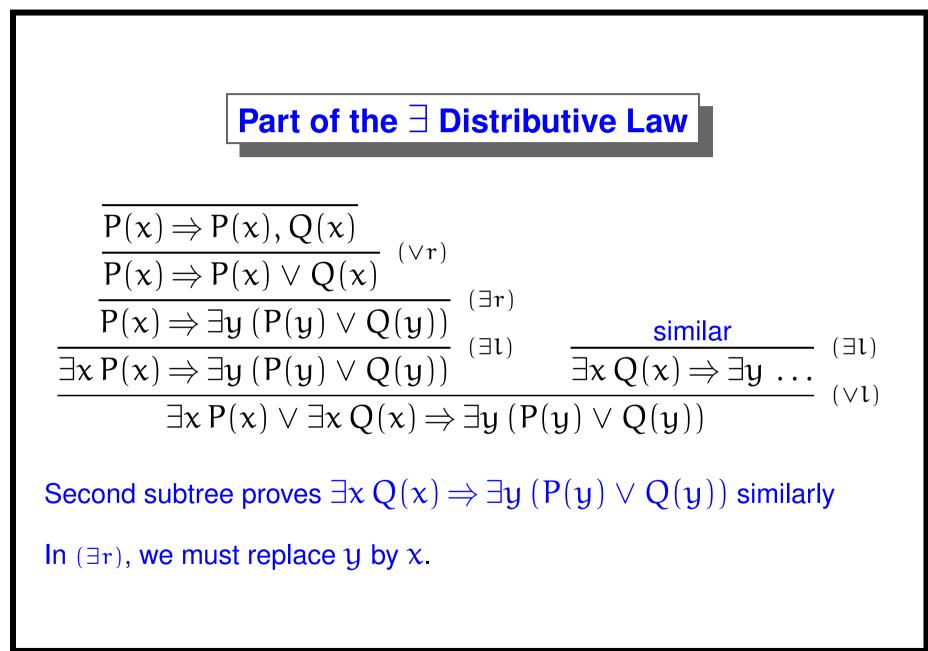
Rule $(\exists \iota)$ holds provided x is not free in the conclusion!

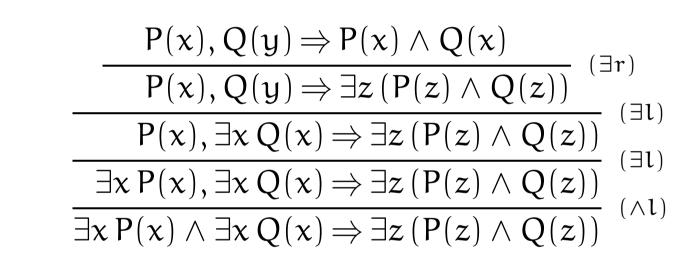
Rule $(\exists r)$ can create many instances of $\exists x A$

For example, to prove this counter-intuitive formula:

$$\exists z (P(z) \rightarrow P(a) \land P(b))$$

509





We cannot use $(\exists \iota)$ twice with the same variable

This attempt renames the x in $\exists x \ Q(x),$ to get $\exists y \ Q(y)$

Clause Form



$$\neg K_1 \lor \cdots \lor \neg K_m \lor L_1 \lor \cdots \lor L_n$$

Set notation:
$$\{\neg K_1, \ldots, \neg K_m, L_1, \ldots, L_n\}$$

Kowalski notation:
$$K_1, \cdots, K_m \to L_1, \cdots, L_n$$

 $L_1, \cdots, L_n \leftarrow K_1, \cdots, K_m$

Empty clause:

Lawrence C. Paulson

Empty clause is equivalent to **f**, meaning contradiction!

601

Outline of Clause Form Methods

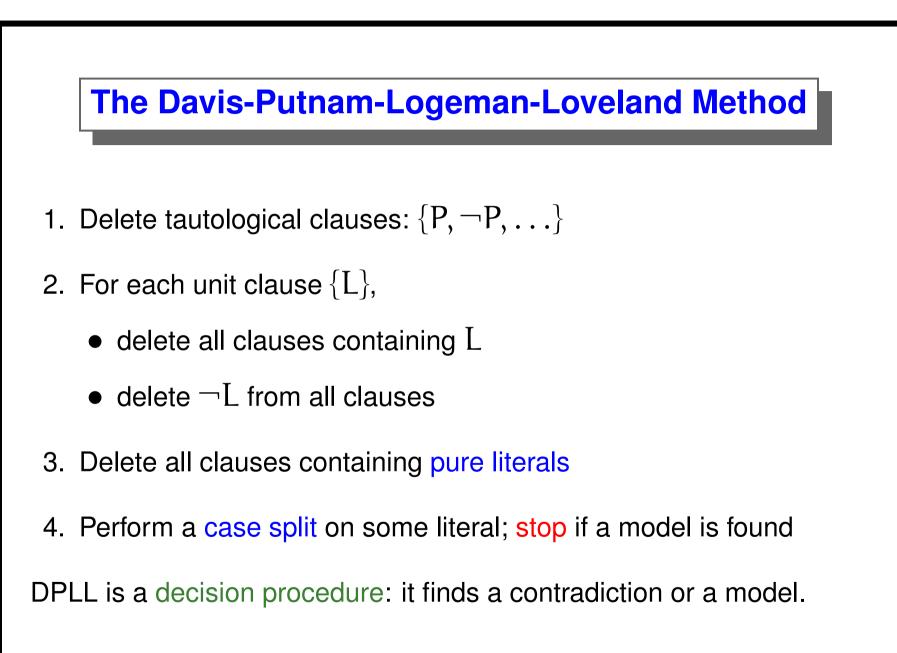
To prove A, obtain a contradiction from $\neg A$:

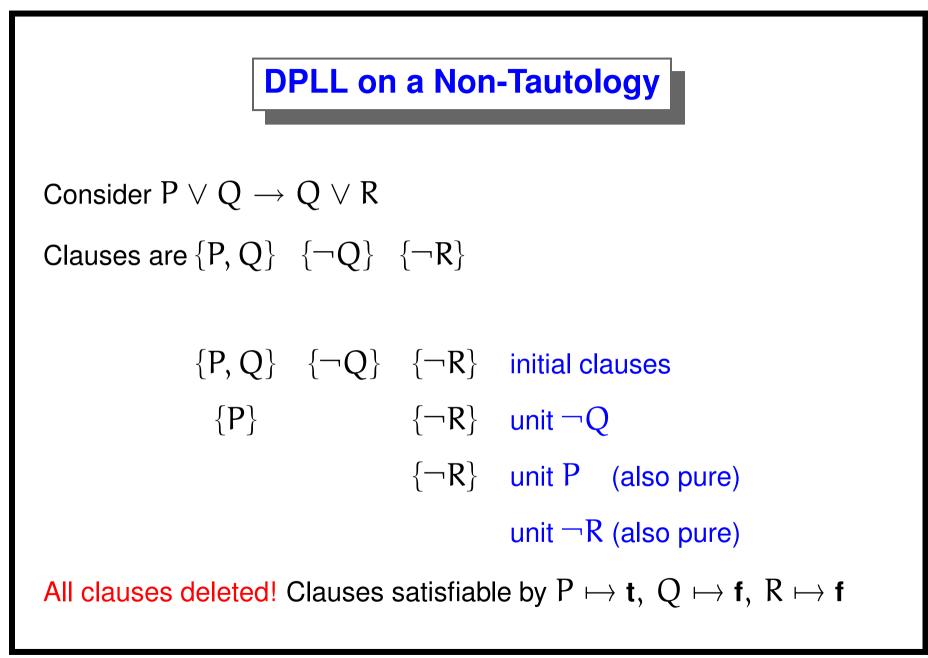
- 1. Translate $\neg A$ into CNF as $A_1 \land \dots \land A_m$
- 2. This is the set of clauses A_1, \ldots, A_m
- 3. Transform the clause set, preserving consistency

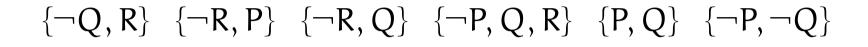
Deducing the empty clause refutes $\neg A$.

An empty clause set (all clauses deleted) means $\neg A$ is satisfiable.

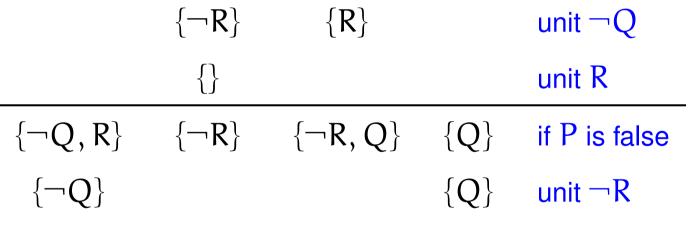
The basis for SAT solvers and resolution provers.







 $\{\neg Q, R\} \quad \{\neg R, Q\} \quad \{Q, R\} \quad \{\neg Q\} \quad \text{if P is true}$



Both cases yield contradictions: the clauses are inconsistent!

 $\left\{ \right\}$

unit ¬Q

VI

SAT solvers in the Real World

- Progressed from joke to killer technology in 10 years.
- Princeton's zChaff has solved problems with more than one million variables and 10 million clauses.
- Applications include finding bugs in device drivers (Microsoft's SLAM project).
- SMT solvers (satisfiability modulo theories) extend SAT solving to handle arithmetic, arrays and bit vectors.

The Resolution Rule

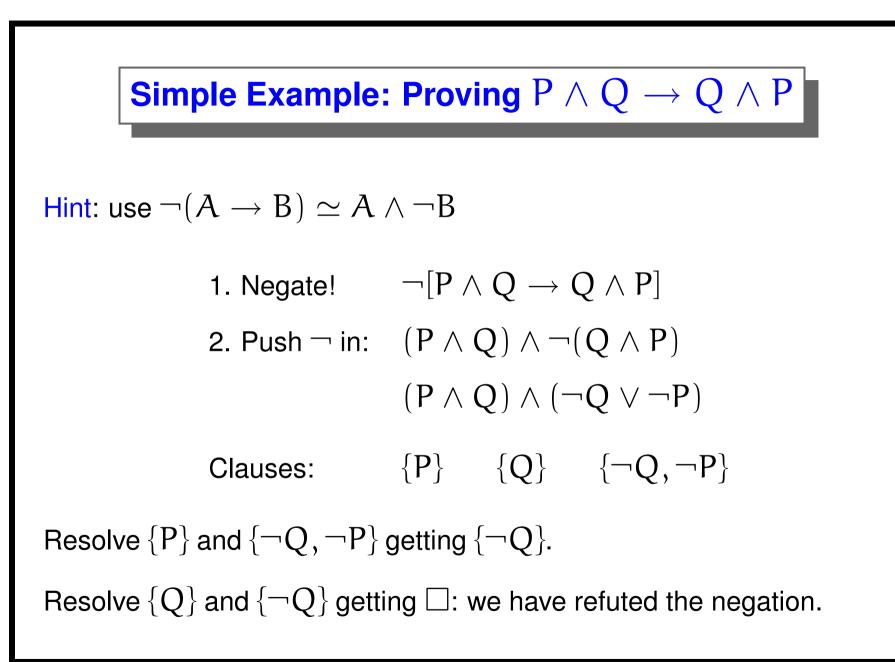
From $B \lor A$ and $\neg B \lor C$ infer $A \lor C$

In set notation,

$$\frac{\{B,A_1,\ldots,A_m\} \quad \{\neg B,C_1,\ldots,C_n\}}{\{A_1,\ldots,A_m,C_1,\ldots,C_n\}}$$

Some special cases: (remember that \Box is just {})

$$\frac{\{B\} \quad \{\neg B, C_1, \dots, C_n\}}{\{C_1, \dots, C_n\}} \qquad \frac{\{B\} \quad \{\neg B\}}{\Box}$$



Another Example

```
\mathsf{Refute} \neg [(\mathsf{P} \lor \mathsf{Q}) \land (\mathsf{P} \lor \mathsf{R}) \rightarrow \mathsf{P} \lor (\mathsf{Q} \land \mathsf{R})]
```

From $(P \lor Q) \land (P \lor R)$, get clauses $\{P, Q\}$ and $\{P, R\}$.

```
From \neg [P \lor (Q \land R)] get clauses \{\neg P\} and \{\neg Q, \neg R\}.
```

```
Resolve \{\neg P\} and \{P, Q\} getting \{Q\}.
```

```
Resolve \{\neg P\} and \{P, R\} getting \{R\}.
```

```
Resolve \{Q\} and \{\neg Q, \neg R\} getting \{\neg R\}.
```

```
Resolve \{R\} and \{\neg R\} getting \Box, contradiction.
```


609

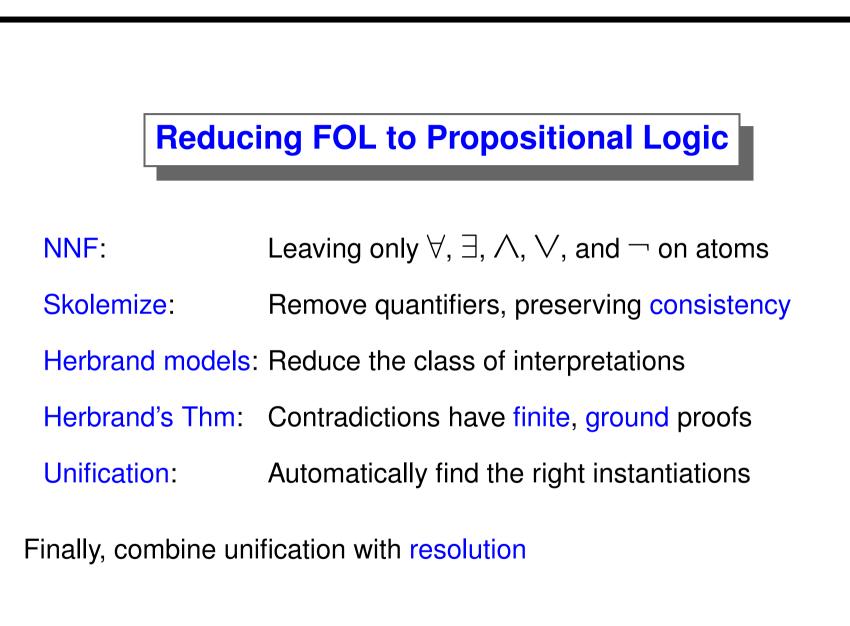
The Saturation Algorithm

At start, all clauses are passive. None are active.

- 1. Transfer a clause (current) from passive to active.
- 2. Form all resolvents between current and an active clause.
- 3. Use new clauses to simplify both passive and active.
- 4. Put the new clauses into passive.

Repeat until contradiction found or passive becomes empty.

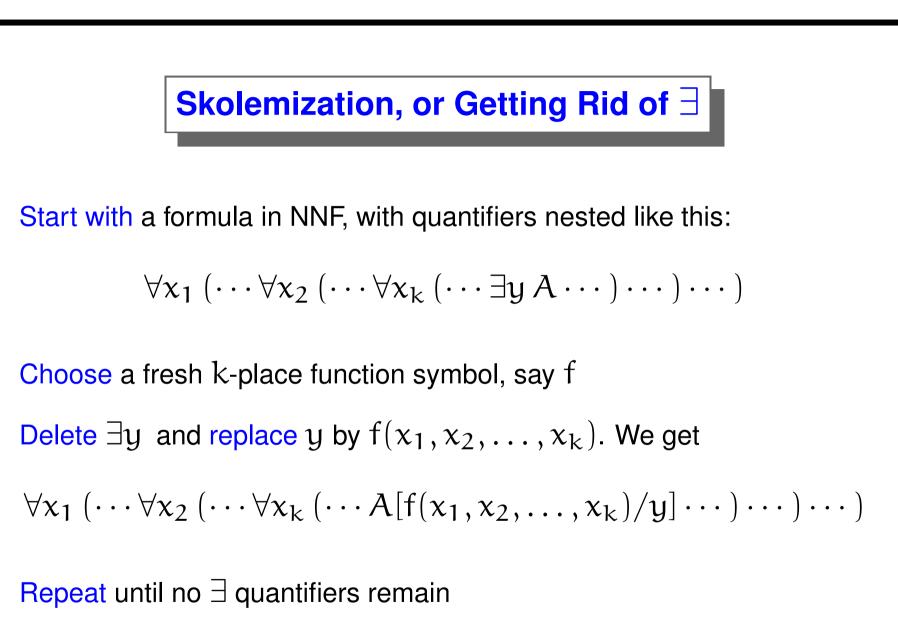
Heuristics and Hacks for Resolution Orderings to focus the search on specific literals Subsumption, or deleting redundant clauses Indexing: elaborate data structures for speed Preprocessing: removing tautologies, symmetries ... Weighting: giving priority to "good" clauses over those containing unwanted constants



VII

701

University of Cambridge



For proving
$$\exists x [P(x) \rightarrow \forall y P(y)]$$

$$\neg [\exists x [P(x) \rightarrow \forall y P(y)]] \quad \text{negated goal}$$

$$\forall x \left[P(x) \land \exists y \neg P(y) \right]$$
 conversion to NNF

$$\forall x \left[P(x) \land \neg P(f(x)) \right]$$
 Skolem term $f(x)$

$$\{P(x)\}$$
 $\{\neg P(f(x))\}$ Final clauses

Correctness of Skolemization

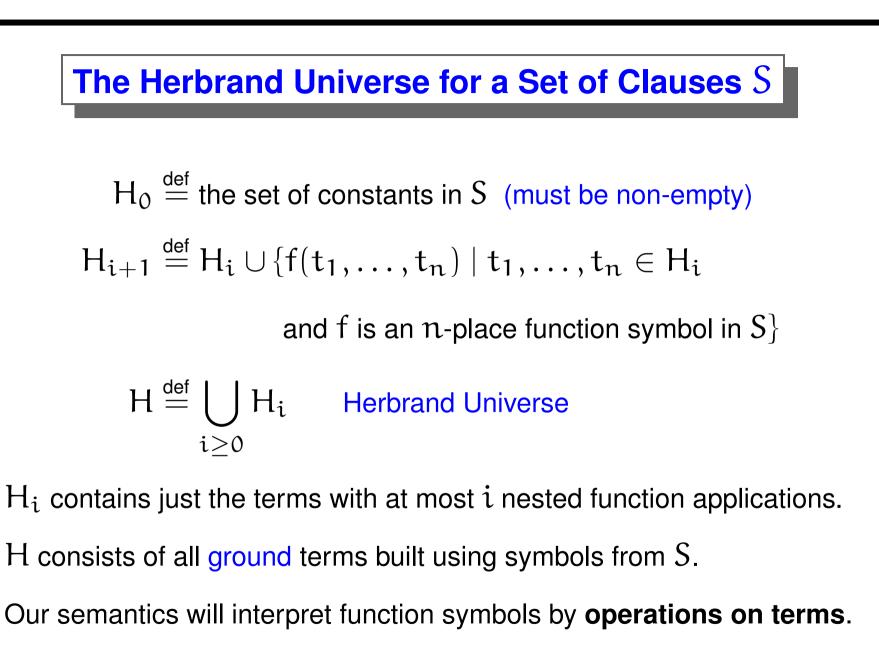
The formula $\forall x \exists y A$ is consistent

 \iff it holds in some interpretation $\mathcal{I} = (D, I)$

$$\iff$$
 for all $x \in D$ there is some $y \in D$ such that A holds

$$\iff$$
 some function \widehat{f} in $D \rightarrow D$ yields suitable values of y

- $\iff A[f(x)/y] \text{ holds in some } \mathcal{I}' \text{ extending } \mathcal{I} \text{ so that } f \text{ denotes } \widehat{f}$
- \iff the formula $\forall x A[f(x)/y]$ is consistent.



The Herbrand Semantics of Predicates

An Herbrand interpretation defines an n-place predicate P to denote a truth-valued function in $H^n \to \{1,0\}$, making $P(t_1,\ldots,t_n)$ true \ldots

- if and only if the formula $P(t_1, \ldots, t_n)$ holds in our desired "real" interpretation $\mathcal I$ of the clauses.
- Thus, an Herbrand interpretation can imitate any other interpretation.

Herbrand's Theorem: *Let S be a set of clauses.*

S is unsatisfiable \iff there is a finite unsatisfiable set S' of ground instances of clauses of S.

- Finite: we can compute it
- Instance: result of substituting for variables
- Ground: no variables remain—it's propositional!

Unification

Finding a common instance of two terms. Lots of applications:

- Prolog and other logic programming languages
- Theorem proving: resolution and other procedures
- Tools for reasoning with equations or satisfying constraints
- Polymorphic type-checking (ML and other functional languages)

It is an intuitive generalization of pattern-matching.

Four Unification Examples			
f(x, b)	$f(\mathbf{x}, \mathbf{x})$	$f(\mathbf{x}, \mathbf{x})$	$\mathfrak{j}(\mathbf{x},\mathbf{x},z)$
f(a, y)	f(a, b)	f(y, g(y))	$\mathfrak{j}(w, \mathfrak{a}, \mathfrak{h}(w))$
f(a, b)	None	None	j(a, a, h(a))
[a/x, b/y]	Fail	Fail	[a/w, a/x, h(a)/z]

The output is a substitution, mapping variables to terms.

Other occurrences of those variables also must be updated.

Unification yields a most general substitution (in a technical sense).

Theorem-Proving Example 1

$$(\exists y \,\forall x \, R(x, y)) \rightarrow (\forall x \,\exists y \, R(x, y))$$

After negation, the clauses are $\{R(x, a)\}$ and $\{\neg R(b, y)\}$.

The literals R(x, a) and R(b, y) have unifier [b/x, a/y].

We have the contradiction R(b, a) and $\neg R(b, a)$.

The theorem is proved by contradiction!

Theorem-Proving Example 2

$$(\forall x \exists y R(x,y)) \rightarrow (\exists y \forall x R(x,y))$$

After negation, the clauses are $\{R(x, f(x))\}$ and $\{\neg R(g(y), y)\}$.

The literals R(x, f(x)) and R(g(y), y) are not unifiable.

(They fail the occurs check.)

We can't get a contradiction. Formula is not a theorem!

The Binary Resolution Rule

$$\frac{\{B, A_1, \dots, A_m\} \quad \{\neg D, C_1, \dots, C_n\}}{\{A_1, \dots, A_m, C_1, \dots, C_n\}\sigma}$$

provided
$$B\sigma = D\sigma$$

(σ is a most general unifier of B and D.)

First, rename variables apart in the clauses! For example, given

$$\{P(x)\}\ \text{ and }\ \{\neg P(g(x))\},\$$

we **must** rename x in one of the clauses. Otherwise, unification fails.

VIII

The Factoring Rule

This inference collapses unifiable literals in one clause:

$$\frac{\{B_1,\ldots,B_k,A_1,\ldots,A_m\}}{\{B_1,A_1,\ldots,A_m\}\sigma}$$

provided $B_1 \sigma = \cdots = B_k \sigma$

Resolution together with factoring is **complete for first-order logic**:

Every valid formula will be proved (given enough space and time)

Prove
$$\forall x \exists y \neg (P(y, x) \leftrightarrow \neg P(y, y))$$

 $\begin{array}{ll} \mbox{The clauses are} & \{\neg P(y, \alpha), \neg P(y, y)\} & \{P(y, y), P(y, \alpha)\} \\ \mbox{Factoring yields} & \{\neg P(\alpha, \alpha)\} & \{P(\alpha, \alpha)\} \end{array} \\ \end{array}$

Resolution yields the empty clause!

VIII

A Non-Trivial Proof

 $\exists x [P \to Q(x)] \land \exists x [Q(x) \to P] \to \exists x [P \leftrightarrow Q(x)]$ Clauses are $\{P, \neg Q(b)\}$ $\{P, Q(x)\}$ $\{\neg P, \neg Q(x)\}$ $\{\neg P, Q(a)\}$ Resolve $\{P, \neg Q(b)\}$ with $\{P, Q(x)\}$ getting $\{P, P\}$ Factor $\{P, P\}$ getting {P} Resolve $\{\neg P, \neg Q(x)\}$ with $\{\neg P, Q(\alpha)\}$ getting $\{\neg P, \neg P\}$ getting $\{\neg P\}$ Factor $\{\neg P, \neg P\}$ Resolve $\{P\}$ with $\{\neg P\}$ getting \Box

In theory, it's enough to add the equality axioms:

- The reflexive, symmetric and transitive laws.
- Substitution laws like $\{x \neq y, f(x) = f(y)\}$ for each f.
- Substitution laws like $\{x \neq y, \neg P(x), P(y)\}$ for each P.

In practice, we need something special: the paramodulation rule

$$\frac{\{B[t'], A_1, \dots, A_m\} \quad \{t = u, C_1, \dots, C_n\}}{\{B[u], A_1, \dots, A_m, C_1, \dots, C_n\}\sigma} \quad \text{(if } t\sigma = t'\sigma\text{)}$$

Prolog Clauses

Prolog clauses have a restricted form, with at most one positive literal.

The definite clauses form the program. Procedure B with body "commands" A_1, \ldots, A_m is

$$B \leftarrow A_1, \ldots, A_m$$

The single goal clause is like the "execution stack", with say \mathfrak{m} tasks left to be done.

$$\leftarrow A_1, \ldots, A_m$$

Linear resolution:

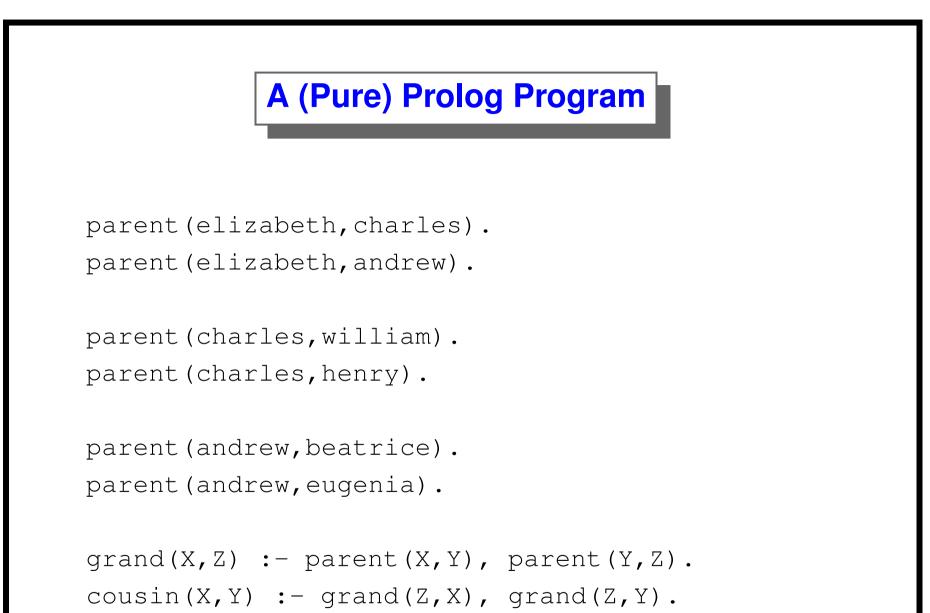
- Always resolve some program clause with the goal clause.
- The result becomes the new goal clause.

Try the program clauses in left-to-right order.

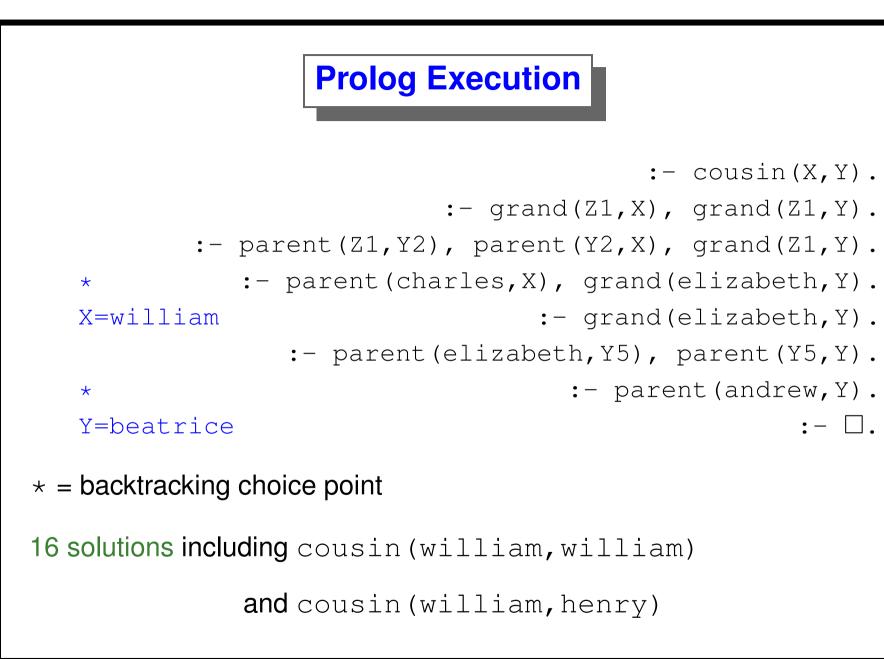
Solve the goal clause's literals in left-to-right order.

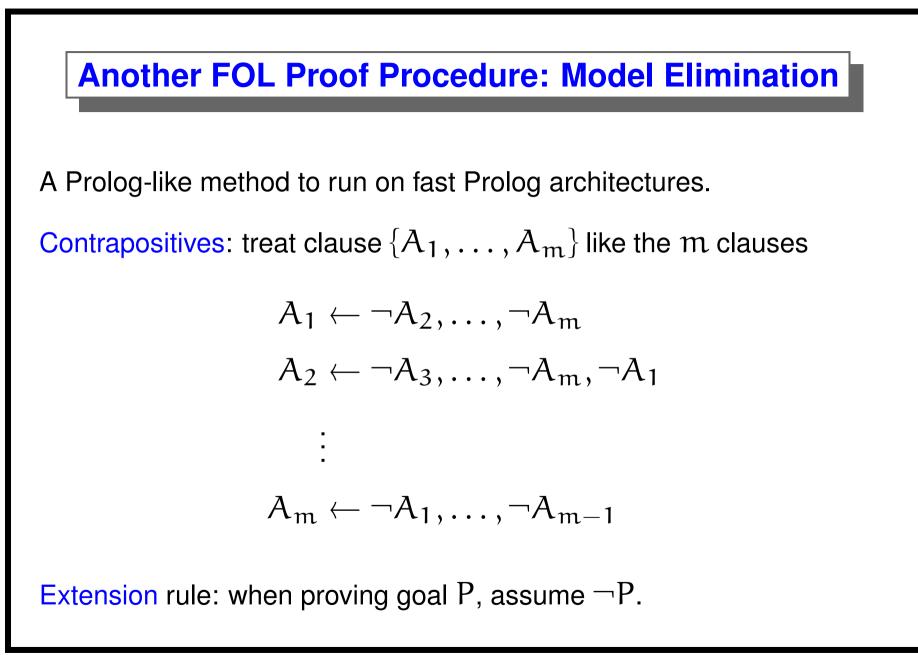
Use depth-first search. (Performs backtracking, using little space.)

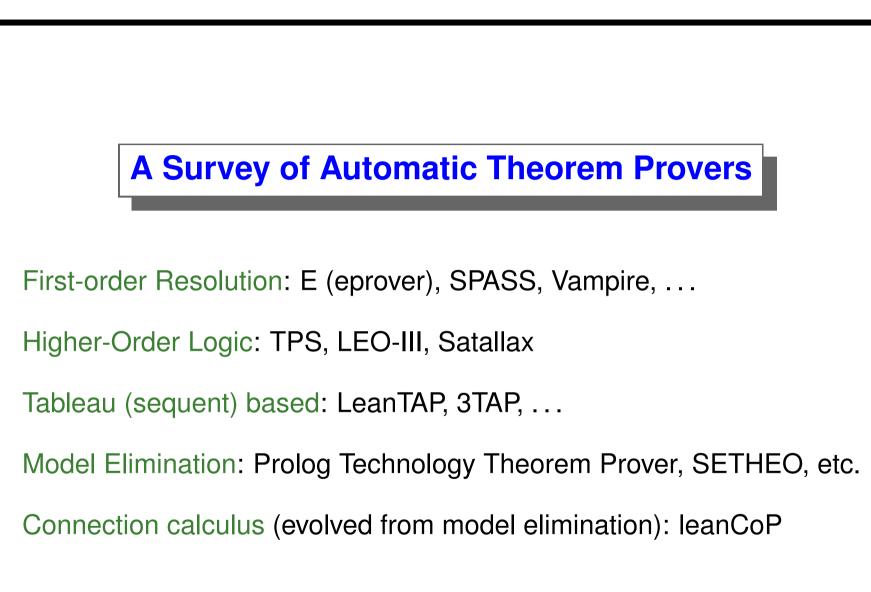
Do unification without occurs check. (Unsound, but needed for speed)



808







Decision Problems

Any formally-stated question: is n prime or not? Is the string s accepted by a given context-free grammar?

Unfortunately, most decision problems for logic are difficult:

- Propositional satisfiability NP-complete.
- The halting problem is undecidable. Therefore there is no decision procedure to identify first-order theorems.
- The theory of integer arithmetic is undecidable (Gödel).

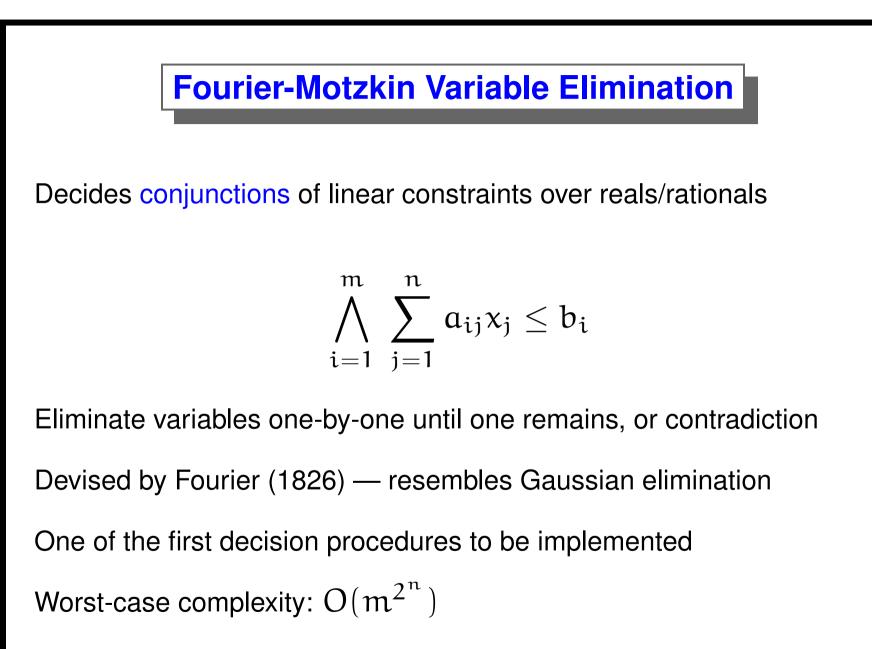
IX

Propositional formulas are decidable: use the DPLL algorithm.

Linear arithmetic formulas are decidable:

- comparisons using + and but \times only with constants, e.g.
- $2x < y \land y < x$ (satisfiable by y = -3, x = -2) or $2x < y \land y < x \land 3x > 2$ (unsatisfiable)
- the integer and real (or rational) cases require different algorithms

Polynomial arithmetic is decidable; hence, so is Euclidean geometry.



Basic Idea: Upper and Lower Bounds

To eliminate variable x_n , consider constraint i, for i = 1, ..., m: Define $\beta_i = b_i - \sum_{j=1}^{n-1} a_{ij} x_j$. Rewrite constraint i: If $a_{in} > 0$ then $x_n \leq \frac{\beta_i}{\alpha_i}$ if $a_{in} < 0$ then $-x_n \leq -\frac{\beta_i}{\alpha_i}$ Adding two such constraints yields $0 \leq \frac{\beta_i}{\alpha_{in}} - \frac{\beta_i}{\alpha_{in}}$ Do this for all combinations with opposite signs Then delete original constraints (except where $a_{in} = 0$)

Fourier-Motzkin Elimination Example			
initial problem	eliminate \mathbf{x}	eliminate z	result
$x \leq y$	$z \leq 0$	$0 \leq -1$	UNSAT
$\mathbf{x} \leq z$	$y + z \leq 0$	$y \leq -1$	
$-x + y + 2z \le 0$			
$-z \leq -1$	$-z \leq -1$		

Quantifier Elimination (QE)

Skolemization eliminates quantifiers but only preserves consistency.

QE transforms a formula to a quantifier-free but equivalent formula.

The idea of Fourier-Motzkin is that (e.g.)

$$\exists x y \ (2x < y \land y < x) \iff \exists x \ 2x < x \iff t$$

In general, the quantifier-free formula is **enormous**.

- With no free variables, the end result must be t or f.
- But even then, the time complexity tends to be hyper-exponential!

Other Decidable Theories

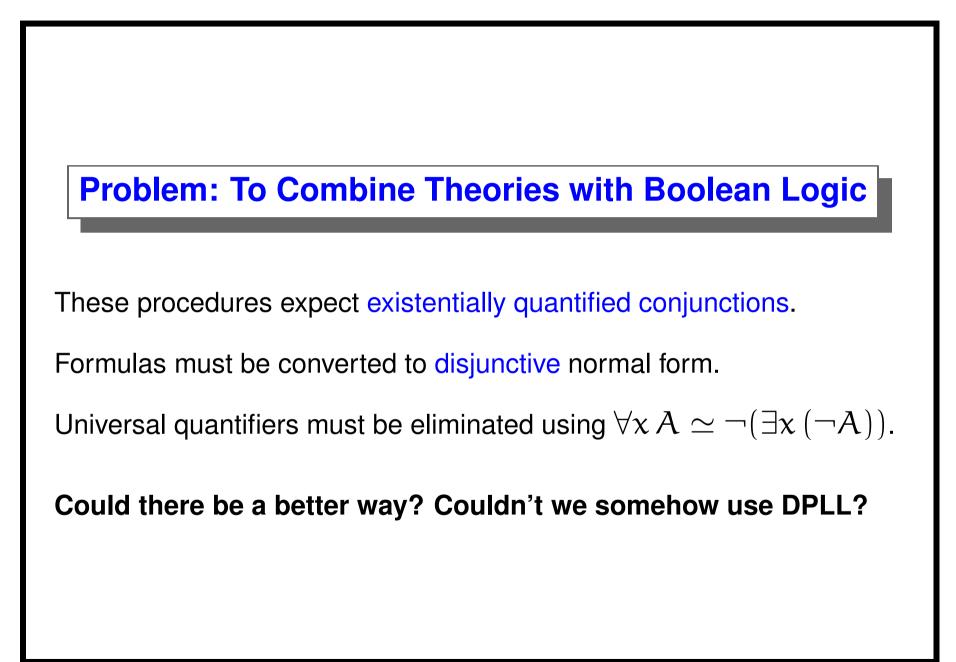
QE for real polynomial arithmetic:

$$\exists x [ax^{2} + bx + c = 0] \iff b^{2} \ge 4ac \land (c = 0 \lor a \neq 0 \lor b^{2} > 4ac)$$

Linear integer arithmetic: use Omega test or Cooper's algorithm, but any decision algorithm has a worst-case runtime of at least $2^{2^{cn}}$

There exist decision procedures for arrays, lists, bit vectors, ...

Sometimes, they can cooperate to decide combinations of theories.



Satisfiability Modulo Theories

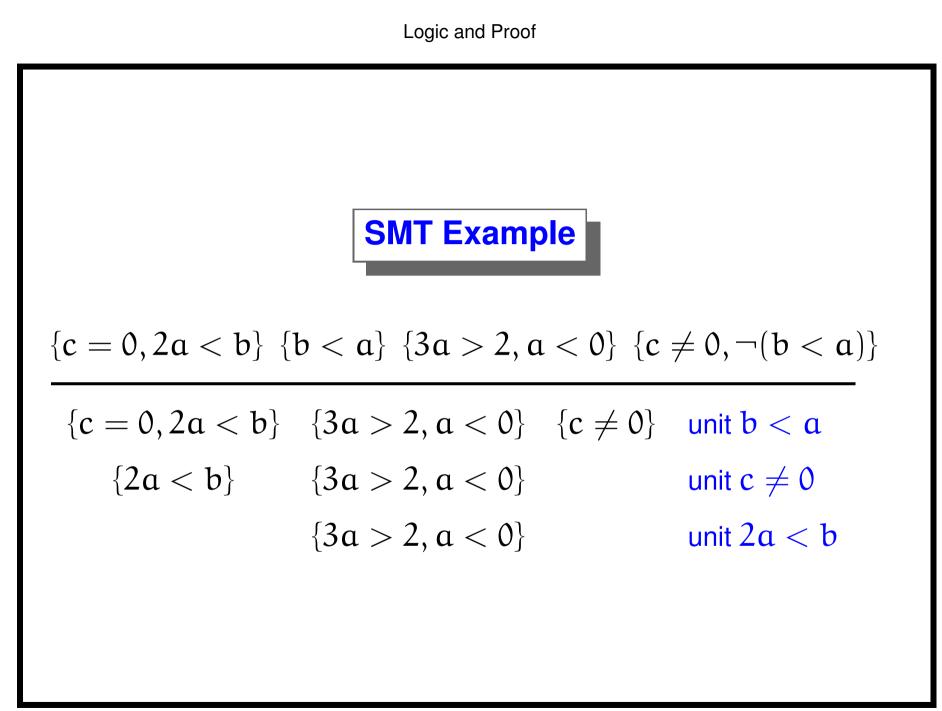
Idea: use DPLL for logical reasoning, decision procedures for theories

Clauses can have literals like 2x < y, which are used as names.

If DPLL finds a contradiction, then the clauses are unsatisfiable.

Asserted literals are checked by the decision procedure:

- Unsatisfiable conjunctions of literals are noted as new clauses.
- Case splitting is interleaved with decision procedure calls.



SMT Example (Continued)

Now a case split on 3a > 2 returns a "model":

 $b < a, c \neq 0, 2a < b, 3a > 2$

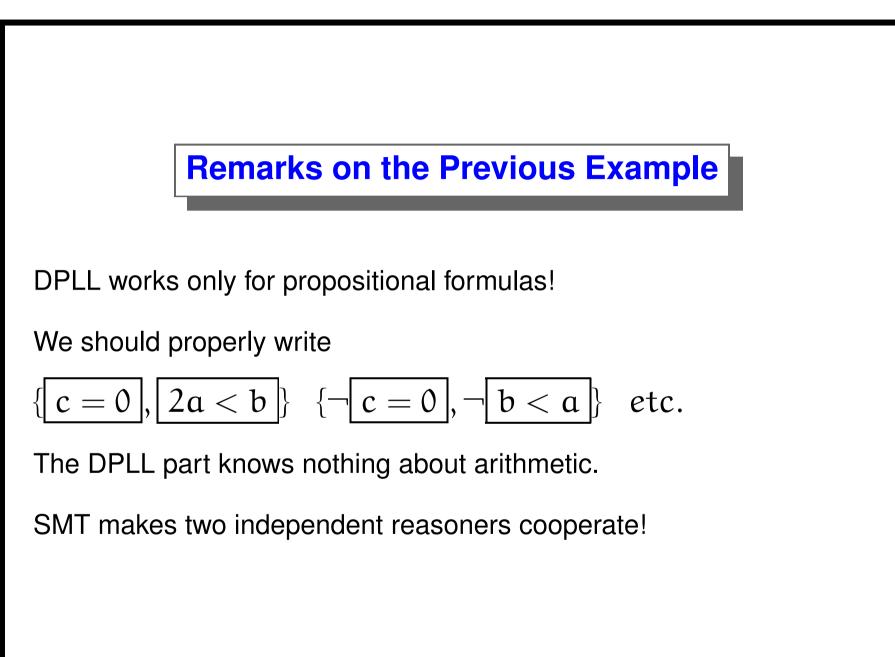
But the decision proc. finds these contradictory, killing the 3a > 2 case

It returns a new clause:

$$\{\neg (b < a), \neg (2a < b), \neg (3a > 2)\}$$

Finally get a satisfiable result: $b < a \land c \neq 0 \land 2a < b \land a < 0$

911

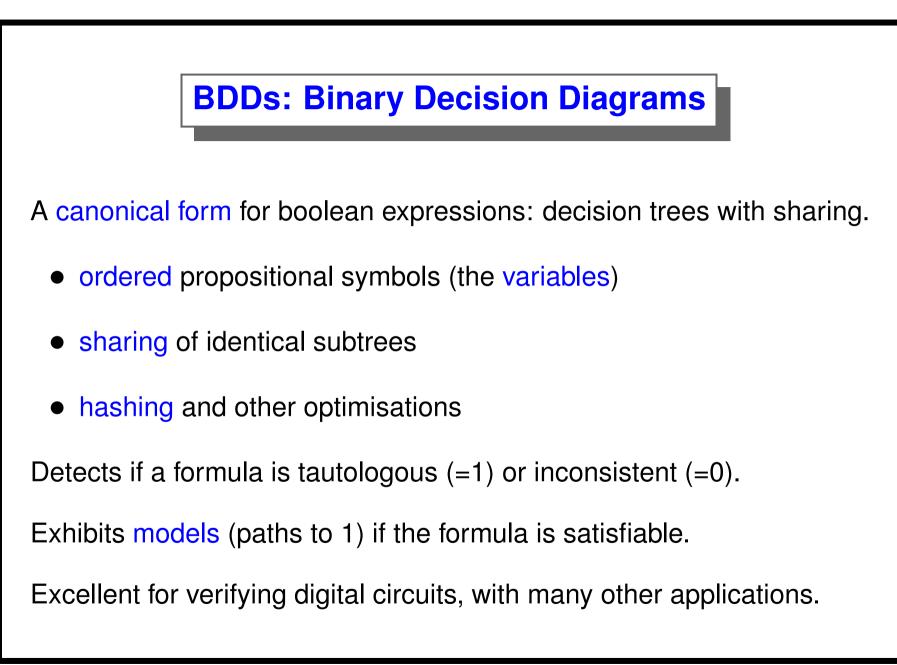


SMT Solvers and Their Applications

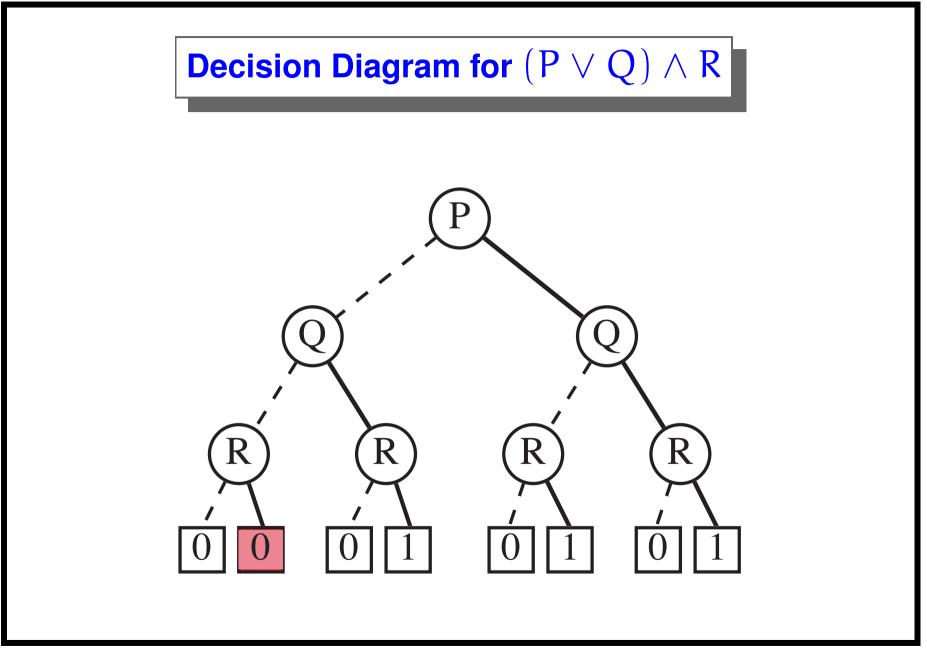
Popular ones include Z3, Yices, CVC4, but there are many others.

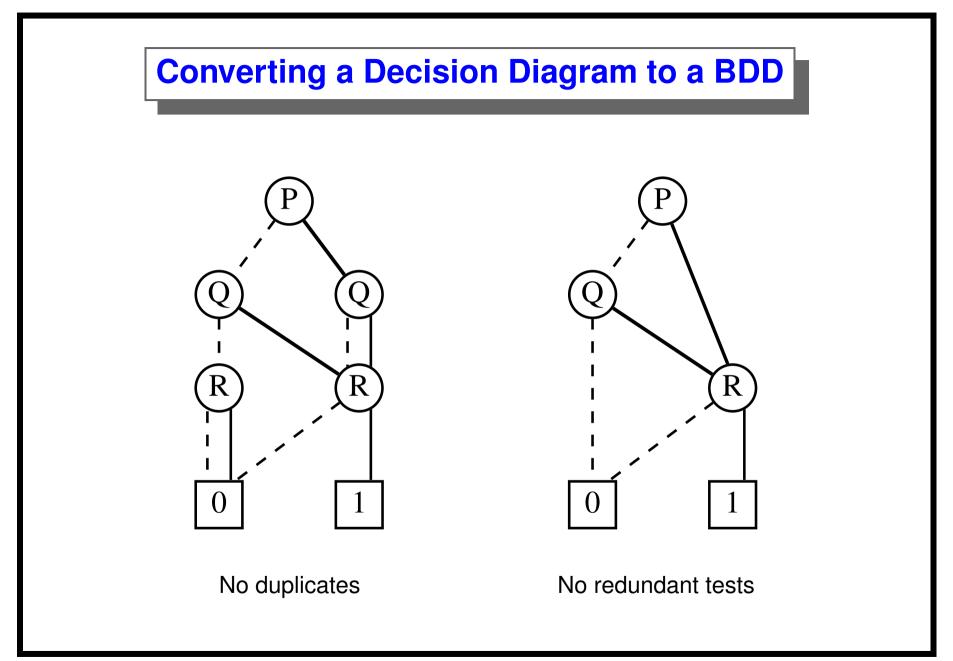
Representative applications:

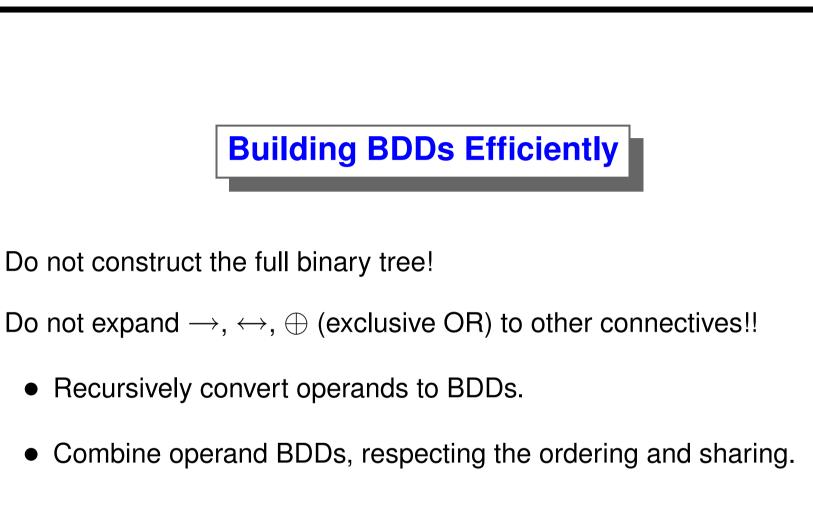
- Hardware and software verification
- Program analysis and symbolic software execution
- Planning and constraint solving
- Hybrid systems and control engineering



Х







• Delete redundant variable tests.

To convert $Z \wedge Z'$, where Z and Z' are already BDDs:

Trivial if either operand is 1 or 0.

Let
$$Z = if(P, X, Y)$$
 and $Z' = if(P', X', Y')$

- If P = P' then recursively convert if $(P, X \land X', Y \land Y')$.
- If P < P' then recursively convert if $(P, X \land Z', Y \land Z')$.

• If
$$P > P'$$
 then recursively convert if $(P', Z \wedge X', Z \wedge Y')$.

Canonical Forms of Other Connectives

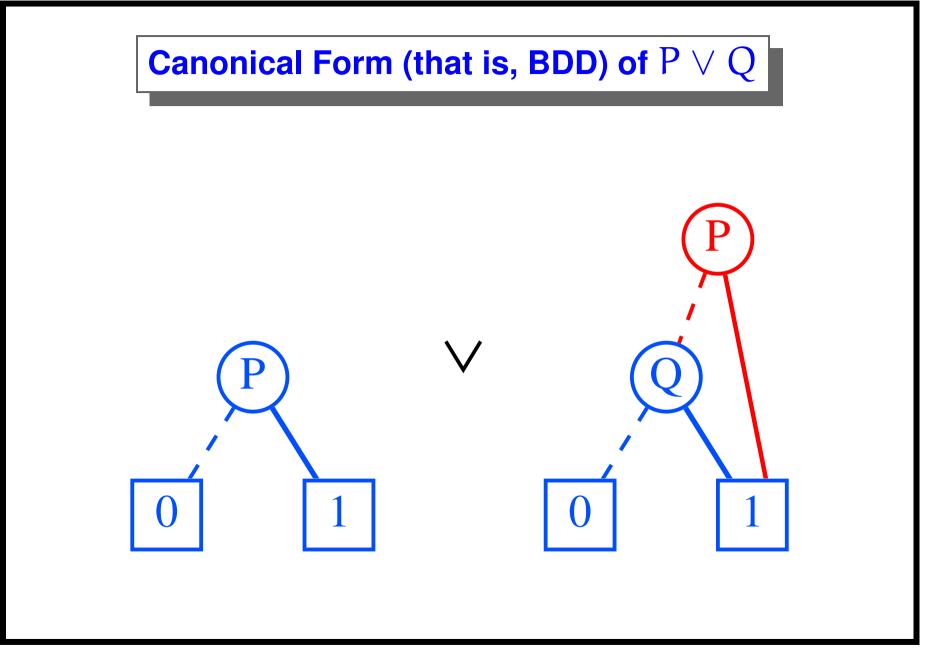
 $Z \vee Z', Z \to Z'$ and $Z \leftrightarrow Z'$ are converted to BDDs similarly.

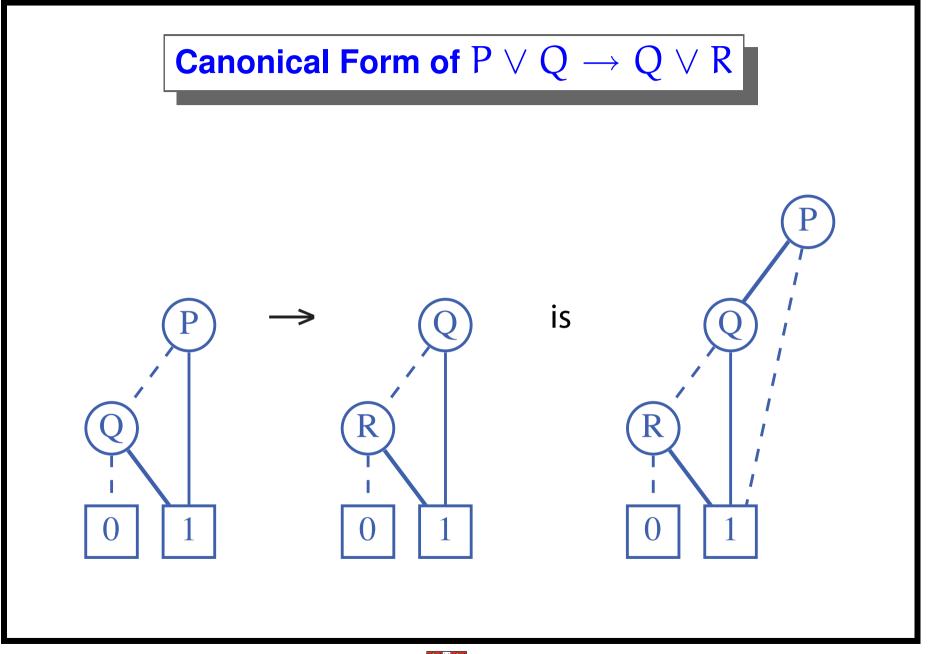
Some cases, like $Z \rightarrow 0$ and $Z \leftrightarrow 0$, reduce to negation.

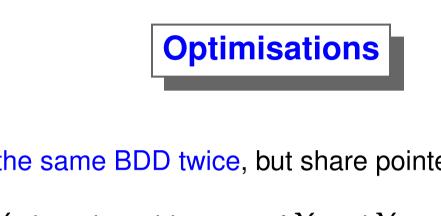
Here is how to convert $\neg Z$, where Z is a BDD:

- If Z = if(P, X, Y) then recursively convert $if(P, \neg X, \neg Y)$.
- if Z = 1 then return 0, and if Z = 0 then return 1.

(In effect we copy the BDD but exchange the 1 and 0 at the bottom.)







Never build the same BDD twice, but share pointers. Advantages:

- If $X \simeq Y$, then the addresses of X and Y are equal.
- Can see if if(P, X, Y) is redundant by checking if X = Y.
- Can quickly simplify special cases like $X \wedge X$.

Never convert $X \wedge Y$ twice, but keep a hash table of known canonical forms. This prevents redundant computations.

Final Observations

The variable ordering is crucial. Consider this formula:

$(\mathsf{P}_1 \land Q_1) \lor \cdots \lor (\mathsf{P}_n \land Q_n)$

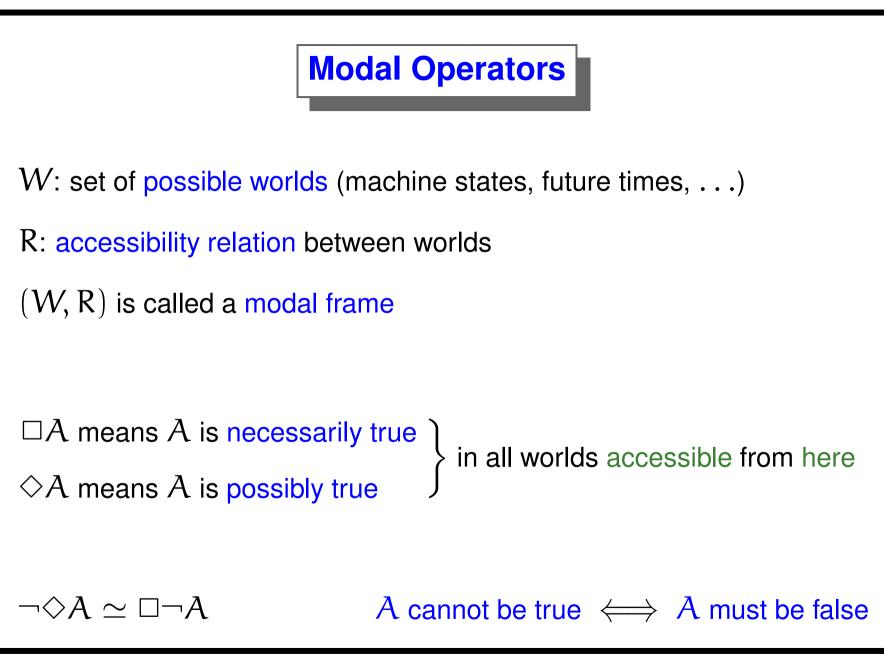
A good ordering is $P_1 < Q_1 < \cdots < P_n < Q_n$: the BDD is linear.

With $P_1 < \cdots < P_n < Q_1 < \cdots < Q_n$, the BDD is exponential.

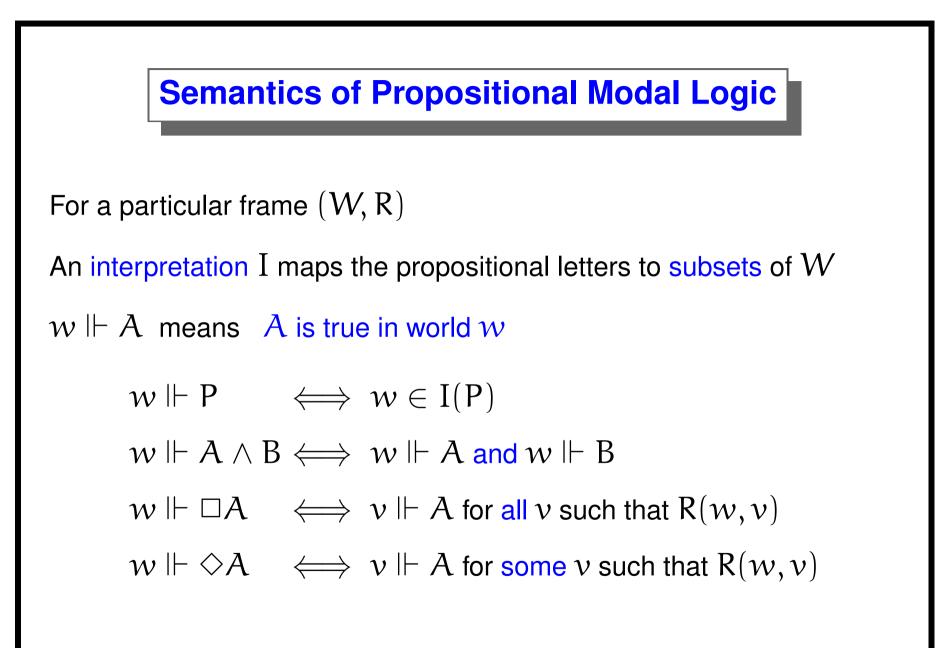
Many digital circuits have small BDDs: adders, but not multipliers.

BDDs can solve problems in hundreds of variables.

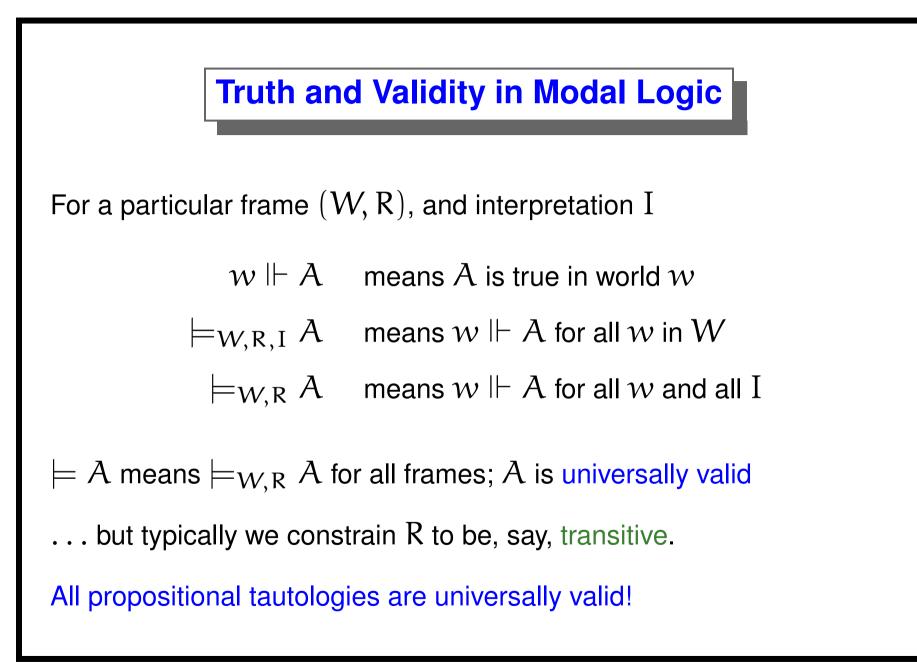
The general case remains hard (it is NP-complete).



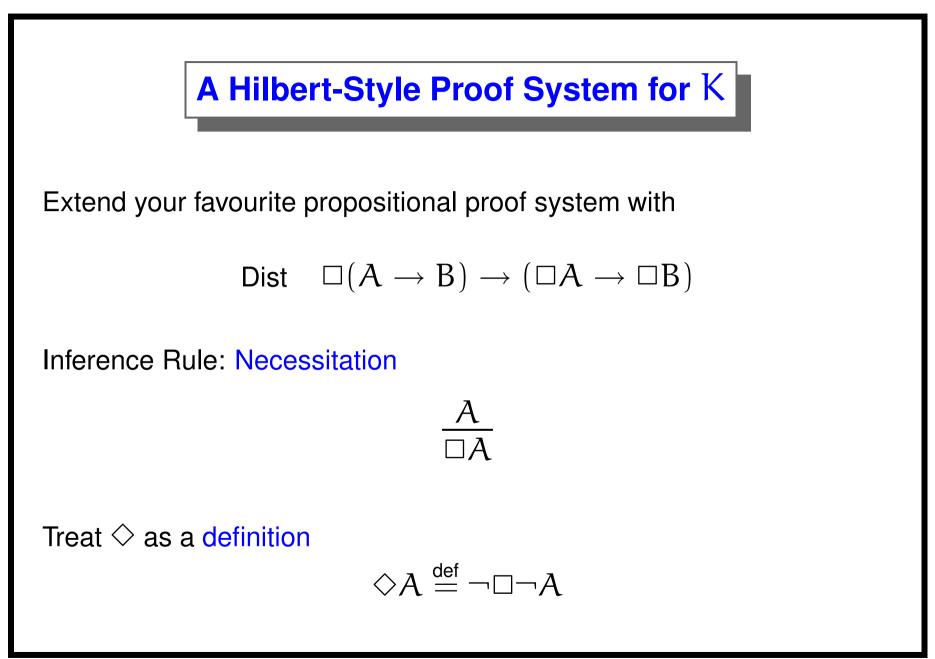
1101

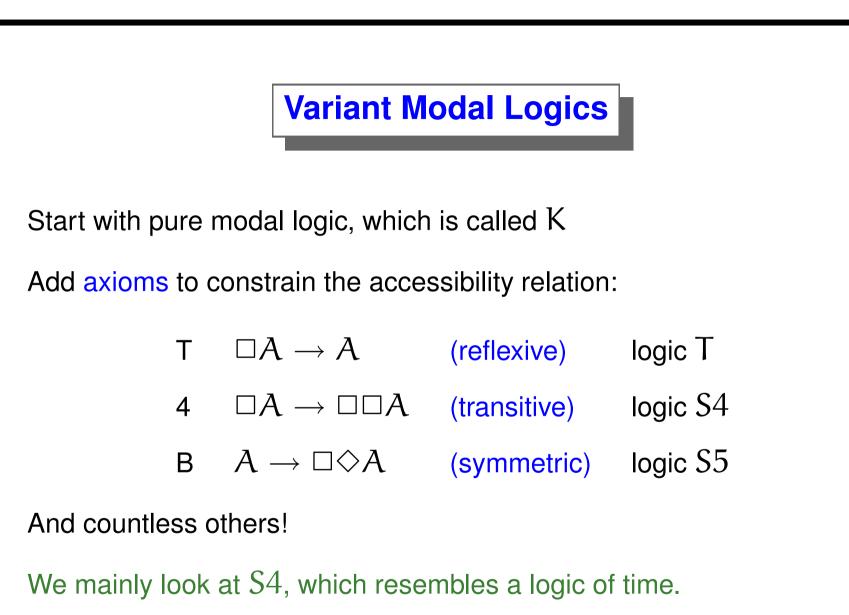


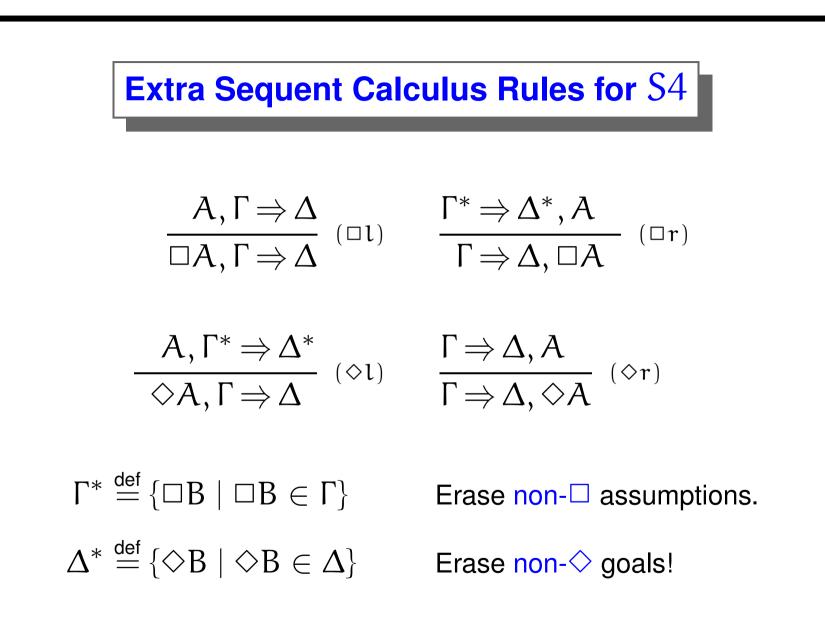
XI



XI







XI

A Proof of the Distribution Axiom

$$\frac{\overline{A \Rightarrow B, A} \quad \overline{B, A \Rightarrow B}}{A \rightarrow B, A \Rightarrow B} (\rightarrow 1)$$

$$\frac{\overline{A \rightarrow B, A \Rightarrow B}}{(-1)}$$

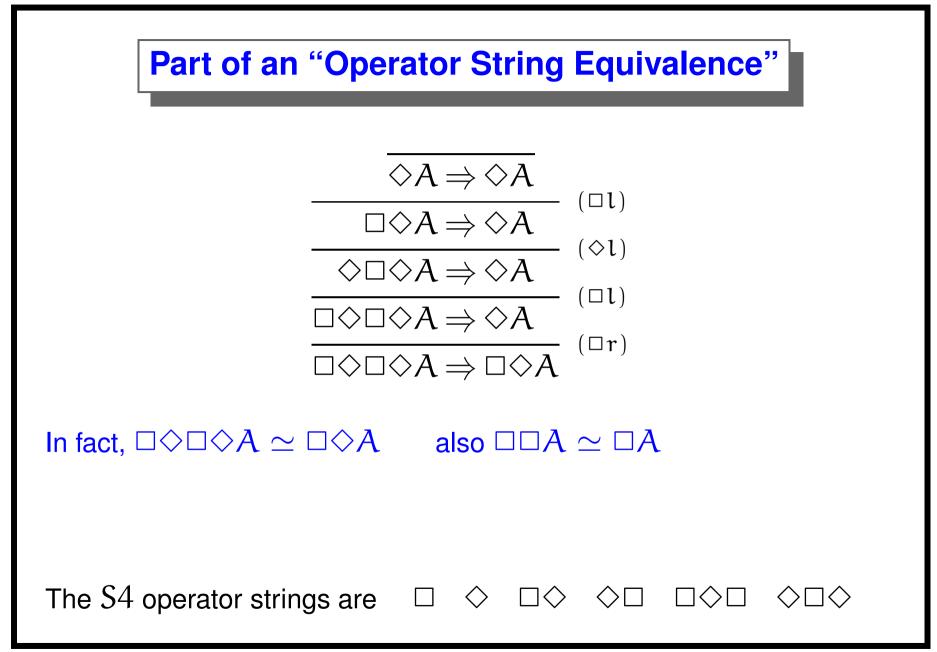
$$\frac{\overline{A \rightarrow B, \Box A \Rightarrow B}}{(-1)}$$

$$\frac{(-1)}{(-1)}$$

$$\frac{(-$$

And thus $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$

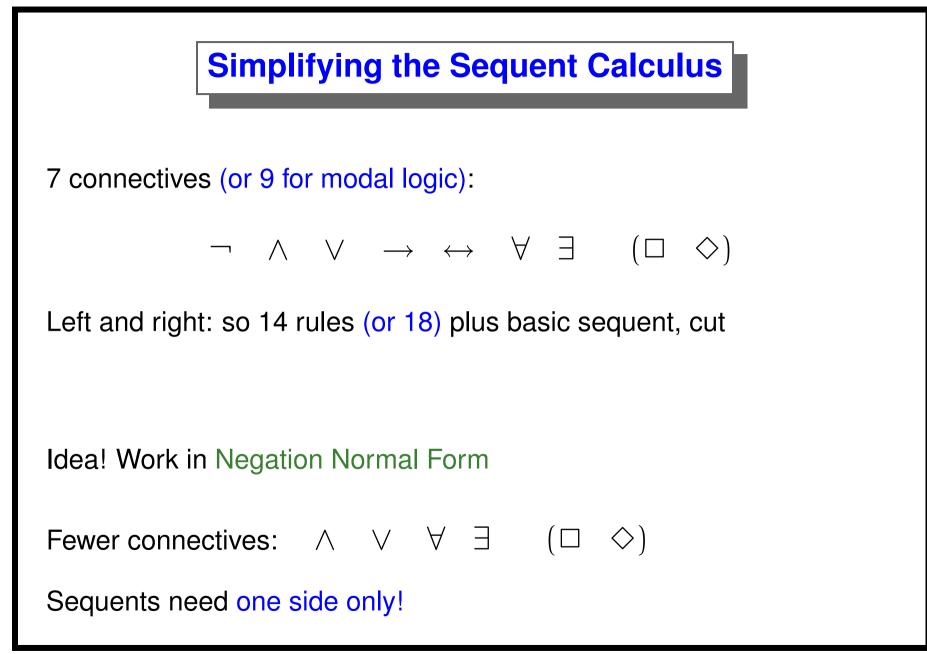
Must apply $(\Box r)$ first!

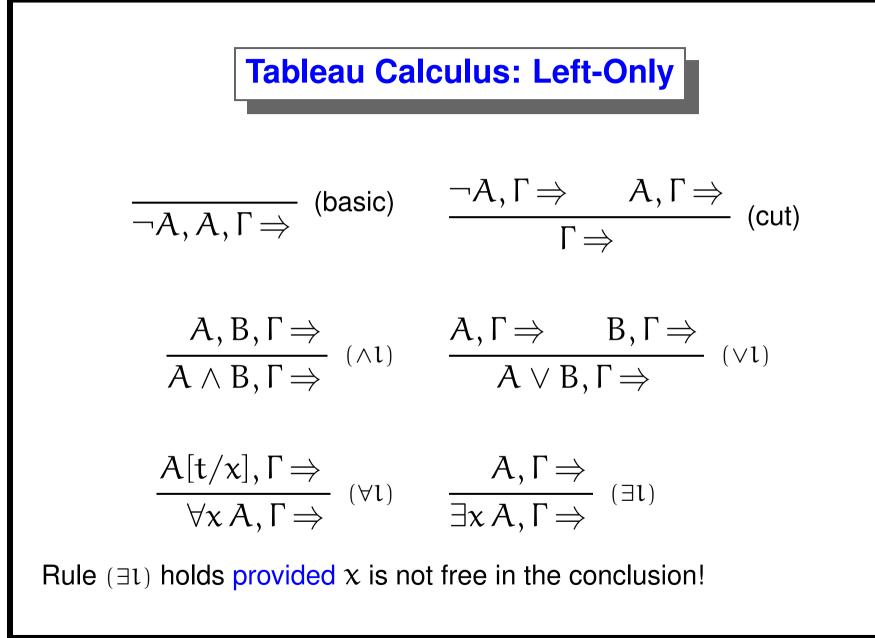


$$\frac{\Rightarrow A}{\Rightarrow \Diamond A} \stackrel{(\diamond r)}{\Rightarrow (\Box r)} \\ \frac{\Rightarrow (\diamond r)}{A \Rightarrow \Box \Diamond A}$$

$$\frac{B \Rightarrow A \land B}{B \Rightarrow \Diamond (A \land B)} \stackrel{(\diamond r)}{\Rightarrow (\diamond 1)}$$

Can extract a countermodel from the proof attempt





$$\frac{A,\Gamma\Rightarrow}{\Box A,\Gamma\Rightarrow} (\Box\iota) \qquad \frac{A,\Gamma^*\Rightarrow}{\Diamond A,\Gamma\Rightarrow} (\diamond\iota)$$

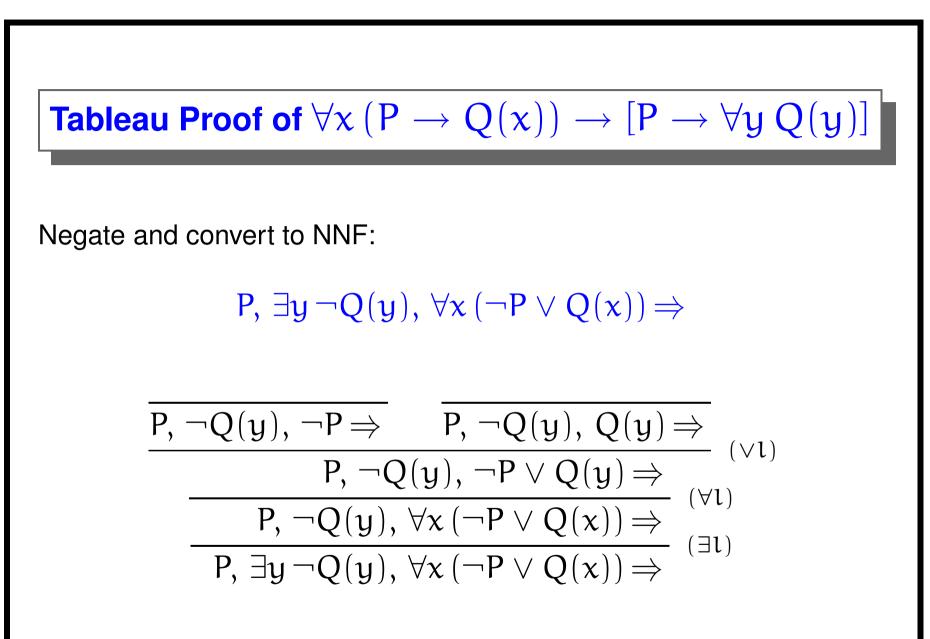
 $\Gamma^* \stackrel{\text{def}}{=} \{ \Box B \mid \Box B \in \Gamma \} \quad \text{Erase non-} \Box \text{ assumptions}$

From 14 (or 18) rules to 4 (or 6)

Left-side only system uses proof by contradiction

Right-side only system is an exact dual

1203



The Free-Variable Tableau Calculus

Rule $(\forall \iota)$ now inserts a new free variable:

$$\frac{A[z/x], \Gamma \Rightarrow}{\forall x A, \Gamma \Rightarrow} (\forall \iota)$$

Let unification instantiate any free variable

In $\neg A, B, \Gamma \Rightarrow$ try unifying A with B to make a basic sequent

Updating a variable affects entire proof tree

What about rule (*∃*1)? Do not use it! Instead, Skolemize!

Skolemization from NNF

```
Recall e.g. that we Skolemize
```

```
[\forall y \exists z Q(y,z)] \land \exists x P(x) \text{ to } [\forall y Q(y,f(y))] \land P(a)
```

Remark: pushing quantifiers in (miniscoping) gives better results.

Example: proving $\exists x \forall y [P(x) \rightarrow P(y)]$:

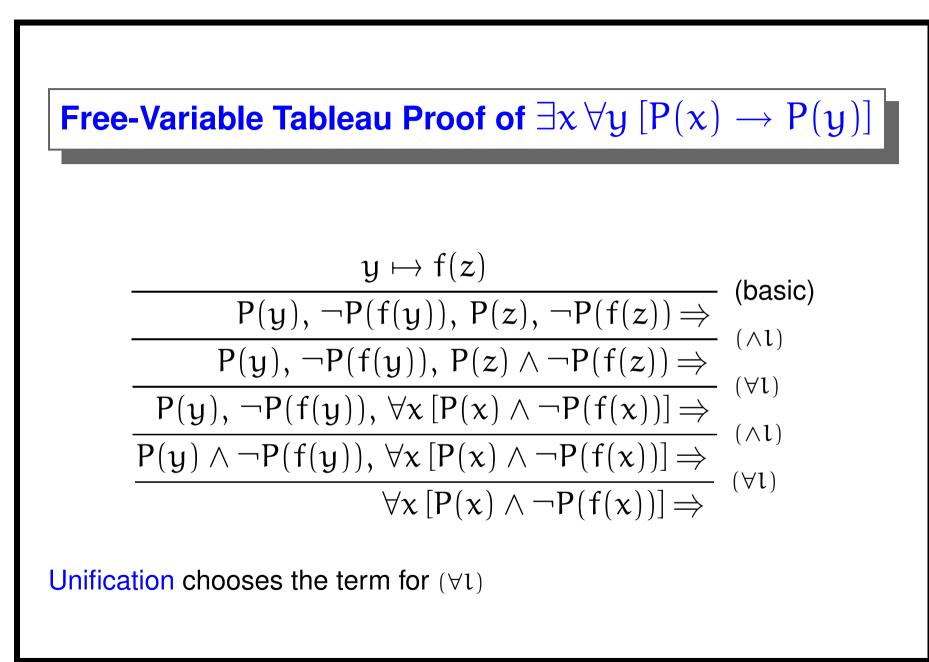
Negate; convert to NNF: $\forall x \exists y [P(x) \land \neg P(y)]$

Push in the $\exists y : \forall x [P(x) \land \exists y \neg P(y)]$

```
Push in the \forall x : (\forall x P(x)) \land (\exists y \neg P(y))
```

Skolemize:

e:
$$\forall x P(x) \land \neg P(a)$$



A Failed Proof

Try to prove $\forall x [P(x) \lor Q(x)] \rightarrow [\forall x P(x) \lor \forall x Q(x)]$ NNF: $\exists x \neg P(x) \land \exists x \neg Q(x) \land \forall x [P(x) \lor Q(x)] \Rightarrow$ Skolemize: $\neg P(a), \neg Q(b), \forall x [P(x) \lor Q(x)] \Rightarrow$ $y \mapsto b$??? $y \mapsto a$ $\overline{\neg P(a)}, \neg Q(b), \underline{P(y)} \Rightarrow \overline{\neg P(a), \neg Q(b), Q(y)} \Rightarrow$ $(\vee l)$ $\neg P(a), \neg Q(b), P(y) \lor Q(y) \Rightarrow$ $\neg P(a), \neg Q(b), \forall x [P(x) \lor Q(x)] \Rightarrow$ $(\forall l)$

