
Logic and Proof

Computer Science Tripos Part IB
Lent Term

Lawrence C Paulson

Computer Laboratory

University of Cambridge

lp15@cam.ac.uk

Copyright c© 2019 by Lawrence C. Paulson

I Logic and Proof 101

Introduction to Logic

Logic concerns statements in some language.

The language can be natural (English, Latin, . . .) or formal.

Some statements are true, others false or meaningless.

Logic concerns relationships between statements: consistency,

entailment, . . .

Logical proofs model human reasoning (supposedly).

Lawrence C. Paulson University of Cambridge

I Logic and Proof 102

Statements

Statements are declarative assertions:

Black is the colour of my true love’s hair.

They are not greetings, questions or commands:

What is the colour of my true love’s hair?

I wish my true love had hair.

Get a haircut!

Lawrence C. Paulson University of Cambridge

I Logic and Proof 103

Schematic Statements

Now let the variables X, Y, Z, . . . range over ‘real’ objects

Black is the colour of X’s hair.

Black is the colour of Y.

Z is the colour of Y.

Schematic statements can even express questions:

What things are black?

Lawrence C. Paulson University of Cambridge

I Logic and Proof 104

Interpretations and Validity

An interpretation maps variables to real objects:

The interpretation Y 7→ coal satisfies the statement

Black is the colour of Y.

but the interpretation Y 7→ strawberries does not!

A statement A is valid if all interpretations satisfy A.

Lawrence C. Paulson University of Cambridge

I Logic and Proof 105

Consistency, or Satisfiability

A set S of statements is consistent if some interpretation satisfies all

elements of S at the same time. Otherwise S is inconsistent.

Examples of inconsistent sets:

{X part of Y, Y part of Z, X NOT part of Z}

{n is a positive integer, n 6= 1, n 6= 2, . . .}

Satisfiable means the same as consistent.

Unsatisfiable means the same as inconsistent.

Lawrence C. Paulson University of Cambridge

I Logic and Proof 106

Entailment, or Logical Consequence

A set S of statements entails A if every interpretation that satisfies all

elements of S, also satisfies A. We write S |= A.

{X part of Y, Y part of Z} |= X part of Z

{n 6= 1, n 6= 2, . . .} |= n is NOT a positive integer

S |= A if and only if {¬A} ∪ S is inconsistent.

If S is inconsistent, then S |= A for any A.

|= A if and only if A is valid, if and only if {¬A} is inconsistent.

Lawrence C. Paulson University of Cambridge

I Logic and Proof 107

Inference: Proving a Statement

We want to show that A is valid. We can’t test infinitely many cases.

Let {A1, . . . , An} |= B. If A1, . . ., An are true then B must be true.

Write this as the inference rule

A1 . . . An

B

We can use inference rules to construct finite proofs!

Lawrence C. Paulson University of Cambridge

I Logic and Proof 108

Schematic Inference Rules

X part of Y Y part of Z

X part of Z

• A proof is correct if it has the right syntactic form, regardless of

• Whether the conclusion is desirable

• Whether the premises or conclusion are true

• Who (or what) created the proof

Lawrence C. Paulson University of Cambridge

I Logic and Proof 109

Why Should we use a Formal Language?

Consider this ‘definition’: (Berry’s paradox)

The smallest positive integer not definable using nine words

Greater than The number of atoms in the Milky Way galaxy

This number is so large, it is greater than itself!

• A formal language prevents ambiguity.

Lawrence C. Paulson University of Cambridge

I Logic and Proof 110

Survey of Formal Logics

propositional logic is traditional boolean algebra.

first-order logic can say for all and there exists.

higher-order logic reasons about sets and functions.

modal/temporal logics reason about what must, or may, happen.

type theories support constructive mathematics.

All have been used to prove correctness of computer systems.

Lawrence C. Paulson University of Cambridge

II Logic and Proof 201

Syntax of Propositional Logic

P, Q, R, . . . propositional letter

t true

f false

¬A not A

A ∧ B A and B

A ∨ B A or B

A → B if A then B

A ↔ B A if and only if B

Lawrence C. Paulson University of Cambridge

II Logic and Proof 202

Semantics of Propositional Logic

¬, ∧, ∨, → and ↔ are truth-functional: functions of their operands.

A B ¬A A ∧ B A ∨ B A → B A ↔ B

1 1 0 1 1 1 1

1 0 0 0 1 0 0

0 1 1 0 1 1 0

0 0 1 0 0 1 1

Lawrence C. Paulson University of Cambridge

II Logic and Proof 203

Interpretations of Propositional Logic

An interpretation is a function from the propositional letters to {1, 0}.

Interpretation I satisfies a formula A if it evaluates to 1 (true).

Write |=I A

A is valid (a tautology) if every interpretation satisfies A.

Write |= A

S is satisfiable if some interpretation satisfies every formula in S.

Lawrence C. Paulson University of Cambridge

II Logic and Proof 204

Implication, Entailment, Equivalence

A → B means simply ¬A ∨ B.

A |= B means if |=I A then |=I B for every interpretation I.

A |= B if and only if |= A → B.

Equivalence

A ≃ B means A |= B and B |= A.

A ≃ B if and only if |= A ↔ B.

Lawrence C. Paulson University of Cambridge

II Logic and Proof 205

Equivalences

A ∧ A ≃ A

A ∧ B ≃ B ∧ A

(A ∧ B) ∧ C ≃ A ∧ (B ∧ C)

A ∨ (B ∧ C) ≃ (A ∨ B) ∧ (A ∨ C)

A ∧ f ≃ f

A ∧ t ≃ A

A ∧ ¬A ≃ f

Dual versions: exchange ∧ with ∨ and t with f in any equivalence

Lawrence C. Paulson University of Cambridge

II Logic and Proof 206

Negation Normal Form

1. Get rid of ↔ and →, leaving just ∧, ∨, ¬:

A ↔ B ≃ (A → B) ∧ (B → A)

A → B ≃ ¬A ∨ B

2. Push negations in, using de Morgan’s laws:

¬¬A ≃ A

¬(A ∧ B) ≃ ¬A ∨ ¬B

¬(A ∨ B) ≃ ¬A ∧ ¬B

Lawrence C. Paulson University of Cambridge

II Logic and Proof 207

From NNF to Conjunctive Normal Form

3. Push disjunctions in, using distributive laws:

A ∨ (B ∧ C) ≃ (A ∨ B) ∧ (A ∨ C)

(B ∧ C) ∨ A ≃ (B ∨ A) ∧ (C ∨ A)

4. Simplify:

• Delete any disjunction containing P and ¬P

• Delete any disjunction that includes another: for example, in

(P ∨ Q) ∧ P, delete P ∨ Q.

• Replace (P ∨ A) ∧ (¬P ∨ A) by A

Lawrence C. Paulson University of Cambridge

II Logic and Proof 208

Converting a Non-Tautology to CNF

P ∨ Q → Q ∨ R

1. Elim →: ¬(P ∨ Q) ∨ (Q ∨ R)

2. Push ¬ in: (¬P ∧ ¬Q) ∨ (Q ∨ R)

3. Push ∨ in: (¬P ∨ Q ∨ R) ∧ (¬Q ∨ Q ∨ R)

4. Simplify: ¬P ∨ Q ∨ R

Not a tautology: try P 7→ t, Q 7→ f, R 7→ f

Lawrence C. Paulson University of Cambridge

II Logic and Proof 209

Tautology checking using CNF

((P → Q) → P) → P

1. Elim →: ¬[¬(¬P ∨ Q) ∨ P] ∨ P

2. Push ¬ in: [¬¬(¬P ∨ Q) ∧ ¬P] ∨ P

[(¬P ∨ Q) ∧ ¬P] ∨ P

3. Push ∨ in: (¬P ∨ Q ∨ P) ∧ (¬P ∨ P)

4. Simplify: t ∧ t

t It’s a tautology!

Lawrence C. Paulson University of Cambridge

III Logic and Proof 301

A Simple Proof System

Axiom Schemes

K A → (B → A)

S (A → (B → C)) → ((A → B) → (A → C))

DN ¬¬A → A

Inference Rule: Modus Ponens

A → B A
B

Lawrence C. Paulson University of Cambridge

III Logic and Proof 302

A Simple (?) Proof of A → A

(A → ((D → A) → A)) → (1)

((A → (D → A)) → (A → A)) by S

A → ((D → A) → A) by K (2)

(A → (D → A)) → (A → A) by MP, (1), (2) (3)

A → (D → A) by K (4)

A → A by MP, (3), (4) (5)

Lawrence C. Paulson University of Cambridge

III Logic and Proof 303

Some Facts about Deducibility

A is deducible from the set S if there is a finite proof of A starting from

elements of S. Write S ⊢ A.

Soundness Theorem. If S ⊢ A then S |= A.

Completeness Theorem. If S |= A then S ⊢ A.

Deduction Theorem. If S ∪ {A} ⊢ B then S ⊢ A → B.

Lawrence C. Paulson University of Cambridge

III Logic and Proof 304

Gentzen’s Natural Deduction Systems

The context of assumptions may vary.

Each logical connective is defined independently.

The introduction rule for ∧ shows how to deduce A ∧ B:

A B
A ∧ B

The elimination rules for ∧ shows what to deduce from A ∧ B:

A ∧ B
A

A ∧ B
B

Lawrence C. Paulson University of Cambridge

III Logic and Proof 305

The Sequent Calculus

Sequent A1, . . . , Am⇒B1, . . . , Bn means,

if A1 ∧ . . . ∧ Am then B1 ∨ . . . ∨ Bn

A1, . . ., Am are assumptions; B1, . . ., Bn are goals

Γ and ∆ are sets in Γ⇒∆

A, Γ⇒A,∆ is trivially true (and is called a basic sequent).

Lawrence C. Paulson University of Cambridge

III Logic and Proof 306

Sequent Calculus Rules

Γ⇒∆,A A, Γ⇒∆

Γ⇒∆
(cut)

Γ⇒∆,A

¬A, Γ⇒∆
(¬l)

A, Γ⇒∆

Γ⇒∆,¬A
(¬r)

A,B, Γ⇒∆

A ∧ B, Γ⇒∆
(∧l)

Γ⇒∆,A Γ⇒∆,B

Γ⇒∆,A ∧ B
(∧r)

Lawrence C. Paulson University of Cambridge

III Logic and Proof 307

More Sequent Calculus Rules

A, Γ⇒∆ B, Γ⇒∆

A ∨ B, Γ⇒∆
(∨l)

Γ⇒∆,A,B

Γ⇒∆,A ∨ B
(∨r)

Γ⇒∆,A B, Γ⇒∆

A → B, Γ⇒∆
(→l)

A, Γ⇒∆,B

Γ⇒∆,A → B
(→r)

Lawrence C. Paulson University of Cambridge

III Logic and Proof 308

Easy Sequent Calculus Proofs

A,B⇒A

A ∧ B⇒A
(∧l)

⇒ (A ∧ B) → A
(→r)

A,B⇒B,A

A⇒B,B → A
(→r)

⇒A → B, B → A
(→r)

⇒ (A → B) ∨ (B → A)
(∨r)

Lawrence C. Paulson University of Cambridge

III Logic and Proof 309

Part of a Distributive Law

A⇒A,B

B,C⇒A,B

B ∧ C⇒A,B
(∧l)

A ∨ (B ∧ C)⇒A,B
(∨l)

A ∨ (B ∧ C)⇒A ∨ B
(∨r)

similar

A ∨ (B ∧ C)⇒ (A ∨ B) ∧ (A ∨ C)
(∧r)

Second subtree proves A ∨ (B ∧ C)⇒A ∨ C similarly

Lawrence C. Paulson University of Cambridge

III Logic and Proof 310

A Failed Proof

A⇒B,C B⇒B,C

A ∨ B⇒B,C
(∨l)

A ∨ B⇒B ∨ C
(∨r)

⇒ (A ∨ B) → (B ∨ C)
(→r)

A 7→ t, B 7→ f, C 7→ f falsifies unproved sequent!

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 401

Outline of First-Order Logic

Reasons about functions and relations over a set of individuals:

father(father(x)) = father(father(y))

cousin(x, y)

Reasons about all and some individuals:

All men are mortal Socrates is a man

Socrates is mortal

Cannot reason about all functions or all relations, etc.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 402

Function Symbols; Terms

Each function symbol stands for an n-place function.

A constant symbol is a 0-place function symbol.

A variable ranges over all individuals.

A term is a variable, constant or a function application

f(t1, . . . , tn)

where f is an n-place function symbol and t1, . . ., tn are terms.

We choose the language, adopting any desired function symbols.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 403

Relation Symbols; Formulae

Each relation symbol stands for an n-place relation.

Equality is the 2-place relation symbol =

An atomic formula has the form R(t1, . . . , tn) where R is an n-place

relation symbol and t1, . . ., tn are terms.

A formula is built up from atomic formulæ using ¬, ∧, ∨, and so forth.

Later, we can add quantifiers.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 404

The Power of Quantifier-Free FOL

It is surprisingly expressive, if we include strong induction rules.

We can easily prove the equivalence of mathematical functions:

p(z, 0) = 1

p(z, n + 1) = p(z, n) × z

q(z, 1) = z

q(z, 2 × n) = q(z × z, n)

q(z, 2 × n + 1) = q(z × z, n) × z

The prover ACL2 uses this logic to do major hardware proofs.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 405

Universal and Existential Quantifiers

∀xA for all x, the formula A holds

∃xA there exists x such that A holds

Syntactic variations:

∀xyzA abbreviates ∀x∀y∀zA

∀z .A ∧ B is an alternative to ∀z (A ∧ B)

The variable x is bound in ∀xA; compare with
∫

f(x)dx

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 406

The Expressiveness of Quantifiers

All men are mortal:

∀x (man(x) → mortal(x))

All mothers are female:

∀x female(mother(x))

There exists a unique x such that A, sometimes written ∃!xA

∃x [A(x) ∧ ∀y (A(y) → y = x)]

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 407

The Point of Semantics

We have to attach meanings to symbols like 1, +, <, etc.

Why is this necessary? Why can’t 1 just mean 1??

The point is that mathematics derives its flexibility from allowing

different interpretations of symbols.

• A group has a unit 1, a product x · y and inverse x−1.

• In the most important uses of groups, 1 isn’t a number but a ‘unit

permutation’, ‘unit rotation’, etc.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 408

Constants: Interpreting mortal(Socrates)

An interpretation I = (D, I) defines the semantics of a first-order

language.

D is a non-empty set, called the domain or universe.

I maps symbols to ‘real’ elements, functions and relations:

c a constant symbol I[c] ∈ D

f an n-place function symbol I[f] ∈ Dn → D

P an n-place relation symbol I[P] ∈ Dn → {1, 0}

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 409

Variables: Interpreting father(y)

A valuation V : Var→ D supplies the values of free variables.

V and I together determine the value of any term t, by recursion.

This value is written IV [t], and here are the recursion rules:

IV [x]
def
= V(x) if x is a variable

IV [c]
def
= I[c]

IV [f(t1, . . . , tn)]
def
= I[f](IV [t1], . . . ,IV [tn])

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 410

Tarski’s Truth-Definition

An interpretation I and valuation function V similarly specify the truth

value (1 or 0) of any formula A.

Quantifiers are the only problem, as they bind variables.

V{a/x} is the valuation that maps x to a and is otherwise like V .

With the help of V{a/x}, we now formally define |=I,V A, the truth

value of A.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 411

The Meaning of Truth—In FOL!

For interpretation I and valuation V , define |=I,V by recursion.

|=I,V P(t) if I[P](IV [t]) equals 1 (is true)

|=I,V t = u if IV [t] equals IV [u]

|=I,V A ∧ B if |=I,V A and |=I,V B

|=I,V ∃xA if |=I,V{m/x} A holds for some m ∈ D

Finally, we define

|=I A if |=I,V A holds for all V .

A closed formula A is satisfiable if |=I A for some I .

Lawrence C. Paulson University of Cambridge

V Logic and Proof 501

Free vs Bound Variables

All occurrences of x in ∀xA and ∃xA are bound

An occurrence of x is free if it is not bound:

∀y∃z R(y, z, f(y, x))

In this formula, y and z are bound while x is free.

We may rename bound variables without affecting the meaning:

∀w∃z ′ R(w, z ′, f(w, x))

Lawrence C. Paulson University of Cambridge

V Logic and Proof 502

Substitution for Free Variables

A[t/x] means substitute t for x in A:

(B ∧ C)[t/x] is B[t/x] ∧ C[t/x]

(∀xB)[t/x] is ∀xB

(∀yB)[t/x] is ∀yB[t/x] (x 6= y)

(P(u))[t/x] is P(u[t/x])

When substituting A[t/x], no variable of t may be bound in A!

Example: (∀y (x = y)) [y/x] is not equivalent to ∀y (y = y)

Lawrence C. Paulson University of Cambridge

V Logic and Proof 503

Some Equivalences for Quantifiers

¬(∀xA) ≃ ∃x¬A

∀xA ≃ ∀xA ∧ A[t/x]

(∀xA) ∧ (∀xB) ≃ ∀x (A ∧ B)

But we do not have (∀xA) ∨ (∀xB) ≃ ∀x (A ∨ B).

Dual versions: exchange ∀ with ∃ and ∧ with ∨

Lawrence C. Paulson University of Cambridge

V Logic and Proof 504

Further Quantifier Equivalences

These hold only if x is not free in B.

(∀xA) ∧ B ≃ ∀x (A ∧ B)

(∀xA) ∨ B ≃ ∀x (A ∨ B)

(∀xA) → B ≃ ∃x (A → B)

These let us expand or contract a quantifier’s scope.

Lawrence C. Paulson University of Cambridge

V Logic and Proof 505

Reasoning by Equivalences

∃x (x = a ∧ P(x)) ≃ ∃x (x = a ∧ P(a))

≃ ∃x (x = a) ∧ P(a)

≃ P(a)

∃z (P(z) → P(a) ∧ P(b))

≃ ∀z P(z) → P(a) ∧ P(b)

≃ ∀z P(z) ∧ P(a) ∧ P(b) → P(a) ∧ P(b)

≃ t

Lawrence C. Paulson University of Cambridge

V Logic and Proof 506

Sequent Calculus Rules for ∀

A[t/x], Γ⇒∆

∀xA, Γ⇒∆
(∀l)

Γ⇒∆,A

Γ⇒∆,∀xA
(∀r)

Rule (∀l) can create many instances of ∀xA

Rule (∀r) holds provided x is not free in the conclusion!

Not allowed to prove

P(y)⇒P(y)

P(y)⇒∀yP(y)
(∀r)

This is nonsense!

Lawrence C. Paulson University of Cambridge

V Logic and Proof 507

A Simple Example of the ∀ Rules

P(f(y))⇒P(f(y))

∀x P(x)⇒P(f(y))
(∀l)

∀x P(x)⇒∀yP(f(y))
(∀r)

Lawrence C. Paulson University of Cambridge

V Logic and Proof 508

A Not-So-Simple Example of the ∀ Rules

P⇒Q(y), P P,Q(y)⇒Q(y)

P, P → Q(y)⇒Q(y)
(→l)

P, ∀x (P → Q(x))⇒Q(y)
(∀l)

P, ∀x (P → Q(x))⇒ ∀yQ(y)
(∀r)

∀x (P → Q(x))⇒P → ∀yQ(y)
(→r)

In (∀l), we must replace x by y.

Lawrence C. Paulson University of Cambridge

V Logic and Proof 509

Sequent Calculus Rules for ∃

A, Γ⇒∆

∃xA, Γ⇒∆
(∃l)

Γ⇒∆,A[t/x]

Γ⇒∆,∃xA
(∃r)

Rule (∃l) holds provided x is not free in the conclusion!

Rule (∃r) can create many instances of ∃xA

For example, to prove this counter-intuitive formula:

∃z (P(z) → P(a) ∧ P(b))

Lawrence C. Paulson University of Cambridge

V Logic and Proof 510

Part of the ∃ Distributive Law

P(x)⇒P(x),Q(x)

P(x)⇒P(x) ∨ Q(x)
(∨r)

P(x)⇒∃y (P(y) ∨ Q(y))
(∃r)

∃x P(x)⇒∃y (P(y) ∨ Q(y))
(∃l)

similar

∃xQ(x)⇒ ∃y . . .
(∃l)

∃x P(x) ∨ ∃xQ(x)⇒∃y (P(y) ∨ Q(y))
(∨l)

Second subtree proves ∃xQ(x)⇒ ∃y (P(y) ∨ Q(y)) similarly

In (∃r), we must replace y by x.

Lawrence C. Paulson University of Cambridge

V Logic and Proof 511

A Failed Proof

P(x),Q(y)⇒P(x) ∧ Q(x)

P(x),Q(y)⇒ ∃z (P(z) ∧ Q(z))
(∃r)

P(x),∃xQ(x)⇒ ∃z (P(z) ∧ Q(z))
(∃l)

∃x P(x),∃xQ(x)⇒ ∃z (P(z) ∧ Q(z))
(∃l)

∃x P(x) ∧ ∃xQ(x)⇒ ∃z (P(z) ∧ Q(z))
(∧l)

We cannot use (∃l) twice with the same variable

This attempt renames the x in ∃xQ(x), to get ∃yQ(y)

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 601

Clause Form

Clause: a disjunction of literals

¬K1 ∨ · · · ∨ ¬Km ∨ L1 ∨ · · · ∨ Ln

Set notation: {¬K1, . . . ,¬Km, L1, . . . , Ln}

Kowalski notation: K1, · · · , Km → L1, · · · , Ln

L1, · · · , Ln ← K1, · · · , Km

Empty clause: {} or �

Empty clause is equivalent to f, meaning contradiction!

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 602

Outline of Clause Form Methods

To prove A, obtain a contradiction from ¬A:

1. Translate ¬A into CNF as A1 ∧ · · · ∧ Am

2. This is the set of clauses A1, . . ., Am

3. Transform the clause set, preserving consistency

Deducing the empty clause refutes ¬A.

An empty clause set (all clauses deleted) means ¬A is satisfiable.

The basis for SAT solvers and resolution provers.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 603

The Davis-Putnam-Logeman-Loveland Method

1. Delete tautological clauses: {P,¬P, . . .}

2. For each unit clause {L},

• delete all clauses containing L

• delete ¬L from all clauses

3. Delete all clauses containing pure literals

4. Perform a case split on some literal; stop if a model is found

DPLL is a decision procedure: it finds a contradiction or a model.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 604

DPLL on a Non-Tautology

Consider P ∨ Q → Q ∨ R

Clauses are {P,Q} {¬Q} {¬R}

{P,Q} {¬Q} {¬R} initial clauses

{P} {¬R} unit ¬Q

{¬R} unit P (also pure)

unit ¬R (also pure)

All clauses deleted! Clauses satisfiable by P 7→ t, Q 7→ f, R 7→ f

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 605

Example of a Case Split on P

{¬Q,R} {¬R, P} {¬R,Q} {¬P,Q, R} {P,Q} {¬P,¬Q}

{¬Q,R} {¬R,Q} {Q,R} {¬Q} if P is true

{¬R} {R} unit ¬Q

{} unit R

{¬Q,R} {¬R} {¬R,Q} {Q} if P is false

{¬Q} {Q} unit ¬R

{} unit ¬Q

Both cases yield contradictions: the clauses are inconsistent!

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 606

SAT solvers in the Real World

• Progressed from joke to killer technology in 10 years.

• Princeton’s zChaff has solved problems with more than one million

variables and 10 million clauses.

• Applications include finding bugs in device drivers (Microsoft’s

SLAM project).

• SMT solvers (satisfiability modulo theories) extend SAT solving to

handle arithmetic, arrays and bit vectors.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 607

The Resolution Rule

From B ∨ A and ¬B ∨ C infer A ∨ C

In set notation,

{B,A1, . . . , Am} {¬B,C1, . . . , Cn}

{A1, . . . , Am, C1, . . . , Cn}

Some special cases: (remember that � is just {})

{B} {¬B,C1, . . . , Cn}

{C1, . . . , Cn}

{B} {¬B}

�

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 608

Simple Example: Proving P ∧ Q → Q ∧ P

Hint: use ¬(A → B) ≃ A ∧ ¬B

1. Negate! ¬[P ∧ Q → Q ∧ P]

2. Push ¬ in: (P ∧ Q) ∧ ¬(Q ∧ P)

(P ∧ Q) ∧ (¬Q ∨ ¬P)

Clauses: {P} {Q} {¬Q,¬P}

Resolve {P} and {¬Q,¬P} getting {¬Q}.

Resolve {Q} and {¬Q} getting �: we have refuted the negation.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 609

Another Example

Refute ¬[(P ∨ Q) ∧ (P ∨ R) → P ∨ (Q ∧ R)]

From (P ∨ Q) ∧ (P ∨ R), get clauses {P,Q} and {P, R}.

From ¬ [P ∨ (Q ∧ R)] get clauses {¬P} and {¬Q,¬R}.

Resolve {¬P} and {P,Q} getting {Q}.

Resolve {¬P} and {P, R} getting {R}.

Resolve {Q} and {¬Q,¬R} getting {¬R}.

Resolve {R} and {¬R} getting �, contradiction.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 610

The Saturation Algorithm

At start, all clauses are passive. None are active.

1. Transfer a clause (current) from passive to active.

2. Form all resolvents between current and an active clause.

3. Use new clauses to simplify both passive and active.

4. Put the new clauses into passive.

Repeat until contradiction found or passive becomes empty.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 611

Heuristics and Hacks for Resolution

Orderings to focus the search on specific literals

Subsumption, or deleting redundant clauses

Indexing: elaborate data structures for speed

Preprocessing: removing tautologies, symmetries . . .

Weighting: giving priority to “good” clauses over those containing

unwanted constants

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 701

Reducing FOL to Propositional Logic

NNF: Leaving only ∀, ∃, ∧, ∨, and ¬ on atoms

Skolemize: Remove quantifiers, preserving consistency

Herbrand models: Reduce the class of interpretations

Herbrand’s Thm: Contradictions have finite, ground proofs

Unification: Automatically find the right instantiations

Finally, combine unification with resolution

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 702

Skolemization, or Getting Rid of ∃

Start with a formula in NNF, with quantifiers nested like this:

∀x1 (· · · ∀x2 (· · · ∀xk (· · · ∃yA · · ·) · · ·) · · ·)

Choose a fresh k-place function symbol, say f

Delete ∃y and replace y by f(x1, x2, . . . , xk). We get

∀x1 (· · · ∀x2 (· · · ∀xk (· · ·A[f(x1, x2, . . . , xk)/y] · · ·) · · ·) · · ·)

Repeat until no ∃ quantifiers remain

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 703

Example of Conversion to Clauses

For proving ∃x [P(x) → ∀yP(y)]

¬ [∃x [P(x) → ∀yP(y)]] negated goal

∀x [P(x) ∧ ∃y¬P(y)] conversion to NNF

∀x [P(x) ∧ ¬P(f(x))] Skolem term f(x)

{P(x)} {¬P(f(x))} Final clauses

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 704

Correctness of Skolemization

The formula ∀x∃yA is consistent

⇐⇒ it holds in some interpretation I = (D, I)

⇐⇒ for all x ∈ D there is some y ∈ D such that A holds

⇐⇒ some function f̂ in D→ D yields suitable values of y

⇐⇒ A[f(x)/y] holds in some I ′ extending I so that f denotes f̂

⇐⇒ the formula ∀xA[f(x)/y] is consistent.

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 705

The Herbrand Universe for a Set of Clauses S

H0
def
= the set of constants in S (must be non-empty)

Hi+1
def
= Hi ∪ {f(t1, . . . , tn) | t1, . . . , tn ∈ Hi

and f is an n-place function symbol in S}

H
def
=

⋃

i≥0

Hi Herbrand Universe

Hi contains just the terms with at most i nested function applications.

H consists of all ground terms built using symbols from S.

Our semantics will interpret function symbols by operations on terms.

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 706

The Herbrand Semantics of Predicates

An Herbrand interpretation defines an n-place predicate P to denote a

truth-valued function in Hn → {1, 0}, making P(t1, . . . , tn) true . . .

• if and only if the formula P(t1, . . . , tn) holds in our desired “real”

interpretation I of the clauses.

• Thus, an Herbrand interpretation can imitate any other

interpretation.

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 707

The Inspiration for Clause Methods

Herbrand’s Theorem: Let S be a set of clauses.

S is unsatisfiable ⇐⇒ there is a finite unsatisfiable set S ′ of ground

instances of clauses of S.

• Finite: we can compute it

• Instance: result of substituting for variables

• Ground: no variables remain—it’s propositional!

Example: S could be {P(x)} {¬P(f(y))},

and S ′ could be {P(f(a))} {¬P(f(a))}.

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 708

Unification

Finding a common instance of two terms. Lots of applications:

• Prolog and other logic programming languages

• Theorem proving: resolution and other procedures

• Tools for reasoning with equations or satisfying constraints

• Polymorphic type-checking (ML and other functional languages)

It is an intuitive generalization of pattern-matching.

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 709

Four Unification Examples

f(x, b) f(x, x) f(x, x) j(x, x, z)

f(a, y) f(a, b) f(y, g(y)) j(w,a, h(w))

f(a, b) None None j(a, a, h(a))

[a/x, b/y] Fail Fail [a/w,a/x, h(a)/z]

The output is a substitution, mapping variables to terms.

Other occurrences of those variables also must be updated.

Unification yields a most general substitution (in a technical sense).

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 710

Theorem-Proving Example 1

(∃y∀xR(x, y)) → (∀x∃yR(x, y))

After negation, the clauses are {R(x, a)} and {¬R(b, y)}.

The literals R(x, a) and R(b, y) have unifier [b/x, a/y].

We have the contradiction R(b, a) and ¬R(b, a).

The theorem is proved by contradiction!

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 711

Theorem-Proving Example 2

(∀x∃yR(x, y)) → (∃y∀xR(x, y))

After negation, the clauses are {R(x, f(x))} and {¬R(g(y), y)}.

The literals R(x, f(x)) and R(g(y), y) are not unifiable.

(They fail the occurs check.)

We can’t get a contradiction. Formula is not a theorem!

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 801

The Binary Resolution Rule

{B,A1, . . . , Am} {¬D,C1, . . . , Cn}

{A1, . . . , Am, C1, . . . , Cn}σ
provided Bσ = Dσ

(σ is a most general unifier of B and D.)

First, rename variables apart in the clauses! For example, given

{P(x)} and {¬P(g(x))},

we must rename x in one of the clauses. Otherwise, unification fails.

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 802

The Factoring Rule

This inference collapses unifiable literals in one clause:

{B1, . . . , Bk, A1, . . . , Am}

{B1, A1, . . . , Am}σ
provided B1σ = · · · = Bkσ

Resolution together with factoring is complete for first-order logic:

Every valid formula will be proved (given enough space and time)

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 803

Example of Resolution with Factoring

Prove ∀x∃y¬(P(y, x) ↔ ¬P(y, y))

The clauses are {¬P(y, a),¬P(y, y)} {P(y, y), P(y, a)}

Factoring yields {¬P(a, a)} {P(a, a)}

Resolution yields the empty clause!

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 804

A Non-Trivial Proof

∃x [P → Q(x)] ∧ ∃x [Q(x) → P] → ∃x [P ↔ Q(x)]

Clauses are {P,¬Q(b)} {P,Q(x)} {¬P,¬Q(x)} {¬P,Q(a)}

Resolve {P,¬Q(b)} with {P,Q(x)} getting {P, P}

Factor {P, P} getting {P}

Resolve {¬P,¬Q(x)} with {¬P,Q(a)} getting {¬P,¬P}

Factor {¬P,¬P} getting {¬P}

Resolve {P} with {¬P} getting �

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 805

What About Equality?

In theory, it’s enough to add the equality axioms:

• The reflexive, symmetric and transitive laws.

• Substitution laws like {x 6= y, f(x) = f(y)} for each f.

• Substitution laws like {x 6= y,¬P(x), P(y)} for each P.

In practice, we need something special: the paramodulation rule

{B[t ′], A1, . . . , Am} {t = u,C1, . . . , Cn}

{B[u], A1, . . . , Am, C1, . . . , Cn}σ (if tσ = t ′σ)

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 806

Prolog Clauses

Prolog clauses have a restricted form, with at most one positive literal.

The definite clauses form the program. Procedure B with body

“commands” A1, . . . , Am is

B← A1, . . . , Am

The single goal clause is like the “execution stack”, with say m tasks

left to be done.

← A1, . . . , Am

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 807

Prolog Execution

Linear resolution:

• Always resolve some program clause with the goal clause.

• The result becomes the new goal clause.

Try the program clauses in left-to-right order.

Solve the goal clause’s literals in left-to-right order.

Use depth-first search. (Performs backtracking, using little space.)

Do unification without occurs check. (Unsound, but needed for speed)

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 808

A (Pure) Prolog Program

parent(elizabeth,charles).

parent(elizabeth,andrew).

parent(charles,william).

parent(charles,henry).

parent(andrew,beatrice).

parent(andrew,eugenia).

grand(X,Z) :- parent(X,Y), parent(Y,Z).

cousin(X,Y) :- grand(Z,X), grand(Z,Y).

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 809

Prolog Execution

:- cousin(X,Y).

:- grand(Z1,X), grand(Z1,Y).

:- parent(Z1,Y2), parent(Y2,X), grand(Z1,Y).

* :- parent(charles,X), grand(elizabeth,Y).

X=william :- grand(elizabeth,Y).

:- parent(elizabeth,Y5), parent(Y5,Y).

* :- parent(andrew,Y).

Y=beatrice :- �.

* = backtracking choice point

16 solutions including cousin(william,william)

and cousin(william,henry)

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 810

Another FOL Proof Procedure: Model Elimination

A Prolog-like method to run on fast Prolog architectures.

Contrapositives: treat clause {A1, . . . , Am} like the m clauses

A1 ← ¬A2, . . . ,¬Am

A2 ← ¬A3, . . . ,¬Am,¬A1

.

.

.

Am ← ¬A1, . . . ,¬Am−1

Extension rule: when proving goal P, assume ¬P.

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 811

A Survey of Automatic Theorem Provers

First-order Resolution: E (eprover), SPASS, Vampire, . . .

Higher-Order Logic: TPS, LEO-III, Satallax

Tableau (sequent) based: LeanTAP, 3TAP, . . .

Model Elimination: Prolog Technology Theorem Prover, SETHEO, etc.

Connection calculus (evolved from model elimination): leanCoP

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 901

Decision Problems

Any formally-stated question: is n prime or not? Is the string s

accepted by a given context-free grammar?

Unfortunately, most decision problems for logic are difficult:

• Propositional satisfiability NP-complete.

• The halting problem is undecidable. Therefore there is no decision

procedure to identify first-order theorems.

• The theory of integer arithmetic is undecidable (Gödel).

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 902

Solvable Decision Problems

Propositional formulas are decidable: use the DPLL algorithm.

Linear arithmetic formulas are decidable:

• comparisons using + and − but × only with constants, e.g.

• 2x < y ∧ y < x (satisfiable by y = −3, x = −2) or

2x < y ∧ y < x ∧ 3x > 2 (unsatisfiable)

• the integer and real (or rational) cases require different algorithms

Polynomial arithmetic is decidable; hence, so is Euclidean geometry.

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 903

Fourier-Motzkin Variable Elimination

Decides conjunctions of linear constraints over reals/rationals

m∧

i=1

n∑

j=1

aijxj ≤ bi

Eliminate variables one-by-one until one remains, or contradiction

Devised by Fourier (1826) — resembles Gaussian elimination

One of the first decision procedures to be implemented

Worst-case complexity: O(m2n

)

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 904

Basic Idea: Upper and Lower Bounds

To eliminate variable xn, consider constraint i, for i = 1, . . . , m:

Define βi = bi −
∑n−1

j=1 aijxj. Rewrite constraint i:

If ain > 0 then xn ≤ βi

ain

if ain < 0 then −xn ≤ − βi

ain

Adding two such constraints yields 0 ≤ βi

ain

−
β

i ′

a
i ′n

Do this for all combinations with opposite signs

Then delete original constraints (except where ain = 0)

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 905

Fourier-Motzkin Elimination Example

initial problem eliminate x eliminate z result

x ≤ y z ≤ 0 0 ≤ −1 UNSAT

x ≤ z y + z ≤ 0 y ≤ −1

−x + y + 2z ≤ 0

−z ≤ −1 −z ≤ −1

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 906

Quantifier Elimination (QE)

Skolemization eliminates quantifiers but only preserves consistency.

QE transforms a formula to a quantifier-free but equivalent formula.

The idea of Fourier-Motzkin is that (e.g.)

∃xy (2x < y ∧ y < x) ⇐⇒ ∃x 2x < x ⇐⇒ t

In general, the quantifier-free formula is enormous.

• With no free variables, the end result must be t or f.

• But even then, the time complexity tends to be hyper-exponential!

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 907

Other Decidable Theories

QE for real polynomial arithmetic:

∃x [ax2 + bx + c = 0] ⇐⇒

b2 ≥ 4ac ∧ (c = 0 ∨ a 6= 0 ∨ b2 > 4ac)

Linear integer arithmetic: use Omega test or Cooper’s algorithm, but

any decision algorithm has a worst-case runtime of at least 22cn

There exist decision procedures for arrays, lists, bit vectors, . . .

Sometimes, they can cooperate to decide combinations of theories.

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 908

Problem: To Combine Theories with Boolean Logic

These procedures expect existentially quantified conjunctions.

Formulas must be converted to disjunctive normal form.

Universal quantifiers must be eliminated using ∀xA ≃ ¬(∃x (¬A)).

Could there be a better way? Couldn’t we somehow use DPLL?

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 909

Satisfiability Modulo Theories

Idea: use DPLL for logical reasoning, decision procedures for theories

Clauses can have literals like 2x < y, which are used as names.

If DPLL finds a contradiction, then the clauses are unsatisfiable.

Asserted literals are checked by the decision procedure:

• Unsatisfiable conjunctions of literals are noted as new clauses.

• Case splitting is interleaved with decision procedure calls.

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 910

SMT Example

{c = 0, 2a < b} {b < a} {3a > 2, a < 0} {c 6= 0,¬(b < a)}

{c = 0, 2a < b} {3a > 2, a < 0} {c 6= 0} unit b < a

{2a < b} {3a > 2, a < 0} unit c 6= 0

{3a > 2, a < 0} unit 2a < b

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 911

SMT Example (Continued)

Now a case split on 3a > 2 returns a “model”:

b < a, c 6= 0, 2a < b, 3a > 2

But the decision proc. finds these contradictory, killing the 3a > 2 case

It returns a new clause:

{¬(b < a),¬(2a < b),¬(3a > 2)}

Finally get a satisfiable result: b < a ∧ c 6= 0 ∧ 2a < b ∧ a < 0

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 912

Remarks on the Previous Example

DPLL works only for propositional formulas!

We should properly write

{ c = 0 , 2a < b } {¬ c = 0 ,¬ b < a } etc.

The DPLL part knows nothing about arithmetic.

SMT makes two independent reasoners cooperate!

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 913

SMT Solvers and Their Applications

Popular ones include Z3, Yices, CVC4, but there are many others.

Representative applications:

• Hardware and software verification

• Program analysis and symbolic software execution

• Planning and constraint solving

• Hybrid systems and control engineering

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1001

BDDs: Binary Decision Diagrams

A canonical form for boolean expressions: decision trees with sharing.

• ordered propositional symbols (the variables)

• sharing of identical subtrees

• hashing and other optimisations

Detects if a formula is tautologous (=1) or inconsistent (=0).

Exhibits models (paths to 1) if the formula is satisfiable.

Excellent for verifying digital circuits, with many other applications.

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1002

Decision Diagram for (P ∨ Q) ∧ R

P

Q

R R

1000 0 01 1

Q

R R

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1003

Converting a Decision Diagram to a BDD

P

Q

R

Q

R

0 1

P

Q

R

0 1

No duplicates No redundant tests

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1004

Building BDDs Efficiently

Do not construct the full binary tree!

Do not expand →, ↔, ⊕ (exclusive OR) to other connectives!!

• Recursively convert operands to BDDs.

• Combine operand BDDs, respecting the ordering and sharing.

• Delete redundant variable tests.

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1005

Canonical Form Algorithm

To convert Z ∧ Z ′, where Z and Z ′ are already BDDs:

Trivial if either operand is 1 or 0.

Let Z = if(P,X, Y) and Z ′ = if(P ′, X ′, Y ′)

• If P = P ′ then recursively convert if(P, X ∧ X ′, Y ∧ Y ′).

• If P < P ′ then recursively convert if(P, X ∧ Z ′, Y ∧ Z ′).

• If P > P ′ then recursively convert if(P ′, Z ∧ X ′, Z ∧ Y ′).

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1006

Canonical Forms of Other Connectives

Z ∨ Z ′, Z → Z ′ and Z ↔ Z ′ are converted to BDDs similarly.

Some cases, like Z → 0 and Z ↔ 0, reduce to negation.

Here is how to convert ¬Z, where Z is a BDD:

• If Z = if(P,X, Y) then recursively convert if(P, ¬X, ¬Y).

• if Z = 1 then return 0, and if Z = 0 then return 1.

(In effect we copy the BDD but exchange the 1 and 0 at the bottom.)

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1007

Canonical Form (that is, BDD) of P ∨ Q

P

0 1

Q

0 1

P

∨

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1008

Canonical Form of P ∨ Q → Q ∨ R

Q

0 1

P →

R

0 1

Q

R

0 1

Q

P

is

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1009

Optimisations

Never build the same BDD twice, but share pointers. Advantages:

• If X ≃ Y, then the addresses of X and Y are equal.

• Can see if if(P,X, Y) is redundant by checking if X = Y.

• Can quickly simplify special cases like X ∧ X.

Never convert X ∧ Y twice, but keep a hash table of known canonical

forms. This prevents redundant computations.

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1010

Final Observations

The variable ordering is crucial. Consider this formula:

(P1 ∧ Q1) ∨ · · · ∨ (Pn ∧ Qn)

A good ordering is P1 < Q1 < · · · < Pn < Qn: the BDD is linear.

With P1 < · · · < Pn < Q1 < · · · < Qn, the BDD is exponential.

Many digital circuits have small BDDs: adders, but not multipliers.

BDDs can solve problems in hundreds of variables.

The general case remains hard (it is NP-complete).

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1101

Modal Operators

W: set of possible worlds (machine states, future times, . . .)

R: accessibility relation between worlds

(W,R) is called a modal frame

✷A means A is necessarily true

✸A means A is possibly true

}
in all worlds accessible from here

¬✸A ≃ ✷¬A A cannot be true ⇐⇒ A must be false

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1102

Semantics of Propositional Modal Logic

For a particular frame (W,R)

An interpretation I maps the propositional letters to subsets of W

w A means A is true in world w

w P ⇐⇒ w ∈ I(P)

w A ∧ B⇐⇒ w A and w B

w ✷A ⇐⇒ v A for all v such that R(w, v)

w ✸A ⇐⇒ v A for some v such that R(w, v)

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1103

Truth and Validity in Modal Logic

For a particular frame (W,R), and interpretation I

w A means A is true in world w

|=W,R,I A means w A for all w in W

|=W,R A means w A for all w and all I

|= A means |=W,R A for all frames; A is universally valid

. . . but typically we constrain R to be, say, transitive.

All propositional tautologies are universally valid!

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1104

A Hilbert-Style Proof System for K

Extend your favourite propositional proof system with

Dist ✷(A → B) → (✷A → ✷B)

Inference Rule: Necessitation

A
✷A

Treat ✸ as a definition

✸A
def
= ¬✷¬A

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1105

Variant Modal Logics

Start with pure modal logic, which is called K

Add axioms to constrain the accessibility relation:

T ✷A → A (reflexive) logic T

4 ✷A → ✷✷A (transitive) logic S4

B A → ✷✸A (symmetric) logic S5

And countless others!

We mainly look at S4, which resembles a logic of time.

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1106

Extra Sequent Calculus Rules for S4

A, Γ⇒∆

✷A, Γ⇒∆
(✷l)

Γ∗⇒∆∗, A

Γ⇒∆,✷A
(✷r)

A, Γ∗⇒∆∗

✸A, Γ⇒∆
(✸l)

Γ⇒∆,A

Γ⇒∆,✸A
(✸r)

Γ∗ def
= {✷B | ✷B ∈ Γ } Erase non-✷ assumptions.

∆∗ def
= {✸B | ✸B ∈ ∆} Erase non-✸ goals!

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1107

A Proof of the Distribution Axiom

A⇒B,A B,A⇒B

A → B,A⇒B
(→l)

A → B,✷A⇒B
(✷l)

✷(A → B),✷A⇒B
(✷l)

✷(A → B),✷A⇒✷B
(✷r)

And thus ✷(A → B) → (✷A → ✷B)

Must apply (✷r) first!

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1108

Part of an “Operator String Equivalence”

✸A⇒✸A

✷✸A⇒✸A
(✷l)

✸✷✸A⇒✸A
(✸l)

✷✸✷✸A⇒✸A
(✷l)

✷✸✷✸A⇒✷✸A
(✷r)

In fact, ✷✸✷✸A ≃ ✷✸A also ✷✷A ≃ ✷A

The S4 operator strings are ✷ ✸ ✷✸ ✸✷ ✷✸✷ ✸✷✸

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1109

Two Failed Proofs

⇒A

⇒✸A
(✸r)

A⇒✷✸A
(✷r)

B⇒A ∧ B

B⇒✸(A ∧ B)
(✸r)

✸A,✸B⇒✸(A ∧ B)
(✸l)

Can extract a countermodel from the proof attempt

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1201

Simplifying the Sequent Calculus

7 connectives (or 9 for modal logic):

¬ ∧ ∨ → ↔ ∀ ∃ (✷ ✸)

Left and right: so 14 rules (or 18) plus basic sequent, cut

Idea! Work in Negation Normal Form

Fewer connectives: ∧ ∨ ∀ ∃ (✷ ✸)

Sequents need one side only!

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1202

Tableau Calculus: Left-Only

¬A,A, Γ⇒
(basic) ¬A, Γ⇒ A, Γ⇒

Γ⇒
(cut)

A,B, Γ⇒
A ∧ B, Γ⇒

(∧l)
A, Γ⇒ B, Γ⇒

A ∨ B, Γ⇒
(∨l)

A[t/x], Γ⇒
∀xA, Γ⇒

(∀l)
A, Γ⇒

∃xA, Γ⇒
(∃l)

Rule (∃l) holds provided x is not free in the conclusion!

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1203

Tableau Rules for S4

A, Γ⇒
✷A, Γ⇒

(✷l)
A, Γ∗⇒

✸A, Γ⇒
(✸l)

Γ∗ def
= {✷B | ✷B ∈ Γ } Erase non-✷ assumptions

From 14 (or 18) rules to 4 (or 6)

Left-side only system uses proof by contradiction

Right-side only system is an exact dual

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1204

Tableau Proof of ∀x (P → Q(x)) → [P → ∀yQ(y)]

Negate and convert to NNF:

P, ∃y¬Q(y), ∀x (¬P ∨ Q(x))⇒

P, ¬Q(y), ¬P⇒ P, ¬Q(y), Q(y)⇒
P, ¬Q(y), ¬P ∨ Q(y)⇒

(∨l)

P, ¬Q(y), ∀x (¬P ∨ Q(x))⇒
(∀l)

P, ∃y¬Q(y), ∀x (¬P ∨ Q(x))⇒
(∃l)

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1205

The Free-Variable Tableau Calculus

Rule (∀l) now inserts a new free variable:

A[z/x], Γ⇒
∀xA, Γ⇒

(∀l)

Let unification instantiate any free variable

In ¬A,B, Γ⇒ try unifying A with B to make a basic sequent

Updating a variable affects entire proof tree

What about rule (∃l)? Do not use it! Instead, Skolemize!

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1206

Skolemization from NNF

Recall e.g. that we Skolemize

[∀y∃zQ(y, z)] ∧ ∃x P(x) to [∀yQ(y, f(y))] ∧ P(a)

Remark: pushing quantifiers in (miniscoping) gives better results.

Example: proving ∃x∀y [P(x) → P(y)]:

Negate; convert to NNF: ∀x∃y [P(x) ∧ ¬P(y)]

Push in the ∃y : ∀x [P(x) ∧ ∃y¬P(y)]

Push in the ∀x : (∀x P(x)) ∧ (∃y¬P(y))

Skolemize: ∀x P(x) ∧ ¬P(a)

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1207

Free-Variable Tableau Proof of ∃x∀y [P(x) → P(y)]

y 7→ f(z)

P(y), ¬P(f(y)), P(z), ¬P(f(z))⇒
(basic)

P(y), ¬P(f(y)), P(z) ∧ ¬P(f(z))⇒
(∧l)

P(y), ¬P(f(y)), ∀x [P(x) ∧ ¬P(f(x))]⇒
(∀l)

P(y) ∧ ¬P(f(y)), ∀x [P(x) ∧ ¬P(f(x))]⇒
(∧l)

∀x [P(x) ∧ ¬P(f(x))]⇒
(∀l)

Unification chooses the term for (∀l)

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1208

A Failed Proof

Try to prove ∀x [P(x) ∨ Q(x)] → [∀x P(x) ∨ ∀xQ(x)]

NNF: ∃x¬P(x) ∧ ∃x¬Q(x) ∧ ∀x [P(x) ∨ Q(x)]⇒

Skolemize: ¬P(a), ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒

y 7→ a

¬P(a), ¬Q(b), P(y)⇒
y 7→ b???

¬P(a), ¬Q(b), Q(y)⇒
¬P(a), ¬Q(b), P(y) ∨ Q(y)⇒

(∨l)

¬P(a), ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒
(∀l)

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1209

The World’s Smallest Theorem Prover?

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !, and

prove(A,[B|UnExp],Lits,FreeV,VarLim).

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !, or

prove(A,UnExp,Lits,FreeV,VarLim),

prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !, forall

\+ length(FreeV,VarLim),

copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,Fml)],UnExp1),

prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

prove(Lit,_,[L|Lits],_,_) :- literals; negation

(Lit = -Neg; -Lit = Neg) ->

(unify(Neg,L); prove(Lit,[],Lits,_,_)).

prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :- next formula

prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

Lawrence C. Paulson University of Cambridge

