
L95: Natural Language Syntax and Parsing
7) Parsing Accuracy

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 1 / 15



Reminder...

We have looked at:

grammars (PCFG, dependency, CCG)

parsing algorithms (dynamic, deterministic, heuristic)

parse scoring models (Bayesian, log-linear, cost-functions)

methods for selecting n-best parses (beams, agendas)

But what do we need to do to make the parser as accurate as possible... ?

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 2 / 15



Reminder: PCFGs have some shortcomings

When we looked at PCFGs we noted two sources of inaccuracy:

The independence assumption: unable to model structural
dependency across the tree as a whole

The choice of how a non-terminal expands depend on the location in
the parse tree.
In English, subject NPs are more likely to be pronouns (≈ 90%), and
objects NPs are more likely to be non-pronominal (≈ 60%)

Lack of lexical specificity: unable to model the structural behaviour
specific to a lexical item

E.g. VP-attachment of PPs are more common in English
We will always get some people like beer in cold glasses wrong
Also lack of subcategorisation
And co-ordination

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 15



Reminder: PCFGs have some shortcomings

Lack of lexical specificity: these co-ordinated trees have the same
probability...

12 CHAPTER 12 • STATISTICAL PARSING

What information in the input sentence lets us know that (12.20) requires NP
attachment while (12.19) requires VP attachment?

It should be clear that these preferences come from the identities of the verbs,
nouns, and prepositions. It seems that the affinity between the verb dumped and the
preposition into is greater than the affinity between the noun sacks and the preposi-
tion into, thus leading to VP attachment. On the other hand, in (12.20) the affinity
between tons and of is greater than that between caught and of, leading to NP attach-
ment.

Thus, to get the correct parse for these kinds of examples, we need a model that
somehow augments the PCFG probabilities to deal with these lexical dependencylexical

dependency
statistics for different verbs and prepositions.

Coordination ambiguities are another case in which lexical dependencies are
the key to choosing the proper parse. Figure 12.7 shows an example from Collins
(1999) with two parses for the phrase dogs in houses and cats. Because dogs is
semantically a better conjunct for cats than houses (and because most dogs can’t fit
inside cats), the parse [dogs in [NP houses and cats]] is intuitively unnatural and
should be dispreferred. The two parses in Fig. 12.7, however, have exactly the same
PCFG rules, and thus a PCFG will assign them the same probability.

NP

NP

Noun

cats

Conj

and

NP

PP

NP

Noun

houses

Prep

in

NP

Noun

dogs

NP

PP

NP

NP

Noun

cats

Conj

and

NP

Noun

houses

Prep

in

NP

Noun

dogs

Figure 12.7 An instance of coordination ambiguity. Although the left structure is intu-
itively the correct one, a PCFG will assign them identical probabilities since both structures
use exactly the same set of rules. After Collins (1999).

In summary, we have shown in this section and the previous one that probabilistic
context-free grammars are incapable of modeling important structural and lexical
dependencies. In the next two sections we sketch current methods for augmenting
PCFGs to deal with both these issues.

12.5 Improving PCFGs by Splitting Non-Terminals

Let’s start with the first of the two problems with PCFGs mentioned above: their
inability to model structural dependencies, like the fact that NPs in subject position
tend to be pronouns, whereas NPs in object position tend to have full lexical (non-
pronominal) form. How could we augment a PCFG to correctly model this fact?
One idea would be to split the NP non-terminal into two versions: one for sub-split

From Jurafsky and Martin version 3, following Collins

Today will we look as how to get around these issues.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 15



Reminder: PCFGs have some shortcomings

Lack of lexical specificity: these co-ordinated trees have the same
probability...

12 CHAPTER 12 • STATISTICAL PARSING

What information in the input sentence lets us know that (12.20) requires NP
attachment while (12.19) requires VP attachment?

It should be clear that these preferences come from the identities of the verbs,
nouns, and prepositions. It seems that the affinity between the verb dumped and the
preposition into is greater than the affinity between the noun sacks and the preposi-
tion into, thus leading to VP attachment. On the other hand, in (12.20) the affinity
between tons and of is greater than that between caught and of, leading to NP attach-
ment.

Thus, to get the correct parse for these kinds of examples, we need a model that
somehow augments the PCFG probabilities to deal with these lexical dependencylexical

dependency
statistics for different verbs and prepositions.

Coordination ambiguities are another case in which lexical dependencies are
the key to choosing the proper parse. Figure 12.7 shows an example from Collins
(1999) with two parses for the phrase dogs in houses and cats. Because dogs is
semantically a better conjunct for cats than houses (and because most dogs can’t fit
inside cats), the parse [dogs in [NP houses and cats]] is intuitively unnatural and
should be dispreferred. The two parses in Fig. 12.7, however, have exactly the same
PCFG rules, and thus a PCFG will assign them the same probability.

NP

NP

Noun

cats

Conj

and

NP

PP

NP

Noun

houses

Prep

in

NP

Noun

dogs

NP

PP

NP

NP

Noun

cats

Conj

and

NP

Noun

houses

Prep

in

NP

Noun

dogs

Figure 12.7 An instance of coordination ambiguity. Although the left structure is intu-
itively the correct one, a PCFG will assign them identical probabilities since both structures
use exactly the same set of rules. After Collins (1999).

In summary, we have shown in this section and the previous one that probabilistic
context-free grammars are incapable of modeling important structural and lexical
dependencies. In the next two sections we sketch current methods for augmenting
PCFGs to deal with both these issues.

12.5 Improving PCFGs by Splitting Non-Terminals

Let’s start with the first of the two problems with PCFGs mentioned above: their
inability to model structural dependencies, like the fact that NPs in subject position
tend to be pronouns, whereas NPs in object position tend to have full lexical (non-
pronominal) form. How could we augment a PCFG to correctly model this fact?
One idea would be to split the NP non-terminal into two versions: one for sub-split

From Jurafsky and Martin version 3, following Collins

Today will we look as how to get around these issues.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 15



Relax independence by splitting non-terminals

For the pronoun issue, intuition is that we need more NP rules:

instead of NP → PRP we need two rules:

NPsubject → PRP

NPobject → PRP

How can we implement this without a semantic treebank? by annotating
non-terminals with their parent nodes

12.5 • IMPROVING PCFGS BY SPLITTING NON-TERMINALS 13

jects, one for objects. Having two nodes (e.g., NPsubject and NPobject) would allow
us to correctly model their different distributional properties, since we would have
different probabilities for the rule NPsubject ! PRP and the rule NPobject ! PRP.

One way to implement this intuition of splits is to do parent annotation (John-parent
annotation

son, 1998), in which we annotate each node with its parent in the parse tree. Thus,
an NP node that is the subject of the sentence and hence has parent S would be anno-
tated NPˆS, while a direct object NP whose parent is VP would be annotated NPˆVP.
Figure 12.8 shows an example of a tree produced by a grammar that parent-annotates
the phrasal non-terminals (like NP and VP).

a) S

VP

NP

NN

flight

DT

a

VBD

need

NP

PRP

I

b) S

VPˆS

NPˆVP

NN

flight

DT

a

VBD

need

NPˆS

PRP

I

Figure 12.8 A standard PCFG parse tree (a) and one which has parent annotation on the
nodes which aren’t pre-terminal (b). All the non-terminal nodes (except the pre-terminal
part-of-speech nodes) in parse (b) have been annotated with the identity of their parent.

In addition to splitting these phrasal nodes, we can also improve a PCFG by
splitting the pre-terminal part-of-speech nodes (Klein and Manning, 2003b). For ex-
ample, different kinds of adverbs (RB) tend to occur in different syntactic positions:
the most common adverbs with ADVP parents are also and now, with VP parents
n’t and not, and with NP parents only and just. Thus, adding tags like RBˆADVP,
RBˆVP, and RBˆNP can be useful in improving PCFG modeling.

Similarly, the Penn Treebank tag IN can mark a wide variety of parts-of-speech,
including subordinating conjunctions (while, as, if), complementizers (that, for), and
prepositions (of, in, from). Some of these differences can be captured by parent an-
notation (subordinating conjunctions occur under S, prepositions under PP), while
others require specifically splitting the pre-terminal nodes. Figure 12.9 shows an ex-
ample from Klein and Manning (2003b) in which even a parent-annotated grammar
incorrectly parses works as a noun in to see if advertising works. Splitting pre-
terminals to allow if to prefer a sentential complement results in the correct verbal
parse.

To deal with cases in which parent annotation is insufficient, we can also hand-
write rules that specify a particular node split based on other features of the tree. For
example, to distinguish between complementizer IN and subordinating conjunction
IN, both of which can have the same parent, we could write rules conditioned on
other aspects of the tree such as the lexical identity (the lexeme that is likely to be a
complementizer, as a subordinating conjunction).

Node-splitting is not without problems; it increases the size of the grammar and
hence reduces the amount of training data available for each grammar rule, leading
to overfitting. Thus, it is important to split to just the correct level of granularity for a
particular training set. While early models employed hand-written rules to try to find
an optimal number of non-terminals (Klein and Manning, 2003b), modern models

From Jurafsky and Martin version 3

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 5 / 15



Relax independence by splitting non-terminals

For the pronoun issue, intuition is that we need more NP rules:
instead of NP → PRP we need two rules:

NPsubject → PRP

NPobject → PRP

How can we implement this without a semantic treebank?

by annotating
non-terminals with their parent nodes

12.5 • IMPROVING PCFGS BY SPLITTING NON-TERMINALS 13

jects, one for objects. Having two nodes (e.g., NPsubject and NPobject) would allow
us to correctly model their different distributional properties, since we would have
different probabilities for the rule NPsubject ! PRP and the rule NPobject ! PRP.

One way to implement this intuition of splits is to do parent annotation (John-parent
annotation

son, 1998), in which we annotate each node with its parent in the parse tree. Thus,
an NP node that is the subject of the sentence and hence has parent S would be anno-
tated NPˆS, while a direct object NP whose parent is VP would be annotated NPˆVP.
Figure 12.8 shows an example of a tree produced by a grammar that parent-annotates
the phrasal non-terminals (like NP and VP).

a) S

VP

NP

NN

flight

DT

a

VBD

need

NP

PRP

I

b) S

VPˆS

NPˆVP

NN

flight

DT

a

VBD

need

NPˆS

PRP

I

Figure 12.8 A standard PCFG parse tree (a) and one which has parent annotation on the
nodes which aren’t pre-terminal (b). All the non-terminal nodes (except the pre-terminal
part-of-speech nodes) in parse (b) have been annotated with the identity of their parent.

In addition to splitting these phrasal nodes, we can also improve a PCFG by
splitting the pre-terminal part-of-speech nodes (Klein and Manning, 2003b). For ex-
ample, different kinds of adverbs (RB) tend to occur in different syntactic positions:
the most common adverbs with ADVP parents are also and now, with VP parents
n’t and not, and with NP parents only and just. Thus, adding tags like RBˆADVP,
RBˆVP, and RBˆNP can be useful in improving PCFG modeling.

Similarly, the Penn Treebank tag IN can mark a wide variety of parts-of-speech,
including subordinating conjunctions (while, as, if), complementizers (that, for), and
prepositions (of, in, from). Some of these differences can be captured by parent an-
notation (subordinating conjunctions occur under S, prepositions under PP), while
others require specifically splitting the pre-terminal nodes. Figure 12.9 shows an ex-
ample from Klein and Manning (2003b) in which even a parent-annotated grammar
incorrectly parses works as a noun in to see if advertising works. Splitting pre-
terminals to allow if to prefer a sentential complement results in the correct verbal
parse.

To deal with cases in which parent annotation is insufficient, we can also hand-
write rules that specify a particular node split based on other features of the tree. For
example, to distinguish between complementizer IN and subordinating conjunction
IN, both of which can have the same parent, we could write rules conditioned on
other aspects of the tree such as the lexical identity (the lexeme that is likely to be a
complementizer, as a subordinating conjunction).

Node-splitting is not without problems; it increases the size of the grammar and
hence reduces the amount of training data available for each grammar rule, leading
to overfitting. Thus, it is important to split to just the correct level of granularity for a
particular training set. While early models employed hand-written rules to try to find
an optimal number of non-terminals (Klein and Manning, 2003b), modern models

From Jurafsky and Martin version 3

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 5 / 15



Relax independence by splitting non-terminals

For the pronoun issue, intuition is that we need more NP rules:
instead of NP → PRP we need two rules:

NPsubject → PRP

NPobject → PRP

How can we implement this without a semantic treebank? by annotating
non-terminals with their parent nodes

12.5 • IMPROVING PCFGS BY SPLITTING NON-TERMINALS 13

jects, one for objects. Having two nodes (e.g., NPsubject and NPobject) would allow
us to correctly model their different distributional properties, since we would have
different probabilities for the rule NPsubject ! PRP and the rule NPobject ! PRP.

One way to implement this intuition of splits is to do parent annotation (John-parent
annotation

son, 1998), in which we annotate each node with its parent in the parse tree. Thus,
an NP node that is the subject of the sentence and hence has parent S would be anno-
tated NPˆS, while a direct object NP whose parent is VP would be annotated NPˆVP.
Figure 12.8 shows an example of a tree produced by a grammar that parent-annotates
the phrasal non-terminals (like NP and VP).

a) S

VP

NP

NN

flight

DT

a

VBD

need

NP

PRP

I

b) S

VPˆS

NPˆVP

NN

flight

DT

a

VBD

need

NPˆS

PRP

I

Figure 12.8 A standard PCFG parse tree (a) and one which has parent annotation on the
nodes which aren’t pre-terminal (b). All the non-terminal nodes (except the pre-terminal
part-of-speech nodes) in parse (b) have been annotated with the identity of their parent.

In addition to splitting these phrasal nodes, we can also improve a PCFG by
splitting the pre-terminal part-of-speech nodes (Klein and Manning, 2003b). For ex-
ample, different kinds of adverbs (RB) tend to occur in different syntactic positions:
the most common adverbs with ADVP parents are also and now, with VP parents
n’t and not, and with NP parents only and just. Thus, adding tags like RBˆADVP,
RBˆVP, and RBˆNP can be useful in improving PCFG modeling.

Similarly, the Penn Treebank tag IN can mark a wide variety of parts-of-speech,
including subordinating conjunctions (while, as, if), complementizers (that, for), and
prepositions (of, in, from). Some of these differences can be captured by parent an-
notation (subordinating conjunctions occur under S, prepositions under PP), while
others require specifically splitting the pre-terminal nodes. Figure 12.9 shows an ex-
ample from Klein and Manning (2003b) in which even a parent-annotated grammar
incorrectly parses works as a noun in to see if advertising works. Splitting pre-
terminals to allow if to prefer a sentential complement results in the correct verbal
parse.

To deal with cases in which parent annotation is insufficient, we can also hand-
write rules that specify a particular node split based on other features of the tree. For
example, to distinguish between complementizer IN and subordinating conjunction
IN, both of which can have the same parent, we could write rules conditioned on
other aspects of the tree such as the lexical identity (the lexeme that is likely to be a
complementizer, as a subordinating conjunction).

Node-splitting is not without problems; it increases the size of the grammar and
hence reduces the amount of training data available for each grammar rule, leading
to overfitting. Thus, it is important to split to just the correct level of granularity for a
particular training set. While early models employed hand-written rules to try to find
an optimal number of non-terminals (Klein and Manning, 2003b), modern models

From Jurafsky and Martin version 3

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 5 / 15



Parent annotation helps in several scenarios

Other examples of parent annotation:

e.g. differentiating between adverbs by annotating pre-terminals with
their parents

e.g. subordinating conjunctions, while, as, if, occur under S

Where parent annotation can’t help we could split on other features
(i.e. hand write rules for specific feature scenarios)

See https://nlp.stanford.edu/manning/papers/

unlexicalized-parsing.pdf for some discussion

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 6 / 15

https://nlp.stanford.edu/manning/papers/unlexicalized-parsing.pdf
https://nlp.stanford.edu/manning/papers/unlexicalized-parsing.pdf


A trade-off between splitting and training

Splitting non-terminals increases the grammar size

Increased grammar size means less data per rule instance for MLE

split and merge techniques automatically search for the optimal
splits by maximising the likelihood of the training set (e.g. Petrov
et al. 2006)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 15



non-terminal splitting example in class

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 8 / 15



Lexicalised-PCFGs include lexical info in the grammar

Collins and Charniak parsers use lexicalised-PCFGs

Lexicalisation can include both the head word token and its
part-of-speech

12.6 • PROBABILISTIC LEXICALIZED CFGS 15

headword and the head tag of each constituent resulting in a format for lexicalized
rules like

VP(dumped,VBD) ! VBD(dumped,VBD) NP(sacks,NNS) PP(into,P) (12.22)

We show a lexicalized parse tree with head tags in Fig. 12.10, extended from Fig. ??.

TOP

S(dumped,VBD)

VP(dumped,VBD)

PP(into,P)

NP(bin,NN)

NN(bin,NN)

bin

DT(a,DT)

a

P(into,P)

into

NP(sacks,NNS)

NNS(sacks,NNS)

sacks

VBD(dumped,VBD)

dumped

NP(workers,NNS)

NNS(workers,NNS)

workers

Internal Rules Lexical Rules
TOP ! S(dumped,VBD) NNS(workers,NNS) ! workers
S(dumped,VBD) ! NP(workers,NNS) VP(dumped,VBD) VBD(dumped,VBD) ! dumped
NP(workers,NNS) ! NNS(workers,NNS) NNS(sacks,NNS) ! sacks
VP(dumped,VBD) ! VBD(dumped, VBD) NP(sacks,NNS) PP(into,P) P(into,P) ! into
PP(into,P) ! P(into,P) NP(bin,NN) DT(a,DT) ! a
NP(bin,NN) ! DT(a,DT) NN(bin,NN) NN(bin,NN) ! bin

Figure 12.10 A lexicalized tree, including head tags, for a WSJ sentence, adapted from Collins (1999). Below
we show the PCFG rules that would be needed for this parse tree, internal rules on the left, and lexical rules on
the right.

To generate such a lexicalized tree, each PCFG rule must be augmented to iden-
tify one right-hand constituent to be the head daughter. The headword for a node is
then set to the headword of its head daughter, and the head tag to the part-of-speech
tag of the headword. Recall that we gave in Fig. ?? a set of hand-written rules for
identifying the heads of particular constituents.

A natural way to think of a lexicalized grammar is as a parent annotation, that
is, as a simple context-free grammar with many copies of each rule, one copy for
each possible headword/head tag for each constituent. Thinking of a probabilistic
lexicalized CFG in this way would lead to the set of simple PCFG rules shown below
the tree in Fig. 12.10.

Note that Fig. 12.10 shows two kinds of rules: lexical rules, which expresslexical rules

the expansion of a pre-terminal to a word, and internal rules, which express theinternal rules

other rule expansions. We need to distinguish these kinds of rules in a lexicalized
grammar because they are associated with very different kinds of probabilities. The
lexical rules are deterministic, that is, they have probability 1.0 since a lexicalized
pre-terminal like NN(bin,NN) can only expand to the word bin. But for the internal
rules, we need to estimate probabilities.

From Jurafsky and Martin version 3

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 15



Lexicalised-PCFGs include lexical info in the grammar

For each rule one of the RHS daughters is the head

The head information for the LHS of the rule is the same as the RHS
head

Pre-terminal rules always have a probability of 1

All other rule probabilities need to be calculated ...

... but the data available per rule is now very sparse

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 15



Lexicalised-PCFGs include lexical info in the grammar

For each rule one of the RHS daughters is the head

The head information for the LHS of the rule is the same as the RHS
head

Pre-terminal rules always have a probability of 1

All other rule probabilities need to be calculated ...

... but the data available per rule is now very sparse

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 15



Collins handles sparsity by generating the RHS of rules

RHS of every rule consists of a head plus all the non-terminals to the
head’s left and all the non-terminals to the head’s right

LHS → Lm ... L1 H R1 ... Rn

To use a rule we:

- first generate the head,

- then all the left dependents from the head outwards

- and finally all the right dependents from the head outwards

We imagine a STOP non-terminal at the edges of the rule

LHS → STOP Lm ... L1 H R1 ... Rn STOP

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 15



Rule probability is the product of all generated pieces

Remember that for PCFGs: P(A→ B) = P(B|A)

For lexicalised PCFGs: A→ STOP Lm ... L1 H R1 ... Rn STOP

- The probability of the head H with associated word hw and tag ht
given the parent, A is:

P(H(wh, th)) = P(H(hw , ht)|A, hw , ht)
- The probability of modifiers to the left of the head is:

m+1∏
i=1

P(Li (lwi , lti )|A,H, hw , ht)

- The probability of modifiers to the right of the head is:
n+1∏
i=1

P(Ri (rwi , rti )|A,H, hw , ht)

where Lm+1 = STOP and Rn+1 = STOP

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 12 / 15



lexicalised-PCFG rule probability estimation in class

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 13 / 15



Collins models have other conditional features

Collins 1 includes a distance metic in the conditional probabilities

Collins 2 includes conditioning on subcategorisation and
argument/adjunct

In training Collin’s interpolates three models:

- fully lexicalised (conditioning on the head word and tag),

- just the head tag

- unlexicalized

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 14 / 15



Remember Coarse-to-fine strategy, Charniak

We can now understand better Charniak’s coarse-to-fine parsing strategy:

1 produce a parse forest using simple version of the grammar
i.e. find possible parses using coarse-grained non-terminals, e.g. VP

2 refine most promising of coarse-grained parses using complex grammar
i.e with feature-based, lexicalised non-terminals, e.g. VP[buys/VBZ ]

Coarse-grained step can be efficiently parsed using e.g. CKY

But the simple grammar ignores contextual features so best parse
might not be accurate

Output a pruned packed parse forest for the parses generated by
the simple grammar (using a beam threshold)

Evaluate remaining parses with complex grammar (i.e. each
coarse-grained state is split into several fine-grained states)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 15 / 15


