5) Parsing Efficiency

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge
Reminder...

So far we have looked at:

- grammars (PCFG, Dependancy, CCG)
- a parsing algorithm (dynamic programming CKY, Shift-Reduce)
- a scoring model for parses (Bayesian, Log-linear)
- an algorithm for finding best parse (Viterbi)
Yet to come...

Things still to do:
- grammars (Lexicalised PCFG, Unification-Based grammars)
- a parsing algorithm (heuristic algorithms)
- a scoring model for parses (A* cost function)
- an algorithm for finding best parse (n-best parses, parse reranking)

Today: Heuristic search and the A* algorithm
Yet to come...

Things still to do:

- grammars (Lexicalised PCFG, Unification-Based grammars)
- a parsing algorithm (heuristic algorithms)
- a scoring model for parses (A* cost function)
- an algorithm for finding best parse (n-best parses, parse reranking)

Today: **Heuristic search** and the **A* algorithm**
CKY is optimal and exhaustive

The basic CKY algorithm will:
- Finds all possible parses
- Is guaranteed to find the best-parse

If we associate partial derivations with a state then:
- finding the best-parse is traversing the states until we find the goal state (state representing \([S, 0, n]\))
- notice that basic CKY discovers all possible states in search of the goal state
- a more efficient algorithm might reach the goal state more directly
- the probabilistic (Viterbi-like) version of CKY reduces the number states—can we be more efficient?
CKY is optimal and exhaustive

The basic CKY algorithm will:
- Finds all possible parses
- Is guaranteed to find the best-parse

If we associate partial derivations with a state then:
- finding the best-parse is traversing the states until we find the goal state (state representing $[S, 0, n]$)
- notice that basic CKY discovers all possible states in search of the goal state
- a more efficient algorithm might reach the goal state more directly
- the probabilistic (Viterbi-like) version of CKY reduces the number states—can we be more efficient?
The **A* algorithm** uses an **agenda**

- An agenda is a **priority queue**
- States representing partial solutions are added to an **agenda** based on minimising a **cost function**, $f(n)$
- The first solution state found it is guaranteed to be optimal
- $f(n)$ has two components:
 - $g(n)$ the exact cost of the partial solution at state n
 - $h(n)$ heuristic approximation that **never overestimates** the cost of a solution using of n
A* for PSG, Klein and Manning

Search states correspond to edges (partial derivations)
\([\text{category}, \text{start}, \text{end}]\)

- Initialise with word edges and costs:
 \([X, i, i]\) and \(\text{cost}(X, i, i) = -\log P(w_i, t_i)\)
- Get the highest priority edge and associated cost from the agenda:
 \([X, i, j]\) and \(\text{cost}(X, i, j)\)
- If highest priority edge represents \([S, 0, n]\) then stop
- Find all compatible neighbours edges:
 e.g. if \(A \rightarrow XY\) exists in the grammar find things like \([Y, j, k]\)
 \[\text{Consider cost of new parent edge:}\]
 \(\text{cost}(A, i, k) \leq \text{cost}(X, i, j) + \text{cost}(Y, j, k) + -\log P(A \rightarrow XY)\)
- Insert parent edge, \([A, i, k]\), into the agenda if \(\text{cost}(A, i, k)\) has improved
- If the agenda is exhausted the parse has failed
A* CFG example in class
function CCG-ASTAR-PARSE(words) returns table or failure

supertags ← SUPERTAGGER(words)
for i ← from 1 to LENGTH(words) do
 for all {A | (words[i], A, score) ∈ supertags}
 edge ← MAKEEDGE(i − 1, i, A, score)
 table ← INSERTEDGE(table, edge)
 agenda ← INSERTEDGE(agenda, edge)

loop do
 if EMPTY?(agenda) return failure
 current ← POP(agenda)
 if COMPLETEDPARSE?(current) return table
 table ← INSERTEDGE(chart, edge)
 for each rule in APPLICABLERULES(edge) do
 successor ← APPLY(rule, edge)
 if successor not ∈ in agenda or chart
 agenda ← INSERTEDGE(agenda, successor)
 else if successor ∈ agenda with higher cost
 agenda ← REPLACEEDGE(agenda, successor)

Psuedo code from Jurafsky and Martin version 3
For PCFG the probability of a tree is the product of the probability of the rules that made up the tree.

For CCG derivation use the product of the probability of the supertags assigned to the words in the derivation (i.e. ignore the rules)

Formally, given a sentence S and derivation D with supertag sequence T:

$$P(D, S) = P(T, S) = \prod_{i=1}^{n} P(t_i|w_i)$$

Convert for cost function:

$$g(w_1,n) = \sum_{i=1}^{n} - \log P(t_i|w_i)$$
\(h(n) \) for the A* CCG is based on the lexicon

For \(h(n) \) assume that each word in the outside span will be assigned its most probable supertag (approximates but never overestimates the actual cost)

\[
f(w_{i,j}, t_{i,j}) = g(w_{i,j}) + h(w_{i,j}) \\
= \sum_{k=i}^{j} -\log P(t_k|w_k) \\
+ \sum_{k=1}^{i-1} \max_{t \in \text{tags}} (-\log P(t|w_k)) + \sum_{k=j}^{n} \max_{t \in \text{tags}} (-\log P(t|w_k))
\]
A* CCG example in class
What if I need N-best parses?

Discussion (and more in later lectures):

- Extending CKY for n-best parses
- Extending A* for n-best parses
- Extending shift-reduce for n-best parses
- Discriminative reranking