L95: Natural Language Syntax and Parsing 2) PCFGs and CKY parsing

Paula Buttery

Dept of Computer Science \& Technology, University of Cambridge

Reminder: languages can also be defined using automata

Recall that a language is regular if it is equal to the set of strings accepted by some deterministic finite-state automaton (DFA).
A DFA is defined as $M=(\mathcal{Q}, \Sigma, \Delta, s, \mathcal{F})$ where:

- $\mathcal{Q}=\left\{q_{0}, q_{1}, q_{2} \ldots\right\}$ is a finite set of states.
- Σ is the alphabet: a finite set of transition symbols.
- $\Delta \subseteq \mathcal{Q} \times \Sigma \times \mathcal{Q}$ is a function $\mathcal{Q} \times \Sigma \rightarrow \mathcal{Q}$ which we write as δ. Given $q \in \mathcal{Q}$ and $i \in \Sigma$ then $\delta(q, i)$ returns a new state $q^{\prime} \in \mathcal{Q}$
- s is a starting state
- \mathcal{F} is the set of all end states

Reminder: regular languages are accepted by DFAs

For $\mathcal{L}(M)=\{a, a b, a b b, \ldots\}$:

$$
\begin{aligned}
& \mathrm{M}=\left(\begin{array}{l}
\mathcal{Q}=\left\{q_{0}, q_{1}, q_{2}\right\}, \\
\Sigma=\{a, b\}, \\
\Delta=\left\{\left(q_{0}, a, q_{1}\right),\left(q_{0}, b, q_{2}\right), \ldots,\left(q_{2}, b, q_{2}\right)\right\}, \\
s=q_{0},
\end{array}\right.
\end{aligned}
$$

Simple relationship between a DFA and production rules

$$
\begin{aligned}
Q & =\left\{S, A, B, C, q_{4}\right\} \\
\Sigma & =\{b, a,!\} \\
q_{0} & =S \\
F & =\left\{q_{4}\right\}
\end{aligned}
$$

$S \rightarrow b A$
$A \rightarrow a B$
$B \rightarrow a C$
$C \rightarrow a C$
$C \rightarrow$!

Regular grammars generate regular languages

Given a DFA $M=(\mathcal{Q}, \Sigma, \Delta, s, \mathcal{F})$ the language, $\mathcal{L}(M)$, of strings accepted by M can be generated by the regular grammar $G_{\text {reg }}=(\mathcal{N}, \Sigma, S, \mathcal{P})$ where:

- $\mathcal{N}=\{\mathcal{Q}\}$ the non-terminals are the states of M
- $\Sigma=\Sigma$ the terminals are the set of transition symbols of M
- $S=s$ the starting symbol is the starting state of M
- $\mathcal{P}=q_{i} \rightarrow a q_{j}$ when $\delta\left(q_{i}, a\right)=q_{j} \in \Delta$ or $q_{i} \rightarrow \epsilon$ when $q \in \mathcal{F}$ (i.e. when q is an end state)

Strings are derived from production rules

In order to derive a string from a grammar

- start with the designated starting symbol
- then non-terminal symbols are repeatedly expanded using the rewrite rules until there is nothing further left to expand.
The rewrite rules derive the members of a language from their internal structure (or phrase structure)

$S \rightarrow b A$
$A \rightarrow a B$

$$
B \rightarrow a C
$$

A regular language has a left- and right-linear grammar

For every regular grammar the rewrite rules of the grammar can all be expressed in the form:

$$
\begin{aligned}
& X \rightarrow a Y \\
& X \rightarrow a
\end{aligned}
$$

or alternatively, they can all be expressed as:

$$
\begin{aligned}
& X \rightarrow Y a \\
& X \rightarrow a
\end{aligned}
$$

The two grammars are weakly-equivalent since they generate the same strings.
But not strongly-equivalent because they do not generate the same structure to strings

A regular language has a left- and right-linear grammar

For every regular grammar the rewrite rules of the grammar can all be expressed in the form:

$$
\begin{aligned}
& X \rightarrow a Y \\
& X \rightarrow a
\end{aligned}
$$

or alternatively, they can all be expressed as:

$$
\begin{aligned}
& X \rightarrow Y a \\
& X \rightarrow a
\end{aligned}
$$

The two grammars are weakly-equivalent since they generate the same strings.
But not strongly-equivalent because they do not generate the same structure to strings

A regular language has a left- and right-linear grammar

For every regular grammar the rewrite rules of the grammar can all be expressed in the form:

$$
\begin{aligned}
& X \rightarrow a Y \\
& X \rightarrow a
\end{aligned}
$$

or alternatively, they can all be expressed as:

$$
\begin{aligned}
& X \rightarrow Y a \\
& X \rightarrow a
\end{aligned}
$$

The two grammars are weakly-equivalent since they generate the same strings.
But not strongly-equivalent because they do not generate the same structure to strings

A regular language has a left- and right-linear grammar

A regular grammar is a phrase structure grammar

A phrase structure grammar over an alphabet Σ is defined by a tuple $G=(\mathcal{N}, \Sigma, S, \mathcal{P})$. The language generated by grammar G is $\mathcal{L}(G)$:
Non-terminals \mathcal{N} : Non-terminal symbols (often uppercase letters) may be rewritten using the rules of the grammar.
Terminals Σ : Terminal symbols (often lowercase letters) are elements of Σ and cannot be rewritten. Note $\mathcal{N} \cap \Sigma=\emptyset$.
Start Symbol S : A distinguished non-terminal symbol $S \in \mathcal{N}$. This non-terminal provides the starting point for derivations.
Phrase Structure Rules \mathcal{P} : Phrase structure rules are pairs of the form (w, v) usually written:
$w \rightarrow v$, where $w \in(\Sigma \cup \mathcal{N})^{*} \mathcal{N}(\Sigma \cup \mathcal{N})^{*}$ and $v \in(\Sigma \cup \mathcal{N})^{*}$

Definition of a phrase structure grammar derivation

Given $G=(\mathcal{N}, \Sigma, S, \mathcal{P})$ and $w, v \in(\mathcal{N} \cup \Sigma)^{*}$ a derivation step is possible to transform w into v if:
$u_{1}, u_{2} \in(\mathcal{N} \cup \Sigma)^{*}$ exist such that $w=u_{1} \alpha u_{2}$, and $v=u_{1} \beta u_{2}$ and $\alpha \rightarrow \beta \in \mathcal{P}$

This is written $w \underset{G}{\Rightarrow} v$
A string in the language $\mathcal{L}(G)$ is a member of Σ^{*} that can be derived in a finite number of derivation steps from the starting symbol S.

We use $\underset{G^{*}}{\Rightarrow}$ to denote the reflexive, transitive closure of derivation steps, consequently $\mathcal{L}(G)=\left\{w \in \Sigma^{*} \mid S \underset{G^{*}}{\Rightarrow} w\right\}$.

PSGs may be grouped by production rule properties

Chomsky suggested that phrase structure grammars may be grouped together by the properties of their production rules.

Name
regular
context-free
context-sensitive recursively enum

Form of Rules

$$
\begin{aligned}
& (A \rightarrow A a \text { or } A \rightarrow a A) \text { and } A \rightarrow a \mid A \in \mathcal{N} \text { and } a \in \Sigma \\
& A \rightarrow \alpha \mid A \in \mathcal{N} \text { and } \alpha \in(\mathcal{N} \cup \Sigma)^{*} \\
& \alpha A \beta \rightarrow \alpha \gamma \beta \mid A \in \mathcal{N} \text { and } \alpha, \beta, \gamma \in(\mathcal{N} \cup \Sigma)^{*} \text { and } \gamma \neq \epsilon \\
& \alpha \rightarrow \beta \mid \alpha, \beta \in(\mathcal{N} \cup \Sigma)^{*} \text { and } \alpha \neq \epsilon
\end{aligned}
$$

A class of languages (e.g. the class of regular languages) is all the languages that can be generated by a particular TYPE of grammar.

The term power is used to describe the expressivity of each type of grammar in the hierarchy (measured in terms of the number of subsets of \sum^{*} that the type can generate)

We can define the complexity of language classes

The complexity of a language class is defined in terms of the recognition problem.

Type	Language Class	Complexity
3	regular	$O(n)$
2	context-free	$O\left(n^{c}\right)$
1	context-sensitive	$O\left(c^{n}\right)$
0	recursively enumerable	undecidable

Context-free grammars capture constituency

CFGs can be written in Chomsky Normal Form

Chomsky normal form: every production rule has the form, $A \rightarrow B C$, or, $A \rightarrow a$ where $A, B, C \in \mathcal{N}$, and, $a \in \Sigma$.

Conversion to Chomsky Normal Form
For every CFG there is a weakly equivalent CNF alternative. $A \rightarrow B C D$ may be rewritten as the two rules, $A \rightarrow B X$, and, $X \rightarrow C D$.

CFGs can be written in Chomsky Normal Form

For $A, B, C, D, X, Y \in \mathcal{N}$ and $\gamma, \beta \subseteq \mathcal{N} *$ and $a \in \Sigma$.
Conversion to Chomsky Normal Form

- Keep all existing conforming rules
- replace $A \rightarrow \gamma a \beta$ with $D \rightarrow \gamma A \beta$ and $A \rightarrow a$
- repeatedly replace $A \rightarrow \gamma B C$ with $A \rightarrow \gamma X$ and $X \rightarrow B C$
- if $A \underset{*}{\Rightarrow} B$ is a chain of one or more unit productions, and $B \rightarrow a$ then replace all the unit productions with $A \rightarrow a$ (where a unit production is any rule of the form $X \rightarrow Y$)

[^0]
CFGs can be written in Chomsky Normal Form

For $A, B, C, D, X, Y \in \mathcal{N}$ and $\gamma, \beta \subseteq \mathcal{N} *$ and $a \in \Sigma$.
Conversion to Chomsky Normal Form

- Keep all existing conforming rules
- replace $A \rightarrow \gamma a \beta$ with $D \rightarrow \gamma A \beta$ and $A \rightarrow a$
- repeatedly replace $A \rightarrow \gamma B C$ with $A \rightarrow \gamma X$ and $X \rightarrow B C$
- if $A \underset{*}{\Rightarrow} B$ is a chain of one or more unit productions, and $B \rightarrow a$ then replace all the unit productions with $A \rightarrow a$ (where a unit production is any rule of the form $X \rightarrow Y$)

CNF is a requirement for the CKY parsing algorithm but it causes some problems:

- Grammar is no longer linguistically intuitive
- Direct correspondence with compositional semantics may be lost

CFGs used to model natural language are not deterministic

Deterministic context-free languages:

- are a proper subset of the context-free languages
- can be modelled by an unambiguous grammar
- can be parsed in linear time
- parser can be automatically generated from the grammar

CFGs used to model natural language are not deterministic

- Natural languages (with all their inherent ambiguity) are not well suited to algorithms which operate deterministically recognising a single derivation without backtracking
。 by selecting parsing actions using a machine learning classifier (more on this in later lectures)
- All CFLs (including those exhibiting ambiguity) can be recognised in polynomial time using dynamic programming algorithms.

CFGs used to model natural language are not deterministic

Deterministic context-free languages:

- are a proper subset of the context-free languages
- can be modelled by an unambiguous grammar
- can be parsed in linear time
- parser can be automatically generated from the grammar

CFGs used to model natural language are not deterministic

- Natural languages (with all their inherent ambiguity) are not well suited to algorithms which operate deterministically recognising a single derivation without backtracking
> - All CFLs (including those exhibiting ambiguity) can be recognised in polynomial time using dynamic programming algorithms.

CFGs used to model natural language are not deterministic

Deterministic context-free languages:

- are a proper subset of the context-free languages
- can be modelled by an unambiguous grammar
- can be parsed in linear time
- parser can be automatically generated from the grammar

CFGs used to model natural language are not deterministic

- Natural languages (with all their inherent ambiguity) are not well suited to algorithms which operate deterministically recognising a single derivation without backtracking
- However, natural language parsing can be achieved deterministically by selecting parsing actions using a machine learning classifier (more on this in later lectures).
- All CFLs (including those exhibiting ambiguity) can be recognised in polynomial time using dynamic programming algorithms.

CFGs used to model natural language are not deterministic

Deterministic context-free languages:

- are a proper subset of the context-free languages
- can be modelled by an unambiguous grammar
- can be parsed in linear time
- parser can be automatically generated from the grammar

CFGs used to model natural language are not deterministic

- Natural languages (with all their inherent ambiguity) are not well suited to algorithms which operate deterministically recognising a single derivation without backtracking
- However, natural language parsing can be achieved deterministically by selecting parsing actions using a machine learning classifier (more on this in later lectures).
- All CFLs (including those exhibiting ambiguity) can be recognised in polynomial time using dynamic programming algorithms.

The CKY algorithm recognises strings in a CFL

0 they 1 can 2 fish 3

The CKY algorithm recognises strings in a CFL

0 they 1 can 2 fish 3

String is in the language when the cell $[0,3]$ contains S
they can fish

$$
\begin{aligned}
\mathcal{N}= & \{S, N P, V P, V V, V M\} \\
\Sigma= & \{\text { can, fish, they }\} \\
S= & S \\
\mathcal{P}= & \{S \rightarrow N P V P \\
& V P \rightarrow V M V V \\
& V P \rightarrow V V N P \\
& V V \rightarrow \text { can } \mid \text { fish } \\
& V M \rightarrow \text { can } \\
& N P \rightarrow \text { they } \mid \text { fish }\}
\end{aligned}
$$

The CKY algorithm recognises strings in a CFL

0 they 1 can 2 fish 3

String is in the language when the cell $[0,3]$ contains S

$$
\begin{aligned}
\mathcal{N}= & \{S, N P, V P, V V, V M\} \\
\Sigma= & \{\text { can, fish, they }\} \\
S= & S \\
\mathcal{P}= & \{S \rightarrow N P V P \\
& V P \rightarrow V M V V \\
& V P \rightarrow V V N P \\
& V V \rightarrow \text { can } \mid \text { fish } \\
& V M \rightarrow \text { can } \\
& N P \rightarrow \text { they } \mid \text { fish }\}
\end{aligned}
$$

The CKY algorithm recognises strings in a CFL

0 they 1 can 2 fish 3

String is in the language when the cell $[0,3]$ contains S

$$
\begin{aligned}
\mathcal{N}= & \{S, N P, V P, V V, V M\} \\
\Sigma= & \{\text { can, fish, they }\} \\
S= & S \\
\mathcal{P}= & \{S \rightarrow N P V P \\
& V P \rightarrow V M V V \\
& V P \rightarrow V V N P \\
& V V \rightarrow \text { can } \mid \text { fish } \\
& V M \rightarrow \text { can } \\
& N P \rightarrow \text { they } \mid \text { fish }\}
\end{aligned}
$$

The CKY algorithm recognises strings in a CFL

0 they 1 can 2 fish 3

String is in the language when the cell $[0,3]$ contains S

$$
\begin{aligned}
\mathcal{N}= & \{S, N P, V P, V V, V M\} \\
\Sigma= & \{\text { can, fish, they }\} \\
S= & S \\
\mathcal{P}= & \{S \rightarrow N P V P \\
& V P \rightarrow V M V V \\
& V P \rightarrow V V N P \\
& V V \rightarrow \text { can } \mid \text { fish } \\
& V M \rightarrow \text { can } \\
& N P \rightarrow \text { they } \mid \text { fish }\}
\end{aligned}
$$

The CKY algorithm recognises strings in a CFL

0 they 1 can 2 fish 3

		1	$\begin{gathered} \text { TO } \\ 2 \end{gathered}$	3	Toy CNF grammar:
FROM	0	$N P$			$\begin{aligned} \mathcal{N} & =\{S, N P, V P, V V, V M\} \\ \Sigma & =\{\text { can, fish, they }\} \\ S & =S \\ \mathcal{P} & =\{S \rightarrow N P V P \end{aligned}$
	1		VV		$\begin{aligned} & V P \rightarrow V M V V \\ & V P \rightarrow V V N P \end{aligned}$
			VM		$V V \rightarrow c a n \mid$ fish
	2				$V M \rightarrow$ can
				VV $N P$	$N P \rightarrow$ they \mid fish $\}$
					String is in the language when the cell $[0,3]$ contains S
		they	can	fish	

The CKY algorithm recognises strings in a CFL

0 they 1 can 2 fish 3

		1	$\begin{gathered} \text { TO } \\ 2 \end{gathered}$	3	Toy CNF grammar:
FROM	0	$N P$			$\begin{aligned} \mathcal{N} & =\{S, N P, V P, V V, V M\} \\ \Sigma & =\{\text { can, fish, they }\} \\ S & =S \\ \mathcal{P} & =\{S \rightarrow N P V P \end{aligned}$
	1		$V V$ $V M$	$V P$	$\begin{aligned} & V P \rightarrow V M V V \\ & V P \rightarrow V V N P \\ & V V \rightarrow \text { can } \mid \text { fish } \end{aligned}$
	2			$V V$ $N P$	$\begin{aligned} & V M \rightarrow \text { can } \\ & N P \rightarrow \text { they } \mid \text { fish }\} \end{aligned}$
		they	can	fish	String is in the language when the cell $[0,3]$ contains S

The CKY algorithm recognises strings in a CFL

0 they 1 can 2 fish 3

The CKY algorithm recognises strings in a CFL

0 they 1 can 2 fish 3

The CKY algorithm recognises strings in a CFL

In the general case for $A, B, C \in \mathcal{N}$ and $a \in \Sigma$:

- If $a \in \Sigma$ exists between indexes m and $m+1$, and $A \rightarrow a$ then cell [$m, m+1$] contains A
- if cell $[i, k]$ contains B and cell $[k, j]$ contains C and $A \rightarrow B C$ then cell $[i, j]$ contains A
- String of length n is in the language when the cell $[0, n]$ contains S tree we need to:
- pair each non-terminal in a cell with a 2-tuple of the cells that derived
- allow the same non-terminal to exist more than once in any particular cell (or allow it to be paired with a list of 2-tuples)

The CKY algorithm recognises strings in a CFL

In the general case for $A, B, C \in \mathcal{N}$ and $a \in \Sigma$:

- If $a \in \Sigma$ exists between indexes m and $m+1$, and $A \rightarrow a$ then cell [$m, m+1$] contains A
- if cell $[i, k]$ contains B and cell $[k, j]$ contains C and $A \rightarrow B C$ then cell $[i, j]$ contains A
- String of length n is in the language when the cell $[0, n]$ contains S The CKY algorithm only recognises a string, in order to obtain the parse tree we need to:
- pair each non-terminal in a cell with a 2-tuple of the cells that derived it
- allow the same non-terminal to exist more than once in any particular cell (or allow it to be paired with a list of 2-tuples)

The CKY algorithm can be used to create a parse

TO
133

0

FROM 1

2

The CKY algorithm can be used to create a parse

	TO	
1	2	3
0		

FROM 1

2
they
can
fish

The CKY algorithm can be used to create a parse

$$
\begin{aligned}
& \text { TO } \\
& 1 \\
& 2 \\
& 3 \\
& 0 \quad N P_{\text {(they) }} \\
& \text { FROM } 1 \\
& V V_{\text {(can) }} \\
& V M_{\text {(can) }} \\
& 2
\end{aligned}
$$

The CKY algorithm can be used to create a parse

$$
\begin{aligned}
& \text { TO } \\
& 1 \\
& 2 \\
& 3 \\
& 0 \quad N P_{\text {(they) }} \\
& \text { FROM } 1 \\
& V V_{\text {(can) }} \\
& V M_{\text {(can) }} \\
& 2
\end{aligned}
$$

The CKY algorithm can be used to create a parse

$$
\begin{aligned}
& \text { TO } \\
& 1 \\
& 2 \\
& 3 \\
& 0 \quad N P_{\text {(they) }} \\
& \text { FROM } 1 \\
& V V_{\text {(can) }} \\
& V M_{\text {(can) }} \\
& 2 \\
& V V_{\text {(fish) }} \\
& N P_{(\text {fish })}
\end{aligned}
$$

The CKY algorithm can be used to create a parse

\square
1
2
3
$0 \quad N P_{\text {(they) }}$

FROM 1

$$
\begin{array}{ll}
V V_{(\text {can })} & V P_{1 \rightarrow\left([1,2]_{V V},[2,3]_{N P}\right)} \\
V M_{(\text {can })} & V P_{2 \rightarrow\left([1,2]_{V M,}[2,3]_{V V}\right)}
\end{array}
$$

2

$$
\begin{gathered}
V V_{(\text {fish })} \\
N P_{(\text {fish })} \\
\text { fish }
\end{gathered}
$$theycan

The CKY algorithm can be used to create a parse

$$
\begin{aligned}
& \text { TO } \\
& 1 \\
& 0 \quad N P_{\text {(they) }} \\
& 3 \\
& S_{1 \rightarrow\left([0,1]_{N P},[1,3]_{V P_{1}}\right)} \\
& S_{2 \rightarrow\left([0,1]_{N P},[1,3]_{V P_{2}}\right)} \\
& \begin{array}{ll}
V V_{(\text {can })} & V P_{1 \rightarrow\left([1,2]_{V V},[2,3]_{N P}\right)} \\
V M_{(\text {can })} & V P_{2 \rightarrow\left([1,2]_{V M},[2,3]_{V V}\right)}
\end{array}
\end{aligned}
$$

FROM 1
fish

Ambiguous grammars derive a parse forest

Number of binary trees is proportional to the Catalan number
Num of trees for sentence length $\mathrm{n}=\prod_{k=2}^{n-1} \frac{(n-1)+k}{k}$
$\left.\begin{array}{l|ll|l}\text { sentence length } & \text { number of trees } & & \text { sentence length }\end{array}\right)$ number of trees

We need parsing algorithms that can efficiently store the parse forest and not derive shared parts of tree more than once-

Ambiguous grammars derive a parse forest

Number of binary trees is proportional to the Catalan number
Num of trees for sentence length $\mathrm{n}=\prod_{k=2}^{n-1} \frac{(n-1)+k}{k}$

sentence length	number of trees		sentence length	number of trees
	2	8	429	
4	14	9	1430	
5	42		11	4862
6	132	12	16796	
7				

We need parsing algorithms that can efficiently store the parse forest and not derive shared parts of tree more than once-

Ambiguous grammars derive a parse forest

Number of binary trees is proportional to the Catalan number
Num of trees for sentence length $\mathrm{n}=\prod_{k=2}^{n-1} \frac{(n-1)+k}{k}$

sentence length	number of trees		sentence length	number of trees
	2	8	429	
4	14	9	1430	
5	42		11	4862
6	132	12	16796	
7				

We need parsing algorithms that can efficiently store the parse forest and not derive shared parts of tree more than once-use packing and/or a beam (the latter requires knowledge of the probability of derivations)

Parse probabilities may be derived using a PCFG

- $G_{\text {pcfg }}=(\Sigma, \mathcal{N}, S, \mathcal{P}, q)$ where q is a mapping from rules in \mathcal{P} to a probability and $\sum_{A \rightarrow \alpha \in \mathcal{P}} q(A \rightarrow \alpha)=1$
- $G_{p c f g}$ is consistent if the sum of all probabilities of all derivable strings equals 1 (grammars with infinite loops like $S \rightarrow S$ are inconsistent)
- The probability of a particular parse is the product of the probabilities of the rules that defined the parse tree. For a string W with parse tree T derived from rules $A_{i} \rightarrow B_{i}, i=1 \ldots n$

$$
P(T, W)=\prod_{i=1}^{n} P\left(A_{i} \rightarrow B_{i}\right)
$$

- But note that $P(T, W)=P(T) P(W \mid T)$ and that $P(W \mid T)=1$ so

$$
P(T, W)=P(T) \text { and thus } P(T)=\prod_{i=1}^{n} P\left(A_{i} \rightarrow B_{i}\right)
$$

Parse probabilities may be derived using a PCFG

- The probability of an ambiguous string is the sum of all the parse trees that yield that string

$$
P(W)=\sum_{\text {trees that yield } W} P(T, W)=\sum_{\text {trees that yield } W} P(T)
$$

- We can disambiguate multiple parses by choosing the most probable parse tree for the string

$$
\hat{T}(W)=\underset{\text { trees that yield } W}{\operatorname{argmax}} P(T \mid W)
$$

but

$$
P(T \mid W)=\frac{P(T, W)}{P(W)} \rightarrow P(T, W)=P(T)
$$

so

$$
\hat{T}(W)=\underset{\text { trees that yield } W}{\operatorname{argmax}} P(T)
$$

Rule probabilities may be estimated from treebanks

- A treebank is a corpus of parsed sentences
- Rule probabilities can be estimated from counts in a treebank:

$$
P(A \rightarrow B)=P(A \rightarrow B \mid A)=\frac{\operatorname{count}(A \rightarrow B)}{\sum_{\gamma}^{\operatorname{count}(}(A \rightarrow \gamma)}=\frac{\operatorname{count}(A \rightarrow B)}{\operatorname{count}(A)}
$$

- inside-outside algorithm can be used when no tree bank exists

```
Problems with PCFGs:
- Independence ignores structural dependency within the tree
- Structure is dependent on lexical items
```


Rule probabilities may be estimated from treebanks

- A treebank is a corpus of parsed sentences
- Rule probabilities can be estimated from counts in a treebank:

$$
P(A \rightarrow B)=P(A \rightarrow B \mid A)=\frac{\operatorname{count}(A \rightarrow B)}{\sum_{\gamma}^{\operatorname{count}(}(A \rightarrow \gamma)}=\frac{\operatorname{count}(A \rightarrow B)}{\operatorname{count}(A)}
$$

- inside-outside algorithm can be used when no tree bank exists
... more in later lectures

```
Problems with PCFGs:
- Independence ignores structural dependency within the tree
- Structure is dependent on lexical items
```


Rule probabilities may be estimated from treebanks

- A treebank is a corpus of parsed sentences
- Rule probabilities can be estimated from counts in a treebank:

$$
P(A \rightarrow B)=P(A \rightarrow B \mid A)=\frac{\operatorname{count}(A \rightarrow B)}{\sum_{\gamma}^{\operatorname{count}(}(A \rightarrow \gamma)}=\frac{\operatorname{count}(A \rightarrow B)}{\operatorname{count}(A)}
$$

- inside-outside algorithm can be used when no tree bank exists
... more in later lectures
Problems with PCFGs:
- Independence ignores structural dependency within the tree
- Structure is dependent on lexical items

Rule probabilities may be estimated from treebanks

- A treebank is a corpus of parsed sentences
- Rule probabilities can be estimated from counts in a treebank:

$$
P(A \rightarrow B)=P(A \rightarrow B \mid A)=\frac{\operatorname{count}(A \rightarrow B)}{\sum_{\gamma}^{\operatorname{count}(}(A \rightarrow \gamma)}=\frac{\operatorname{count}(A \rightarrow B)}{\operatorname{count}(A)}
$$

- inside-outside algorithm can be used when no tree bank exists
... more in later lectures
Problems with PCFGs:
- Independence ignores structural dependency within the tree
- Structure is dependent on lexical items
... more in later lectures

Probabilistic CFGs may be incorporated into CKY

1

0
2
3

$$
\begin{aligned}
\mathcal{N}= & \{S, N P, V P, V V, V M\} \\
\Sigma= & \{\text { can, fish, they }\} \\
S= & S \\
\mathcal{P}= & \{S \rightarrow N P V P 1.0 \\
& V P \rightarrow V M V V 0.9 \\
& V P \rightarrow V V N P 0.1 \\
& V V \rightarrow \text { can } 0.2 \mid \text { fish } 0.8 \\
& V M \rightarrow \text { can } 1.0 \\
& N P \rightarrow \text { they } 0.5 \mid \text { fish } 0.5
\end{aligned}
$$

2
can

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam

Probabilistic CFGs may be incorporated into CKY

2
they can fish

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam

Probabilistic CFGs may be incorporated into CKY

	1	2	3			
				\mathcal{N}	$=$	$\{S, N P, V P, V V, V M\}$
				Σ	$=$	\{can, fish, they \}
0	$N P_{(\text {they })}^{0.5}$			S	$=$	S
				\mathcal{P}	$=$	$\{S \rightarrow N P$ VP 1.0
						$V P \rightarrow V M$ VV 0.9
						$V P \rightarrow V V N P 0.1$
1		$V V_{(c a n)}^{0.2}$ $V M^{1.0}$				$V V \rightarrow$ can $0.2 \mid$ fish 0.8
		$V M_{(c a n)}^{1.0}$				$V M \rightarrow$ can 1.0
						$N P \rightarrow$ they $0.5 \mid$ fish 0.5

2
they

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam

Probabilistic CFGs may be incorporated into CKY

2
they

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam

Probabilistic CFGs may be incorporated into CKY

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam

Probabilistic CFGs may be incorporated into CKY

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam

Probabilistic CFGs may be incorporated into CKY

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam

[^0]: CNF is a requirement for the CKY parsing algorithm but it causes some problems:

 - Grammar is no longer linguistically intuitive
 - Direct correspondence with compositional semantics may be lost

