
L95: Natural Language Syntax and Parsing
1) HMMs and Viterbi

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 1 / 23

Study Information

Useful Textbooks

Much of the lecture content can be found in the following text books:
Jurafsky, D. and Martin, J. Speech and Language Processing

Manning, C. and Schutze, H. Foundations of Statistical Natural
Language Processing

Ruslan M. The Oxford Handbook of Computational Linguistics

Clark, A., Fox, C, and Lappin, S. The Handbook of Computational
Linguistics and Natural Language Processing

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 2 / 23

Finite State Models

A formal language is a set of strings over an alphabet

Alphabet

An alphabet is specified by a finite set, Σ, whose elements are called
symbols. Some examples are shown below:

- {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} the 10-element set of decimal digits.
- {a, b, c , ..., x , y , z} the 26-element set of lower case characters of

written English.
- {aardvark , ..., zebra} the 250,000-element set of words in the Oxford

English Dictionary.1

Note that e.g. the set of natural numbers N = {0, 1, 2, 3, ...} cannot be an
alphabet because it is infinite.

1Note that the term alphabet is overloaded
Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 23

Finite State Models

A formal language is a set of strings over an alphabet

Strings

A string of length n over an alphabet Σ is an ordered n-tuple of
elements of Σ.

Σ∗ denotes the set of all strings over Σ of finite length.

- If Σ = {a, b} then ε, ba, bab, aab are examples of strings over Σ.
- If Σ = {a} then Σ∗ = {ε, a, aa, aaa, ...}
- If Σ = {cats, dogs, eat} then

Σ∗ = {ε, cats, cats eat, cats eat dogs, ...}2

Languages

Given an alphabet Σ any subset of Σ∗ is a formal language over
alphabet Σ.

Language models

Define a particular subset of strings S ⊆ Σ∗

2The spaces here are for readable delimitation of the symbols of the alphabet.
Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 23

Finite State Models

A formal language is a set of strings over an alphabet

Strings

A string of length n over an alphabet Σ is an ordered n-tuple of
elements of Σ.

Σ∗ denotes the set of all strings over Σ of finite length.

- If Σ = {a, b} then ε, ba, bab, aab are examples of strings over Σ.
- If Σ = {a} then Σ∗ = {ε, a, aa, aaa, ...}
- If Σ = {cats, dogs, eat} then

Σ∗ = {ε, cats, cats eat, cats eat dogs, ...}2

Languages

Given an alphabet Σ any subset of Σ∗ is a formal language over
alphabet Σ.

Language models

Define a particular subset of strings S ⊆ Σ∗

2The spaces here are for readable delimitation of the symbols of the alphabet.
Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 23

Finite State Models

A formal language is a set of strings over an alphabet

Strings

A string of length n over an alphabet Σ is an ordered n-tuple of
elements of Σ.

Σ∗ denotes the set of all strings over Σ of finite length.

- If Σ = {a, b} then ε, ba, bab, aab are examples of strings over Σ.
- If Σ = {a} then Σ∗ = {ε, a, aa, aaa, ...}
- If Σ = {cats, dogs, eat} then

Σ∗ = {ε, cats, cats eat, cats eat dogs, ...}2

Languages

Given an alphabet Σ any subset of Σ∗ is a formal language over
alphabet Σ.

Language models

Define a particular subset of strings S ⊆ Σ∗

2The spaces here are for readable delimitation of the symbols of the alphabet.
Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 23

Finite State Models

Languages can be defined using automata

q0start q1

q2

q3

occasional

ε sunshine

showers

partial

low
heavy

cloud

and

The language of (limited) weather prediction modelled by a finite state
automaton

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 5 / 23

Finite State Models

Languages can be defined using automata

A formal language is regular if it is equal to the set of strings accepted by
some deterministic finite-state automaton (DFA). A DFA is defined as
M = (Q,Σ,∆, s,F) where:

Q = {q0, q1, q2...} is a finite set of states.

Σ is the alphabet: a finite set of transition symbols.

∆ ⊆ Q×Σ×Q is a function Q×Σ→ Q which we write as δ. Given
q ∈ Q and i ∈ Σ then δ(q, i) returns a new state q′ ∈ Q
s is a starting state

F is the set of all end states

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 6 / 23

Finite State Models

Regular languages are accepted by DFAs

For L(M) = {a, ab, abb, ...}:

M=(Q = {q0, q1, q2},
Σ = {a, b},
∆ = {(q0, a, q1), (q0, b, q2), ..., (q2, b, q2)},
s = q0,

F = {q1}) q0start q1

q2

a

b

b

a

a, b

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 23

Finite State Models

Edge probabilities allow us to calculate string probabilities

q0start q1

q2

q3 q4

occasional: 0.3

ε: 0.7 sunshine: 0.6

showers: 0.4

partial: 0.4

low: 0.3

heavy: 0.3

cloud: 1.0

and: 0.5

ε: 0.5

For the string sunshine and occasional low cloud:
0.7 ∗ 0.6 ∗ 0.5 ∗ 0.3 ∗ 0.3 ∗ 1.0 ∗ 0.5 = 0.00945
Markov assumption on the probabilities in the sequence: when predicting
the future, the past doesn’t matter, only the present.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 8 / 23

Finite State Models

Edge probabilities allow us to calculate string probabilities

q0start q1

q2

q3 q4

occasional: 0.3

ε: 0.7 sunshine: 0.6

showers: 0.4

partial: 0.4

low: 0.3

heavy: 0.3

cloud: 1.0

and: 0.5

ε: 0.5

For the string sunshine and occasional low cloud:
0.7 ∗ 0.6 ∗ 0.5 ∗ 0.3 ∗ 0.3 ∗ 1.0 ∗ 0.5 = 0.00945
Markov assumption on the probabilities in the sequence: when predicting
the future, the past doesn’t matter, only the present.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 8 / 23

Finite State Models

Edge probabilities allow us to calculate string probabilities

q0start q1

q2

q3 q4

occasional: 0.3

ε: 0.7 sunshine: 0.6

showers: 0.4

partial: 0.4

low: 0.3

heavy: 0.3

cloud: 1.0

and: 0.5

ε: 0.5

For the string sunshine and occasional low cloud:
0.7 ∗ 0.6 ∗ 0.5 ∗ 0.3 ∗ 0.3 ∗ 1.0 ∗ 0.5 = 0.00945
Markov assumption on the probabilities in the sequence: when predicting
the future, the past doesn’t matter, only the present.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 8 / 23

Markov Models

Markov models assume the Markov property

1st Order Markov Property

For a sequence of state variables: q1, q2, ...qi

P(qi = a|q1...qi−1) = P(qi = a|qi−1)

i.e. the probability of the next state is dependant only on the current
state

Clearly an oversimplification for modelling natural language but Markov
models can be very efficient so we use them when we can.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 23

Markov Models

n-gram language models are (n − 1)-order Markov models

Consider a bi-gram model of the very short corpus:
good afternoon, good evening and good night.
it’s good evening from me and good evening from him.

(MLE) bi-grams starting with
good and evening:

good afternoon 0.2
good evening 0.6
good night 0.2
evening and 0.33
evening from 0.66

Markov chain models an
observed random variable that
changes through time.

q0start q1

q2

q3

q4

good: 1.0

afternoon: 0.2

evening: 0.6

night: 0.2

q1start q3 q5

q6

evening: 1.0 and: 0.33

from: 0.66

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 23

Markov Models

Markov chains model sequences of random variables

Markov Chain

Q = {q0, q1, q2...} is a finite set of states.

A = (a11, a12, ...an1...ann) is a transition probability matrix where
aij represents the probability of moving from state i to state j s.t. for
all i , Σn

j=1aij = 1

π = (π1, π2, ...πn) is an initial probability distribution over the
states where πi is the probability that the chain starts in state i

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 23

Hidden Markov Models

Use Hidden Markov Models for unobserved sequences

Markov chains are used for observed event sequences

In some scenarios we are interested in hidden event sequences
which are not directly observed but are causal factors

e.g. We don’t normally observe part-of-speech tags in a text. We
observe words and infer the tags from the word sequences.

A hidden Markov model (HMM) combines observed events (e.g.
words) and hidden events (e.g. part-of-speech tags)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 12 / 23

Hidden Markov Models

Use Hidden Markov Models for unobserved sequences

Hidden Markov Model

Q = {q0, q1, q2...} is a finite set of states.

A = (a11, a12, ...an1...ann) is a transition probability matrix where
aij represents the probability of moving from state i to state j s.t. for
all i , Σn

j=1aij = 1

O = (o1, o2, ...oT) is a sequence of T observations drawn from a
alphabet, Σ = {v1...vV }.
B = (b1v1 , b1v2 , ...biv1 ...bnvV

) is an emission probability matrix
where bivt expresses the probability of an observation vt given the
current state i

π = (π1, π2, ...πn) is an initial probability distribution over the
states where πi is the probability that the chain starts in state i

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 13 / 23

Hidden Markov Models

Use Hidden Markov Models for unobserved sequences

B1 = (
p(v1|q1)
p(v2|q1)
...
p(vV |q1))

q1 q2

B2 = (
p(v1|q2)
p(v2|q2)
...
p(vV |q2))

a11

a12

a21

a22

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 14 / 23

Hidden Markov Models

1st-order HMMs make two assumptions

For a sequence of state variables: q1, q2, ...qi

P(qi = a|q1...qi−1) = P(qi = a|qi−1)

i.e. the probability of the next state is dependant only on the current
state

P(oi |q1...qT , o1...oi ...oT) = P(oi |qi)

i.e. the observations depend only on the current state

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 15 / 23

Hidden Markov Models

HMMs may be used for POS-tagging

The transition probability matrix A represents tag transition
probabilities P(ti |ti−1)

Probabilities may be estimated from frequencies in annotated corpora
(Maximum Likelihood Estimation)
P(ti |ti−1) = C (ti−1, ti)/C (ti−1)

The emission probability matrix B represents probabilities of words
being associated with particular tags P(wi |ti)

MLE may be calculated from annotated corpora
P(wi |ti) = C (ti ,wi)/C (ti)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 16 / 23

Decoding

Decoding determines the hidden state sequence

Determining the hidden sequence corresponding to the sequence of
observations is called decoding.

Decoding

Given

- HMM with transition probability matrix A

- and emission probability matrix B

- with observation sequence O = o1, o2, ...oT

Find

- most probable state sequence Q = q1, q2, ...qT

For POS-tagging: choose the tag sequence tn
1 that is most probable given

the observation sequence of wn
1

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 17 / 23

Decoding

Decoding for part-of-speech tagging

For POS-tagging: choose the tag sequence tn
1 that is most probable given

the observation sequence of wn
1

t̂n
1 = argmaxtn

1
P(tn

1 |wn
1)

(tn
1 hidden states, Q)

(wn
1 observations, O)

Using Bayes:

P(tn
1 |wn

1) =
P(wn

1 |tn
1)P(tn

1)
P(wn

1) → P(wn
1 |tn

1)P(tn
1)

If we assume independence P(tn
1) can be approximated as:

P(tn
1) ≈

∏n
i=1 P(ti |ti−1)

(transition probabilities, A)

And P(wn
1 |tn

1) may be approximated as:

P(wn
1 |tn

1) ≈
∏n

i=1 P(wi |ti)

(emission probabilities, B)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 18 / 23

Decoding

Decoding for part-of-speech tagging

For POS-tagging: choose the tag sequence tn
1 that is most probable given

the observation sequence of wn
1

t̂n
1 = argmaxtn

1
P(tn

1 |wn
1)

(tn
1 hidden states, Q)

(wn
1 observations, O)

Using Bayes:

P(tn
1 |wn

1) =
P(wn

1 |tn
1)P(tn

1)
P(wn

1) → P(wn
1 |tn

1)P(tn
1)

If we assume independence P(tn
1) can be approximated as:

P(tn
1) ≈

∏n
i=1 P(ti |ti−1) (transition probabilities, A)

And P(wn
1 |tn

1) may be approximated as:

P(wn
1 |tn

1) ≈
∏n

i=1 P(wi |ti) (emission probabilities, B)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 18 / 23

Decoding

Can also think of POS-tagging a noisy channel model

t̂n
1 ≈ argmaxtn

1

∏n
i=1 P(wi |ti)P(ti |ti−1)

encoder channel ,

B

decoder ,

(A,B)

tags,

A

words,

O

tags ′,

Q

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 19 / 23

Decoding

Can also think of POS-tagging a noisy channel model

t̂n
1 ≈ argmaxtn

1

∏n
i=1 P(wi |ti)P(ti |ti−1)

encoder channel ,B decoder , (A,B)tags,A words,O tags ′,Q

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 19 / 23

Viterbi

Viterbi algorithm finds the optimum sequence of tags

Viterbi algorithm is a dynamic programming algorithm

For a HMM with N states, transitions A, emissions B and
observations OT

1 :

- Builds a lattice with one column for each observation and one row for
each possible hidden state, T by N lattice

- After passing through the most probable state sequence,
q1...qt−1, vt(j) is the probability of being in state j after the first t
observations

vt(j) = max P(q1...qt−1, o1...ot , qt = j)

- Calculate vt(j) recursively

vt(j) = max vt−1(i)aijbjot

Considers max of N paths at every observation.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 20 / 23

Viterbi

Viterbi algorithm finds the optimum sequence of tags

s1 s1 s1

s2 s2 s2

s3 s3 s3

o1 o2 o3

π1

π2

π3

vt(j) = max vt−1(i)aijbjot

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 21 / 23

Viterbi

Viterbi algorithm finds the optimum sequence of tags

s1 s1 s1

s2 s2 s2

s3 s3 s3

o1 o2 o3

π1

π2

π3

vt(j) = max vt−1(i)aijbjot

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 21 / 23

Viterbi

Viterbi algorithm finds the optimum sequence of tags

s1 s1 s1

s2 s2 s2

s3 s3 s3

o1 o2 o3

π1

π2

π3

vt(j) = max vt−1(i)aijbjot

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 21 / 23

Viterbi

Viterbi algorithm finds the optimum sequence of tags

s1 s1 s1

s2 s2 s2

s3 s3 s3

o1 o2 o3

π1

π2

π3

vt(j) = max vt−1(i)aijbjot

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 21 / 23

Viterbi

Viterbi algorithm finds the optimum sequence of tags

s1 s1 s1

s2 s2 s2

s3 s3 s3

o1 o2 o3

π1

π2

π3

vt(j) = max vt−1(i)aijbjot

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 21 / 23

Viterbi

Viterbi algorithm finds the optimum sequence of tags

s1 s1 s1

s2 s2 s2

s3 s3 s3

o1 o2 o3

π1

π2

π3

vt(j) = max vt−1(i)aijbjot

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 21 / 23

Viterbi

Viterbi algorithm finds the optimum sequence of tags

N1 N1 N1 N1

N2 N2 N2 N2

PN PN PN PN

VM VM VM VM

VV VV VV VV

they can fish o4 o5

they PN
can N1, VM, VV
fish N1, N2, VV

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 22 / 23

Viterbi

Viterbi algorithm finds the optimum sequence of tags

N1 N1 N1 N1

N2 N2 N2 N2

PN PN PN PN

VM VM VM VM

VV VV VV VV

they can fish o4 o5

they PN
can N1, VM, VV
fish N1, N2, VV

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 22 / 23

Viterbi

Viterbi algorithm finds the optimum sequence of tags

N1 N1 N1 N1

N2 N2 N2 N2

PN PN PN PN

VM VM VM VM

VV VV VV VV

they can fish o4 o5

they PN
can N1, VM, VV
fish N1, N2, VV

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 22 / 23

Viterbi

Viterbi algorithm finds the optimum sequence of tags

N1 N1 N1 N1

N2 N2 N2 N2

PN PN PN PN

VM VM VM VM

VV VV VV VV

they can fish o4 o5

they PN
can N1, VM, VV
fish N1, N2, VV

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 22 / 23

Viterbi

The basic Viterbi algorithm can be extended

To extend to trigrams we consider N2 states at very observation
rather than N

For a beam search instead of keeping all N state paths at each time
point t, just keep the best few hypothesis

Complexity of basic algorithm is O(N2T). It’s necessary to use beam
search when N is large: consider neural network decoding

Other algorithms associated to HMMs:

the forward algorithm the probability of a state given the history of
observations

the Baum–Welch algorithm estimate the parameters of a hidden
Markov model given the observations

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 23 / 23

	Finite State Models
	Markov Models
	Hidden Markov Models
	Decoding
	Viterbi

