L90 Practical: Part II, Continued

Andreas $Vlachos^1$

Michaelmas 2019/2020

- Practical Session Nov 13: How to analyse the doc2vec system
- Nov 22: Submit baseline report (get feedback Nov 29)
- Jan 14: Submit 4,000-word report on the doc2vec system + your analysis

回 とう モン・モン

- A NB classifier that can run on BOW
- An SVM classifier than can run on both BOW and document embeddings
- A methods for training document embeddings
- A simple statistical test

- E + - E +

- Naive Bayes could be around 75-85%
- SVM-BOW can be made to go to 86-88%
- SVM-Doc2Vec could be around 81-87%

- A more powerful statistical test
- How to do error analysis (in general and specific to embedding space interpretation)

A more powerful test: Permutation test

۲

- Paired samples: two systems are run on identical data
- Tests whether the population mean is different (*H*₁) or the same (*H*₀)
- Non-parametric tests: no assumptions about distribution in your underlying data
 - $\alpha = P(\text{Type I Error}) = P(\text{Reject}H_0|H_0 \text{is True})$
- α is the probability of a false positive (significance level).

 $\beta = P(\text{Type II Error}) = P(\text{Do Not Reject } H_0|H_1 \text{ is True})$

• β is the probability of a false negative. 1- β is the power of the test.

(1日) (1日) (日)

Assumption of Permutation test

- Consider the *n* paired results of System A and B.
- You will observe a difference *d* between the means of system A and B.
- If there is no real difference between the systems (and they come from one and the same distribution), it should not matter how many times I **swap** the two results, right?
- There are 2ⁿ permutations (each row can be 0 or 1; swapped or not).
- How many of these permutations result in a difference *d* as high as the unpermuted version, or higher?
- That proportion is your p
- Final twist: If you cannot test 2ⁿ resamplings, test a large enough random subset

- 4 回 ト 4 ヨ ト 4 ヨ ト

- The Permutation test evaluates the probability that the observed difference in mean *M* between the runs has been obtained by random chance.
- If the two runs are indeed the same, then the paired re-assignments should have no impact on the difference in *M* between the samples.
- Re-sampling: For each paired observation in the original runs, a_i and b_i , a coin is flipped. If 1, then swap the score for b_i with a_i . Otherwise, leave the pair unchanged.
- Repeat *R* times; compare differences in *M*.

• The probability of observing the difference between the original runs by chance approximated by:

$$\rho = \frac{s+1}{R+1} \tag{1}$$

s: number of permuted samples with difference in M higher than the one observed in the original runs

• If $R < 2^n$ because of size, we call this a Monte Carlo Permutation test.

Permutation test: Example with real-valued results

	Original		One permutation		
	System A	System B	Coin Toss	Permuted A	Permuted B
Item 1	0.01	0.1	1	0.1	0.01
Item 2	0.03	0.15	0	0.03	0.15
Item 3	0.05	0.2	0	0.05	0.2
Item 4	0.01	0.08	1	0.08	0.01
Item 5	0.04	0.3	0	0.04	0.3
Item 6	0.02	0.4	1	0.4	0.02
Observed MAP	0.0267	0.205		0.117	0.105
Absolute					
Observed	0.178		0.0017		
Difference					

- 2⁶ possible permutations for coin throws over 6 items
- Exhaustive resampling: 2 out of 64 permutations are equal or larger than the observed difference in MAP, 0.178.

• *p*-value=
$$\frac{2}{64} = 0.0462$$
.

• Reject Null hypothesis at confidence level $\alpha = 0.05$.

- Implement Monte Carlo Permutation test
- Use it in the future for all stat. testing where possible
- Use R=5000

・ 同 ト ・ ヨ ト ・ ヨ ト

- How could we practically improve the system?
- Deployment test
- What does the Embedding space "encode"?

SVM performance error analysis

- Which documents does the system make the most catastrophic errors for? (And why?)
- Goal: changes in algorithm or parameters to improve results
- Consider a sizable amount of errors
- Try to classify them:
 - Likelihood of fixing them (low-hanging fruit vs. holy grail of NLP)
 - Frequency of this error
 - Source of this error
- Very typical thing done after achieving results or milestones – deciding where to go next.

向下 イヨト イヨト

- After submission: test your system on new, real data.
- Why a deployment test if you are satisfied with your system's performance on the 2000 articles?
- Because any of the following may have happened:
 - Wrong assumptions about data (type of films, language, ...)
 - Unrepresentative sampling
 - Model over- or underfitting
 - Taste and fashion over time
- Say, choose some IMDB reviews for movies from 2017 or 2018 you liked or disliked.
- The data you will test on is then really new, unseen and real.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Finding out what the model is really doing
- E.g., see Lau and Baldwin (2016), and Li et al. (2015):
 - Are similar documents close to each other in Doc2Vec space?
 - Are similar words close together in Doc2Vec space?
 - Are document embeddings close in space to their most critical content words?

向下 イヨト イヨト

- Start from known similar groupings of reviews, then look at their distance in Embedding space.
- Not the other way round.
- Similarity must be defined before you measure angles between embeddings.
- There are many ways to do this.
- We recommend this website for visualisation: https://projector.tensorflow.org (due to Paula C.)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Thank you!

Andreas Vlachos L90 Practical: Part II, Continued

ヘロア 人間 アメヨア 人間アー

æ