L90 Practical: Part II, Continued

Andreas Vlachos ${ }^{1}$

Michaelmas 2019/2020
${ }^{1}$ This part of practical based on a design by Simone Teufel

Practical Session 3

- Practical Session Nov 13: How to analyse the doc2vec system
- Nov 22: Submit baseline report (get feedback Nov 29)
- Jan 14: Submit 4,000-word report on the doc2vec system + your analysis

What you should have by now

- A NB classifier that can run on BOW
- An SVM classifier than can run on both BOW and document embeddings
- A methods for training document embeddings
- A simple statistical test

Some numerical sanity tests

- Naive Bayes could be around $75-85 \%$
- SVM-BOW can be made to go to $86-88 \%$
- SVM-Doc2Vec could be around 81-87\%

What we will add now

- A more powerful statistical test
- How to do error analysis (in general and specific to embedding space interpretation)

A more powerful test: Permutation test

- Paired samples: two systems are run on identical data
- Tests whether the population mean is different $\left(H_{1}\right)$ or the same $\left(H_{0}\right)$
- Non-parametric tests: no assumptions about distribution in your underlying data
-

$$
\alpha=P(\text { Type } I \text { Error })=P\left(\text { Reject } H_{0} \mid H_{0} \text { is True }\right)
$$

- α is the probability of a false positive (significance level).
-

$$
\beta=P(\text { Type II Error })=P\left(\text { Do Not Reject } H_{0} \mid H_{1} \text { is True }\right)
$$

- β is the probability of a false negative. 1- β is the power of the test.

Assumption of Permutation test

- Consider the n paired results of System A and B.
- You will observe a difference d between the means of system A and B.
- If there is no real difference between the systems (and they come from one and the same distribution), it should not matter how many times I swap the two results, right?
- There are 2^{n} permutations (each row can be 0 or 1 ; swapped or not).
- How many of these permutations result in a difference d as high as the unpermuted version, or higher?
- That proportion is your p
- Final twist: If you cannot test 2^{n} resamplings, test a large enough random subset

More formally

- The Permutation test evaluates the probability that the observed difference in mean M between the runs has been obtained by random chance.
- If the two runs are indeed the same, then the paired re-assignments should have no impact on the difference in M between the samples.
- Re-sampling: For each paired observation in the original runs, a_{i} and b_{i}, a coin is flipped. If 1 , then swap the score for b_{i} with a_{i}. Otherwise, leave the pair unchanged.
- Repeat R times; compare differences in M.

Monte Carlo Permutation Test

- The probability of observing the difference between the original runs by chance approximated by:

$$
\begin{equation*}
p=\frac{s+1}{R+1} \tag{1}
\end{equation*}
$$

s : number of permuted samples with difference in M higher than the one observed in the original runs

- If $R<2^{n}$ because of size, we call this a Monte Carlo Permutation test.

Permutation test: Example with real-valued results

	Original		One permutation			
	System A	System B	Coin Toss	Permuted A	Permuted B	
Item 1	0.01	0.1	1	0.1	0.01	
Item 2	0.03	0.15	0	0.03	0.15	
Item 3	0.05	0.2	0	0.05	0.2	
Item 4	0.01	0.08	1	0.08	0.01	
Item 5	0.04	0.3	0	0.04	0.3	
Item 6	0.02	0.4	1	0.4	0.02	
Observed	0.0267	0.205		0.117	0.105	
MAP				0.0017		
Absolute	0.178					
Observed						
Difference						

- 2^{6} possible permutations for coin throws over 6 items
- Exhaustive resampling: 2 out of 64 permutations are equal or larger than the observed difference in MAP, 0.178.
- p-value $=\frac{2}{64}=0.0462$.
- Reject Null hypothesis at confidence level $\alpha=0.05$.

What you should do

- Implement Monte Carlo Permutation test
- Use it in the future for all stat. testing where possible
- Use $R=5000$

Three types of analysis

- How could we practically improve the system?
- Deployment test
- What does the Embedding space "encode"?

SVM performance error analysis

- Which documents does the system make the most catastrophic errors for? (And why?)
- Goal: changes in algorithm or parameters to improve results
- Consider a sizable amount of errors
- Try to classify them:
- Likelihood of fixing them (low-hanging fruit vs. holy grail of NLP)
- Frequency of this error
- Source of this error
- Very typical thing done after achieving results or milestones - deciding where to go next.

Deployment test

- After submission: test your system on new, real data.
- Why a deployment test if you are satisfied with your system's performance on the 2000 articles?
- Because any of the following may have happened:
- Wrong assumptions about data (type of films, language, ...)
- Unrepresentative sampling
- Model over- or underfitting
- Taste and fashion over time
- Say, choose some IMDB reviews for movies from 2017 or 2018 you liked or disliked.
- The data you will test on is then really new, unseen and real.

Insightful analysis of embedding space

- Finding out what the model is really doing
- E.g., see Lau and Baldwin (2016), and Li et al. (2015):
- Are similar documents close to each other in Doc2Vec space?
- Are similar words close together in Doc2Vec space?
- Are document embeddings close in space to their most critical content words?
- Start from known similar groupings of reviews, then look at their distance in Embedding space.
- Not the other way round.
- Similarity must be defined before you measure angles between embeddings.
- There are many ways to do this.
- We recommend this website for visualisation: https://projector.tensorflow.org (due to Paula C.)

Thank you!

