
Instructions for L90 Practical∗

SVM-based Sentiment Detection of Reviews (Part 2)

Andreas Vlachos (Lead demonstrator Georgi Karadzhov)
av308@cst.cam.ac.uk; gmk34@cst.cam.ac.uk

Michaelmas 2019/20

This is the second part of the L90 practical, where we will use a better Machine Learning
algorithm, and a better document representation created by doc2vec.

In the first part of the practical (separate document!) you coded a baseline system that
operates with bags of words. In particular, you should have the following by now:

• code for NB classifier

• code for feature treatment (bigrams etc)

• code for performing n-fold crossvalidation

• code for performing the sign test (with ties treatment as described)

1 Blind test set

We will now introduce the use of a blind test set. This part of the dataset will not be used for
any purpose other than reporting results. Please from now on designate 10% (the first fold in
stratified Round-Robin cross-validation) for this purpose. You should pick the best parameters,
model, features, etc. by n-fold crossvalidation on the remaining 90% of the dataset. You can
retrain the final model on all of the 90% of the dataset (during cross-validation you will be
using less than that).

2 Support Vector Machines; Bag of Words/ngram repre-
sentation

SVM is a classifier that find the max-margin separating hyperplane between the classes. A
hyperplane in p-dimensions is a at (p-1)-dimensional affine subspace. In 2 dimensions a hyper-
plane is a line; in 3 dimensions, a hyperplane is a plane. We can now compute the distance
between data points and various hyperplane, out of which we select the one that creates the
largest margin (best separation) between the two classes. Support vectors are data points lying
on the margin. Classification of a test point depends on which side of this hyperplane it falls
on. The points closest to the margin are the most difficult to classify. The size of the margin
is standardly interpreted as the SVM’s confidence in the classification.

This hyperplane can be non-linear if an appropriate kernel is used, e.g. polynomial or RBF.

∗This part of the practical is based on a practical designed by Helen Yannakoudakis.
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We recommend sklearn as the SVM implementation for this practical.

3 Doc2vec for Sentiment Analysis

Mikolov et al. (2013) presented the first approach to use Deep Learning (neural networks with at
least one hidden layer) to NLP. They introduced the ideas of skipgrams and word2vec to create
a more compact vector space representation where dimensions don’t correspond to context
words, but are no longer interpretable. This has often been called neural word embeddings.
The approach can be used for language modelling (predicting the next word, given a context),
for classification and many more NLP applications.

Based on word2vec, Le and Mikolov (2014) introduced doc2vec, which is able to learn
embeddings for sequences of words. It is agnostic to granularity, meaning that the vectors that
are created could represent a sequence of any length: a sentence, a paragraph, or even an entire
document. The output of doc2vec is a document embedding, a new type of vector that has
been shown to be effective for various/some tasks, including sentiment analysis.

Quick recap from lecture 9 on the distributed representation of words and prediction in
word2vec (Figure 1): the CBOW model (continuous bags of words) learns to predict the target
word, given some context words.

There are two possible architectures in doc2vec: the distributed memory (dm) architec-
ture1and the distributed bag of words (dbow) architecture. DM architecture is shown in Fig-
ure 2 and DBOW architecture in Figure 3.

In the DM architecture each paragraph is mapped to a unique vector. The paragraph
vector now also contributes to the prediction task. The paragraph vector and word vectors are
averaged or concatenated to predict the next word in a context. It is shared across all contexts
from the same paragraph2, and acts as a “memory” of context/topic.

1Sometimes referred to as DMPV (distributed memory of paragraph vector).
2Please note that the paragraph vector is shared across all contexts from the same paragraph, but not across

paragraphs, whereas word matrix W is shared across paragraphs.
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Figure 1: word2vec embeddings, trained via prediction.

Figure 2: doc2vec, DM architecture

Figure 3: doc2vec, DBOW architecture
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The learning satisfies the following equation 3:
Optimisation objective:

1

T

T−k∑
t=k

log p(wt|wt−k, . . . , wt+k)

Softmax output layer:

p(wt|wt−k, . . . , wt+k) =
exp ywt∑
i exp yi

; y = b + U h(wt−k, . . . , wt+k;W )

In the DBOW model, alternatively, paragraph vectors are trained to predict words in a
window (no word order); similar to Skip-gram model.

The relevant level of granularity is the document (review). Train various doc2vec models
using the IMDB movie review database to learn document-level embeddings. For training,
we use word vectors, weights, paragraph vectors (seen paragraphs). At test time, paragraph
vectors are inferred by gradient descent while all else is kept fixed (word vectors, weights). The
paragraph vectors generated this way can be used directly as a document representation for
supervised ML (here, the SVM classifier).

For our task, you should use the gensim python doc2vec library. Use this dataset of 100,000
reviews as training data:

This is a database of 100,000 movie reviews you should use for training doc2vec:

http://ai.stanford.edu/~amaas/data/sentiment/

There are a number of parameters in doc2vec that can be set:

• Training algorithm (dm, dbow)

• The size of the feature vectors (e.g., 100 dimensions good enough for us)

• Number of iterations / epochs (e.g., 10 or 20)

• Context window

• Hierarchical softmax (faster version) . . .

Please familiarise yourself with the packages, train different doc2vec models, and implement
a word embedding-based SVM classifier. Ideas for training different models include choosing
the training algorithm, the way the context word vectors are combined, and the dimensionality
of the resulting feature vectors. Observe the relative performance wrt. to the traditional, flat
BOW representation.

4 Some useful resources

Doc2vec:

• https://radimrehurek.com/gensim/models/doc2vec.html

• https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/

doc2vec-IMDB.ipynb

• https://github.com/jhlau/doc2vec

Scikit:

• http://scikit-learn.org/stable/tutorial/text_analytics/working_with_

text_data.html

3Images and formulas from Le and Mikolov (2014), though note that are there are inaccuracies: 1. figure is
confusing as it does not take into account context from both sides. 2. The formula should not include the target
word in the conditional. 3. In the U matrix, rows are words (in our vocab for softmax); columns features; h
is the column vector and b and y are column vectors (latter size of vocab, so each cell number per word that
indicates how likely, though this has not yet been converted to a probability yet)
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TensorFlow:

• https://www.tensorflow.org/programmers_guide/embedding

• http://projector.tensorflow.org/

t-SNE:

• https://lvdmaaten.github.io/tsne/

MALLET:

• http://mallet.cs.umass.edu/topics.php

5 Some relevant papers
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