L41: Lab 5
TCP Latency and Bandwidth

Lecturelet 5
Dr Robert Watson / Dr Graeme Jenkinson
2019-2020
L41: Lab 5 – TCP Latency and Bandwidth

- Lab 5 topic and questions
- TCP congestion control
- TCP Protocol Control Block (TCPCB)
- ARM DTrace limitations
Lab 5 – TCP congestion control

• This lab explores the behavior the TCP implementation and the bandwidth it achieves as latency is varied
 • How does TCP congestion control affect bandwidth at different latencies?
 • What are the impacts of specific implementation choices and policies, such as socket-buffer auto-sizing
• As we are working over the loopback interface, we can instrument both ends of the TCP connection
 • Track packet-level headers on transmit and receive
 • Also track TCP-internal parameters such as whether TCP is in “slow start” or the steady state
• And, of course, we care about the arising probe effect
Experimental questions for the lab report

1. Plot DUMMYNET-imposed latency on the X axis and effective bandwidth on the Y axis, considering both the case where the socket-buffer size is set versus allowing it to be auto-resized.
 • Is the relationship between round-trip latency and bandwidth linear?
 • How does socket-buffer auto-resizing help, hurt, or fail to affect performance as latency varies?

2. Plot a time-bandwidth graph comparing the effects of setting the socket-buffer size versus allowing it to be auto-resized by the stack. Stack additional graphs showing the sender last received advertised window and congestion window on the same X axis.
 • How does socket-buffer auto-resizing affect overall performance, as explained in terms of the effect of window sizes?

3. Be sure to describe any simulation or probe effects.
Lecture 6: TCP goals and properties

- Network may delay, (reorder), drop, corrupt packets
- TCP: Reliable, ordered, stream transport protocol over IP
- Three-way handshake: SYN / SYN-ACK / ACK (mostly!)
- Sequence numbers ACK’d; data retransmitted on loss
- Round-Trip Time (RTT) measured to time out loss
- Flow control via advertised window size in ACKs
- Congestion control (‘fairness’) via packet loss and ECN
Lecture 6: TCP congestion control and avoidance

- 1986 Internet CC collapse
 - 32Kbps → 40bps
- Van Jacobson, SIGCOMM 1988
 - Don’t send more data than the network can handle!
 - Conservation of packets via ACK clocking
 - Exponential retransmit timer, slow start, aggressive receiver ACK, and dynamic window sizing on congestion
- ECN (RFC 3168), ABC (RFC 3465), Compound (Tan, et al, INFOCOM 2006), Cubic (Rhee and Xu, ACM OSR 2008), BBR (Cardwell et al, ACM Queue 2016)

![Figure 4: Startup behavior of TCP with Slow-start](image-url)
Lecture 6: Data structures – sockets, control blocks
tcpcb sender-side data-structure fields

• In this lab, there are two parties with tcpcb as we run:
 • The ‘client’ is receiving data
 • The ‘server’ is sending data ← Instrument CC send state here

• For the purposes of classical TCP congestion control, only the sender retains congestion-control state

• Described in more detail in the lab assignment:
 eref snd_wnd Last received advertised flow-control window.
 snd_cwnd Current calculated congestion-control window.
 snd_ssthresh Current slow-start threshold:

 if (snd_cwnd <= snd_ssthresh), then TCP is in slowstart; otherwise, it is in congestion avoidance

• Instrument tcp_do_segment using DTrace to inspect TCP header fields and tcpcb state for only the server
 • Inspect port number to decide which way the packet is going

• NB: Flush the TCP host cache between benchmark runs
ARM DTrace limitations (1/2)

In previous years, we had suggested that the TCP segment length can be computed as follows:

```
int tdatalen = ntohs(((struct ip *)args[0]->m_data)->ip_len) - (((struct ip *)args[0]->m_data)->ip_hl << 2) + (args[1]->th_off << 2));
```

However, a bug in ARM DTrace resulted in the indexing of the `m_data` field dereferencing NULL.

The TCP segment length should instead be measured directly from the `ip_length` field in the `struct ipinfo_t` structure (accessible via `args[2]` in the `tcp:::send probe` probe).
ARM DTrace limitations (2/2)

• FreeBSD’s DTrace implementation restricts the creation of trace buffer sizes that exceed a fixed percentage of the available kernel memory

• Unfortunately, for small memory boards such as the BBB this is overly restrictive and prevents the allocation of trace buffers greater than 3MB:

 #pragma D option bufsize=3M
 #pragma D option bufresize=manual

• When running the benchmark, it is acceptable to limit your experiment to a total buffer sizes that does not result in drops (exceeding space in the trace buffer)
This lab session

• Ensure that you are able to properly extract both TCP header and tcpcb fields from the tcp_do_segment FBT probe.
• Generate the data for a time–bandwidth graph.
• Ask us if you have any questions or need help.