
L41: Lab 2- IPC
Lecturelet 2

Dr Robert Watson / Dr Graeme Jenkinson
2019-2020

L41: Lab 2 – Kernel implications of IPC

• A quick note on vm_fault()
• Learn about (and trace) POSIX IPC
• Explore buffering and scheduler interactions
•Measure the probe effect
• This is the first of two labs contributing to Lab

Report 2:
• Lab 2 takes an OS-centric approach
• Lab 3 takes a microarchitecture-centric

approach
• Use data from both to write the lab report

L41 Lecturelet 2- Lab 2 IPC

Recall: A (kernel) programmer model for VM

L41 Lecturelet 2- Lab 2 IPC

Machine-independent virtual memory (VM) Machine-dependant physical map (PMAP)

page

Read/write,
grows down,
anonymous

objectSt
ac

k

Read/write,
anonymous

objectH
ea

p
Li

br
ar

y Read/copy-on-
write, named

object

C
od

e Read/copy-on-
write, named

object

“vmspace”,
“vm_map”

“vm_map_entry”

anonymous
swap-backed

VM object

vnode
VM object

page

“vm_object”

shadow
anonymous

swap-backed
VM object

page
page

“vm_page”

swap pager

page
page

swap pager

vnode pager

“vm_pager”

vnode
“/bin/dd”

page
page

pte

data

data

data

code

codepage-table
directory

page-table
entry

superpage
data

pte

pde

pte
pte
pte

pte
pte

pte

physical
map

pde

pde

“pmap”

physical
memory

The Mach VM fault handler (vm_fault)

• Key goal of the Mach VM system: be as lazy as possible
• Fill pages (with file data, zeroes, COW) on demand
• Map pages into address spaces on demand
• Flush TLB as infrequently as possible

• Any work avoided means reduced CPU cycles and less disk
I/O
• Avoid as much work as possible when creating a mapping

(e.g., mmap(), execve())
• Instead, do on-demand in the MMU trap handler,
vm_fault()
• Machine-independent function drives almost all VM work
• Input: faulting virtual address, output mapped page or signal
• Look up object to find cached page; if none, invoke pager
• May trigger behaviour such as zero filling or copy-on-write
• A good thing to probe with DTrace to understand VM traps

L41 Lecturelet 2- Lab 2 IPC

The benchmark

• Simple, bespoke IPC benchmark: pipes and sockets
• Statically linked
• Adjust user and kernel buffer sizes
• Various output modes

L41 Lecturelet 2- Lab 2 IPC

root@l41-beaglebone data/ipc:~ # ./ipc-static
ipc-static [-Bqsv] [-b buffersize] [-i pipe|local] [-t totalsize] mode

Modes (pick one - default 1thread):
1thread IPC within a single thread
2thread IPC between two threads in one process
2proc IPC between two threads in two different processes

Optional flags:
-B Run in bare mode: no preparatory activities
-i pipe|local Select pipe or socket for IPC (default: pipe)
-q Just run the benchmark, don't print stuff out
-s Set send/receive socket-buffer sizes to buffersize
-v Provide a verbose benchmark description
-b buffersize Specify a buffer size (default: 131072)
-t totalsize Specify total I/O size (default: 16777216)

The benchmark (2)

• Use only one of its operational modes:
2thread IPC between two threads of a single process

• Adjust IPC parameters:
-i pipe Use pipe() IPC
-i local Use socketpair() IPC
-b size Set user IPC buffer size
-t size Set total size across all IPCs
-s Also set in-kernel buffer size for sockets
-B Suppress quiescence (whole-program tracing)

• Output flags:
-q Suppress all output (whole-program tracing)
-v Verbose output (interactive testing)

L41 Lecturelet 2- Lab 2 IPC

The benchmark (3)

• Use verbose output
• Use pipe IPC
• Run benchmark in two threads
• Use default buffersize of 128K, totalsize of 16M

L41 Lecturelet 2- Lab 2 IPC

root@l41-beaglebone ~/ipc:~ # ./ipc-static -v -i
pipe 2thread
Benchmark configuration:

buffersize: 131072
totalsize: 16777216
blockcount: 128
mode: 1thread
ipctype: pipe
time: 0.033753791

485397.29 KBytes/sec

Instrumenting traps on FreeBSD/ARMv7

• Lecture 2 slides showed an example of this:

fbt::trap:entry { … }

fbt::trap:return{ … }

• In general, fbt probes are unstable and may differ
between architectures and OS versions. trap is an
AMD64 specific name, which should be substituted
with the following on ARMv7:

fbt::abort_handler:entry { … }

fbt::abort_handler:return{ … }

L41 Lecturelet 1 – Lab 1 I/O

Experimental questions for the lab report

The full lab-report assignment will be distributed during
the next lab.
The following questions are intended to help you gather
data that you will need for that lab report:
• How does changing the buffer size affect IPC

performance – and why? For sockets, consider both
with, and without, the -s flag.
• What is the impact of the probe effect on your causal

analysis?

L41 Lecturelet 2- Lab 2 IPC

python-dtrace memory leak

• Memory leak in python-dtrace results in instability
• Work around by adding an explicit call to:

dtrace_thread.consumer.__del__()
L41 Lecturelet 2- Lab 2 IPC

The benchmark has completed - stop
the DTrace instrumentation

dtrace_thread.stop()
dtrace_thread.join()
dtrace_thread.consumer.__del__()

This lab session

• Use this session to continue to build experience:
• Build and use the IPC benchmark
• Use DTrace to analyse distributions of system calls, system-

call execution times, and system-call arguments and return
values
• Use Jupyter/Python to analyse benchmark results

• Remember to consider the hypotheses the
experimental questions are exploring.
• Use the tools in the most productive way:
• Command line DTrace for quick exploration.
• Jupyter for data capture, visualisation and analysis.

• Do ask us if you have any questions or need help

L41 Lecturelet 2- Lab 2 IPC

