[41: Lab 1-1/0O

Lecturelet 1

Dr Robert Watson / Dr Graeme Jenkinson
2019-2020

[41: Lab 1 —1/0

* Introduce our experimental environment:
* BeagleBone Black
* FreeBSD operating system + DTrace
*|/O benchmark
* Jupyter notebooks

* Explore user-kernel interactions via
syscalls and traps

* Engage with POSIX 1/0 and its implications
* Measure the probe effect

The platform

Tl BeagleBone Black

e 1GHz ARM Cortex-A8 32-
bit CPU

* Superscalar pipeline,
MMU, L1/L2 caches

* FreeBSD operating system
+ DTrace

* Bespoke “potted
benchmarks”

* Jupyter notebook
measurement and analysis
environment

L41 Lecture 1 - Advanced Operating Systems

DTrace scripts

Human-facing (C/AWK inspired) language
* One or more {probe name, predicate, action} tuples
* Expression limited to control side effects (e.g. no loops)

Specified on the command line or via a . d file

fbt::malloc:entry /execname == “csh”/ {trace(arg0);}

Probe name Identifies the probe(s) to instrument; wildcards
allowed; identifies the provider and a provider-
specific probe name

Predicate Filters cases where action will execute

Action Describes tracing operations

Some kernel DTrace providers in FreeBSD

callout execute Timer-driven callouts
dtmalloc Kernelmalloc () /free ()
dtrace DTrace script events (BEGIN, END)
fbt Function Boundary Tracing
io Block 1/O

ip, udp, tcp, sctp TCP/IP

lockstat Locking

proc, sched Kernel process/scheduling
profile Profiling timers

syscall System call entry/return
vEfs Virtual filesystem

L41 Lecturelet 1- Lab 1 1/0

Aggregations

count () Number of times called

sum () Sum of arguments

avg () Average of arguments

min () Minimum of arguments

max () Maximum of arguments

stddev () Standard deviation of arguments
lquantize () Linear frequency distribution (histogram)
llgquantize () Log-linear frequency distribution (histogram)
quantize () Log frequency distribution (histogram)

* Often we want summaries, not detailed traces. DTrace allows early, efficient reduction
using aggregations

* Scalable multicore implementations (i.e. commutative)
* @variable = function|()
* printa (@variable) to print

L41 Lecturelet 1- Lab 1 1/0

Counting kernel read () system calls

$./io-static -gq -r /data/iofile

$ dtrace —-n
'syscall::read:entry
/execname=="1o-static"/
{@reads = count(); }'

Probe name Tracethe read () system call

Predicate Limit actions to processes executing io-static

Action Count the number of probe fires

dtrace: description 'syscall::read:entry ' matched 1
probe dtrace: buffer size lowered to 2m dtrace:
aggregation size lowered to 2m

~C
1024

L41 Lecturelet 1- Lab 1 1/0

The benchmark

$./io-static
io-static -c|-r|-w [-Bdgsv] [-b blocksize] [-t totalsize] path

Modes (pick one):

-C 'create mode': create benchmark data file
-r 'read mode': read () benchmark
-W 'write mode': write () benchmark

-B Run in bare mode: no preparatory activities

-d Set O DIRECT flag to bypass buffer cache

-q Just run the benchmark, don't print stuff out

-s Call fsync () on the file descriptor when complete
-V Provide a verbose benchmark description

-b blocksize Specify a block size (default: 16384)

-t totalsize Specify total I/0 size (default: 16777216)

Simple, bespoke /0 benchmark: read () orwrite ()
Statically linked

Adjust buffer sizes, etc.

Various output modes

L41 Lecturelet 1- Lab 1 1/0

The benchmark (2)

* Three operational modes
e Create (-c) Create a new benchmark data file
e Read (-r) Perform read () s against data file
* Write (—w) Perform writes () s against data file

* Adjust I/O parameters:
 Block size (-b) Block size used for each 1/O
* Total size (—t) Total size across all 1/0Os
* Direct (-d) Use direct I/O (bypass buffer cache)
* Sync (-s) Perform £sync () after |/O loop

e Bare (-b) Don’t synchronise cache (etc) on start (whole-program
testing)

* Qutput flags:
* Quiet (—g) Suppress all output (whole-program tracing)
* \erbose (-v) Verbose output (interactive testing)

L41 Lecturelet 1- Lab 1 1/0

The benchmark (3)

S ./io-static -v -d -w /data/iofile
Benchmark configuration:

blocksize: 16384

totalsize: 16777216

blockcount: 1024

operation: write

path: /data/iofile

time: 58.502746875
280.06 KBytes/sec

e Use verbose output (-v)

* Bypass the buffer cache (-d)

* Write (-w) to the previously created file /data/io0file
» Use default buffer size (16K) and total I/O size (16 M)

Probe effect

* Probe effect - act of

measuring disturbs system

* Electronics - probes
introduce additional
capacitance, resistance or
inductance

* Software tracing - probes
take time to execute
 Don’t benchmark while
running DTrace ...

e ... unless measuring probe
effect

* Be aware that traced
applications may behave
differently

* E.g., more timer ticks will
fire, 1/0O will “seem faster”

Zero when disabled

dtrace -n 'fbt::malloc:entry { trace(execname); traceCarg@); }'

Kernel image DTrace - probe context DTrace process DTrace output

§ i L-»| dtrace_probe() | : 4
7| Function y —probe() i|| Userland [t
~“14 Boundary i s dt
4| Tracing | DIF i e 1
Il provider !| interpreter |ii|| command |:
malloc() f / 1 3
1 | :
ii 4 \ :
; L
§ 1 NE
\ dtmalloc \‘:
provider ‘_’ dtrace_ioctl()
": (copyout()
: Fe
3 e
— |

dtrace -n 'dtmalloc::temp:malloc /execname=“csh”/ { trace(execname); trace(arg3); }'

Definitely not zero

L41 Lecturelet 1- Lab 1 1/0

Jupyter notebooks

Unified environment for:

* Executing benchmarks.

* Instrumenting the behaviours and performance of
benchmarks using DTrace.

* Post-processing performance measurements.
* Plotting performance measurements.

* Performing statistically analysis on performance
measurements.

Jupyter notebooks (2)

00O [[| eeel 192.168.141.100 ¢ O fh O
C Computer La. Cambridge-... Home 141_lab1_tem... 9. Classes —... Project progr... r C... —+
— Jupyter 141_lab1_template wrsaved cranges A
File Edit View Insert Cell Kernel Help | Python2 O
+ X OB 4+ v M B C Code : CellToolbar

run cell, select below

In []: | # Execute the io-static benchmark displaying the command line options
lio/io-static

* Series of cells containing Python or cell “magics”.

* Cell magics allow, for example, inline plotting of graphs or
executing shell commands.

* Raw data and plots can be saved to the BBB for inclusion
in laboratory reports.

* Details of experimental environment in lab setup handout.

L41 Lecturelet 1- Lab 1 1/0

Hypotheses

* Larger I/O and IPC buffer sizes amortize system-call
overheads

* A purely architectural (SW) view dominates
* HW platform is irrelevant

 The DTrace probe effect is insignificant in real
workloads

Experimental questions for the lab report

e With respect to a configuration reading from a fixed-
size file through the buffer cache:

* How does changing the |/O buffer size affect |/O-loop
performance?

* Run the benchmark to gather initial measurements
* Explore through system-call/trap tracing and profiling

» Use various configurations (e.g., I/O on /dev/zero)
to explore kernel code-path behaviour

* Ensure that you directly consider the impact of the
probe effect on your causal investigation

A few cautions

There are two kinds of people, those that have
experienced data loss and those that haven’t
experienced data loss YET.

* The SD cards seem a bit fragile during power off —
make sure that you shut down safely using the
laboratory setup instructions.

* We have spare imaged SD cards if you need them.

* Backup key scripts and data files on your workstation
* We may replace your SD cards for future labs.

A few other useful things

* Feel free to work in pairs or groups in the lab:
* Laboratory reports must be written separately.

* You will likely want multiple SSH sessions open.

* The kernel source code is in github:
freebsd/freebsd.git (branch
release/11.0.0).

* Experiment on the command line:
e Start with something simple —e.g., DTrace hello world.

* Do not hesitate to ask for help.

