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Getting started
• What is an operating system?
• Systems research
• About the module
• Lab reports
• Readings for next time
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What is an operating system?

(Whiteboarding exercise)
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What is an operating system?

[An OS is] low-level software that supports
a computer’s basic functions, such as

scheduling tasks and controlling peripherals.
- Google hive mind
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General-purpose operating systems
… are for general-purpose computers:
• Servers, workstations, mobile devices
• Run applications – i.e., software unknown at design time
• Abstract the hardware, provide ‘class libraries’
• E.g., Windows, Mac OS X, Android, iOS, Linux, BSD, …

Userspace Local and remote shells, management tools, daemons
Run-time linker, system libraries, logging and tracing facilities

– system-call layer –

Kernel System calls, hypercalls, remote procedure call (RPC)*
Processes, filesystems, IPC, sockets, management
Drivers, packets/blocks, protocols, tracing, virtualisation
VM, malloc, linker, scheduler, threads, timers, tasks, locks

* Continuing disagreement on whether distributed-filesystem
servers and window systems ‘belong’ in userspace or the kernel

5



Other kinds of operating systems (1/3)

Specialise the OS for a specific application or environment:
• Embedded, real-time operating systems

• Serve a single application in a specific context
• E.g., WiFi access points, medical devices, washing machines, cars

• Small code footprint, real-time scheduling
• Might have virtual memory / process model
• Microkernels or single-address space: VxWorks, RTEMS, L4
• Now also: Linux, BSD (sometimes over a real-time kernel), etc.

• Appliance operating systems
• Apply embedded model to higher-level devices/applications
• File storage appliances, routers, firewalls, ...

• E.g., Juniper JunOS, Cisco IOS, NetApp OnTap, EMC/Isilon
• Under the hood, almost always Linux, BSD, etc.

Key concept: Operating system as a reusable component
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Other kinds of operating systems? (2/3)
What if we rearrange the boxes?
• Microkernels, library operating systems, unikernels

• Shift code from kernel into userspace to reduce Trusted Computing 
Base (TCB); improve robustness/flexibility; ‘bare-metal’ apps

• Early 1990s: Microkernels are king!
• Late 1990s: Microkernels are too slow!
• 2000s/2010s: Microkernels are back! But now ‘hypervisors’
• Sometimes: programming-language runtime as OS
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Other kinds of operating systems? (3/3)

• Hypervisors
• Kernels host applications; hypervisors host virtual 

machines
• Virtualised hardware interface rather than POSIX
• Paravirtualisation reintroduces OS-like interfaces for 

performance
• A lot of microkernel ideas have found a home here
• E.g., System/370, VMware, Xen, KVM, VirtualBox, bhyve, 

...
• Containers
• Host OS as hypervisor, but using the process model
• Really more about code/ABI (Application Binary 

Interface) distribution and maintenance
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What does an operating system do?

• Key hardware-software surface (w/compiler toolchain)
• Low-level abstractions and services

• Operational model: bootstrap, shutdown, watchdogs
• Process model, IPC: processes, threads, IPC, program model
• Resource sharing: scheduling, multiplexing, virtualisation
• I/O: drivers, local/distributed filesystems, network stack
• Security: authentication, encryption, ACLs, MAC, audit
• Local or remote access: console, window system, SSH
• Libraries: math, protocols, RPC, crypto, UI, multimedia
• Monitoring/debugging: logs, profiling, tracing, debugging

Compiler? Text editor? E-mail package? Web browser? 
Can an operating system be “distributed”?
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Why study operating systems?

The OS plays a central role in whole-system design when 
building efficient, effective, and secure systems:
• Strong influence on whole-system performance
• Critical foundation for computer security
• Exciting programming techniques, algorithms, problems

• Virtual memory; network stack; filesystem; run-time linker; …

• Co-evolves with platforms, applications, users
• Multiple active research communities
• Reusable techniques for building complex systems
• Boatloads of fun (best text adventure ever)
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Where is the OS research?
A sub-genre of systems research:
• Evolving hardware-software interfaces

• New computation models/architectures
• New kinds of peripheral devices

• Integration with programming languages and runtimes
• Concurrent/parallel programming models; scheduling
• Security and virtualisation
• Networking, storage, and distributed systems
• Tracing and debugging techniques
• Formal modeling and verification
• As a platform for other research – e.g., mobile systems
Venues: SOSP, OSDI; ATC; EuroSys; HotOS; FAST; NSDI; 
HotNets; ASPLOS; USENIX Sec.; ACM CCS; IEEE SSP; …
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What are the research questions?
Just a few examples: By changing the OS, can I…
• Create new abstractions for new hardware?
• Make my application run faster by…

• Better masking latency?
• Using parallelism more effectively?
• Exploiting new storage mediums?
• Adopting distributed-system ideas in local systems?

• Make my application more {reliable, energy efficient}
• Limit {security, privacy} impact of exploited programs?
• Use new language/analysis techniques in new ways?
Systems research focuses on evaluation with respect to 
applications or workloads: How can we measure 
whether it is {faster, better, ...}?
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Teaching operating systems

• Two common teaching tropes:
• Trial by fire: in micro, recreate classic elements of operating 

systems: microkernels with processes, filesystems, etc.
• Research readings course: read, present, discuss, and write 

about classic works in systems research
• This module adopts elements of both styles while:

• mitigating the risk of OS kernel hacking in a short course
• working on real-world systems rather than toys; and
• targeting research skills not just operating-system design

• Trace and analyse real systems driven by specially 
crafted benchmarks
• Possible only because of recent developments in 

tracing and hardware-based performance analysis tools
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Aims of the module (1/2)

Teaching methodology, skills, and knowledge
required to understand and perform research on 
contemporary operating systems by…
• Employing systems methodology and practice
• Exploring real-world systems artefacts through 

performance and functional evaluation/analysis
• Developing scientific writing skills
• Reading selected original systems research papers
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Aims of the module (2/2)
On completion of this module, students should:
• Have an understanding of high-level OS kernel 

structure. 
• Gained insight into hardware-software interactions 

for compute and I/O.
• Have practical skills in system tracing and 

performance analysis.
• Have been exposed to research ideas in system 

structure and behaviour.
• Have learned how to write systems-style 

performance evaluations. 
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Prerequisites
We will take for granted:
• High-level knowledge of OS terminology from an 

undergraduate course (or equivalent); e.g.,:
• What schedulers do
• What processes are … and how they differ from threads
• What Inter-Process Communication (IPC) does
• How might a simple filesystem might work

• Reasonable fluency in reading multithreaded C
• Working knowledge of Python (or R)
• Comfort with the UNIX command-line environment
• Undergraduate skills with statistics

(mean/median/mode/stddev/t-tests/linear regression/boxplots/scatterplots ... )

You can pick up some of this as you go (e.g., IPC, Python, 
t-tests), but will struggle if you are missing several
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Module structure –
four complementary strands
• 3x two-hour lectures in FS09

• Theory, methodology, architecture, and practice
• 5x two-hour labs in SW02

• Start with 10-to-20-minute lecturelets on artefacts, practical skills
• Remainder on hands-on measurement and experimentation – learn 

skills required to write assigned lab reports, start on experiments
• Lab experimental questions must be answered in your lab reports

• Assigned research and applied readings
• Selected portions of module texts – learn skills, methodology
• Historic and contemporary research papers – research exposure

• Marked lab reports
• Based on experiments done in (and out) of scheduled labs
• Refine scientific writing style suitable for systems research
• One ‘practice run’ weighted at 10% of total mark    ß not optional!
• Two full lab reports weighted at 45% of total mark each
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Outline of module schedule
• Submodule 1: Introduction to kernels and tracing/analysis

• 1 lecture, 1 lab (I/O)
• Introduction: OSes, Systems Research, and L41
• The Kernel: Kernel and Tracing
• First lab report due - 2020-02-11

• Submodule 2: The Process Model
• 1 lecture, 2 labs (IPC, PMC)
• The Process Model (1) – Binaries and Processes
• The Process Model (2) – Traps, System Calls, and Virtual Memory
• Second lab report due - 2020-03-03

• Submodule 3: The Network Stack (TCP/IP)
• 1 lecture, 2 labs (TCP state machine, congestion control)
• The Network Stack (1) – Sockets, NICs, and Work Distribution
• The Network Stack (2) – TCP protocol
• Final lab report due - 2020-04-21
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The lab platform
TI BeagleBone Black
• 1GHz ARM Cortex-A8 32-

bit CPU
• Superscalar pipeline, 

MMU, L1/L2 caches
• FreeBSD operating 

system (13-CURRENT) + 
DTrace
• Bespoke “potted 

benchmarks”
• Jupyter notebook 

measurement and 
analysis environment

19



Labs and lab reports
Lab reports document an experiment and analyse its results – typically 
using one or more hypotheses.
Our lab reports will contain the following sections (see notes, template):

Some formats break out (e.g.) experimental setup vs. methodology, 
and results vs. discussion. The combined format seems to work better 
for systems experimentation as compared to (e.g.) biology.
• The target length is 8 pages excluding appendices, references
• Over-length reports will be penalized – please stop by the limit!
• Appendices will not be read if too long, and should not be essential 

to understanding the core content of the report

1. Title + abstract (1 page) 5. Conclusion (1-2 para)

2. Introduction (1-2 para) 6. References

3. Experimental setup and 
methodology (1-2 pages)

7. Appendices

4. Results and discussion (3-4 pages)
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Module texts – core material
You will need to make frequent reference to these books 
both in the labs and outside of the classroom:

Operating systems: Marshall Kirk McKusick, George V. Neville-Neil, 
and Robert N. M. Watson, The Design and Implementation of 
the FreeBSD Operating System, 2nd Edition, Pearson 
Education, Boston, MA, USA, September 2014.

Performance measurement: Raj Jain, The Art of Computer Systems 
Performance Analysis: Techniques for Experimental Design, 
Measurement, Simulation, and Modeling, Wiley - Interscience, 
New York, NY, USA, April 1991.

Tracing and profiling: Brendan Gregg and Jim Mauro, DTrace: 
Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD, 
Prentice Hall Press, Upper Saddle River, NJ, USA, April 2011.
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Module texts – additional material
If your OS recollections feel a bit hazy:

Operating systems: Abraham Silberschatz, Peter Baer 
Galvin, and Greg Gagne
Operating System Concepts, Eighth Edition, John Wiley & 
Sons, Inc., New York, NY, USA, July 2008.

If you want to learn a bit more about architecture 
and measurement:

Performance measurement and diagnosis: Brendan 
Gregg, Systems Performance: Enterprise and the Cloud, 
Prentice Hall Press, Upper Saddle River, NJ, USA, October 
2013.
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Break
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Tracing the kernel
• DTrace
• The probe effect
• The kernel: Just a C program?
• A little on kernel dynamics: How work happens
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Dynamic tracing with DTrace
• Bryan M. Cantrill, Michael W. Shapiro, and Adam H. 

Leventhal. Dynamic Instrumentation of Production 
Systems, USENIX ATC 2004.
• “Facility for dynamic instrumentation of production systems”
• Unified and safe instrumentation of kernel and user space
• Zero probe effect when not enabled
• Dozens of providers representing different trace mechanisms
• Tens (hundreds?) of thousands of instrumentation probes
• D language: C-like scripting language with predicates, actions
• Scalar variables, thread-local variables, associative arrays
• Data aggregation and speculative tracing

• First-class feature in: Solaris, Mac OS X, FreeBSD, 
Windows; third-party Linux module

• Wide influence – e.g., on Linux SystemTap, eBPF

• Our tool of choice in this course
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DTrace scripts
• Human-facing, C-like D Programming Language
• One or more {probe name, predicate, action} tuples
• Expression limited to control side effects (e.g., no loops)
• Specified on command line or via a .d file
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Probe name Identifies the probe(s) to instrument; wildcards allowed; 
identifies the provider and provider-specific probe name

Predicate Filters cases where action will execute

Action Describes tracing operations

fbt::malloc:entry /execname == "csh"/ { trace(arg0); }

Probe name Predicate Action



Some FreeBSD DTrace providers
• Providers represent data sources – instrumentation types:

• Apparent duplication: FBT vs. event-class providers?
• Efficiency, expressivity, interface stability, portability

28

Provider Description
callout_execute Timer-driven “callout” event probes

dtmalloc Kernel malloc()/free()

dtrace DTrace script events (BEGIN, END)

fbt Function Boundary Tracing (function prologues, epilogues)

io Block I/O read/write

ip,udp,tcp,sctp TCP/IP events

lockstat Kernel locking primitives

proc,sched Kernel process, scheduling primitives

profile Profiling timers

syscall System-call entry/return

vfs Virtual File System operations



Tracing kernel malloc() calls
• Trace first argument to kernel malloc() for csh
• NB: Captures both successful and failed allocations
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# dtrace -n
'fbt::malloc:entry /execname=="csh"/ { trace(arg0); }'

Probe Use FBT to instrument malloc() function prologue

Predicate Limit actions to processes executing csh

Action Trace the first argument (arg0)

CPU     ID          FUNCTION:NAME
0   8408           malloc:entry        64
0   8408           malloc:entry      2748
0   8408           malloc:entry        48
0   8408           malloc:entry       392

^C



Aggregations – summarising traces
• Aggregations allow early, efficient reduction
• Scalable multicore implementations (i.e., commutative)
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Aggregation Description
count() Number of times called
sum() Sum of arguments
avg() Average of arguments
min() Minimum of arguments
max() Maximum of arguments
stddev() Standard deviation of arguments
lquantize() Linear frequency distribution (histogram)
quantize() Log frequency distribution (histogram)

@variable = function(.. args ..);
printa(@variable)



Profiling kernel malloc() calls by csh
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fbt::malloc:entry
/execname=="csh"/
{ @traces[stack()] = count(); }

Probe Use FBT to instrument malloc() function prologue

Predicate Limit actions to processes executing csh

Action Keys of associative array are stack traces (stack()); values are 
aggregated counters (count())

^C
kernel`malloc
kernel`fork1+0x14b4
kernel`sys_vfork+0x2c
kernel`swi_handler+0x6a8
kernel`swi_exit
kernel`swi_exit
3

...



D Intermediate Format (DIF)
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# dtrace –Sn
'fbt::malloc:entry /execname == "csh"/ { trace(arg0); }'

DIFO 0x0x8047d2320 returns D type (integer) (size 4)
OFF OPCODE      INSTRUCTION
00: 29011801    ldgs DT_VAR(280), %r1           ! DT_VAR(280) = "execname"
01: 26000102    sets DT_STRING[1], %r2          ! "csh"
02: 27010200    scmp %r1, %r2
03: 12000006    be 6
04: 0e000001    mov %r0, %r1
05: 11000007    ba   7
06: 25000001    setx DT_INTEGER[0], %r1         ! 0x1
07: 23000001    ret %r1

NAME             ID   KND SCP FLAG TYPE
execname 118  scl glb r string (unknown) by ref (size 256)

Pr
ed

ica
te

DIFO 0x0x8047d2390 returns D type (integer) (size 8)
OFF OPCODE      INSTRUCTION
00: 29010601    ldgs DT_VAR(262), %r1           ! DT_VAR(262) = "arg0"
01: 23000001    ret %r1

NAME             ID   KND SCP FLAG TYPE
arg0             106  scl glb r D type (integer) (size 8)

Ac
tio

n



DTrace: Implementation
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malloc()

Kernel image

Function 
Boundary 
Tracing 
provider

dtmalloc 
provider

DTrace - probe context

dtrace_probe()

DIF
interpreter

(predicates, 
actions)

Buffers

Per-script, 
per-CPU 

buffer pairs

User
dtrace 

process

CPU ID    FUNCTION:NAME
  0 30408 malloc:entry  dtrace 608
  0 30408 malloc:entry  dtrace 608
  3 30408 malloc:entry  dtrace 120
  3 30408 malloc:entry  dtrace 120
  3 30408 malloc:entry  dtrace 324
  0 30408 malloc:entry  intr   1232
  0 30408 malloc:entry  csh    64
  0 30408 malloc:entry  csh    3272
  2 30408 malloc:entry  csh    80
  2 30408 malloc:entry  csh    560

dtrace -n 'fbt::malloc:entry { trace(execname); trace(arg0); }'

dtrace -n 'dtmalloc::temp:malloc /execname=“csh”/ { trace(execname); trace(arg3); }'

CPU ID    FUNCTION:NAME
  1 54297 temp:malloc   csh  1024
  1 54297 temp:malloc   csh  64

dtrace_ioctl()

(copyout())

Userland
dtrace 

command

DTrace process DTrace output

copied 
out 

buffer



The Probe Effect
• The probe effect is the unintended alteration of system 

behaviour that arises from measurement
• Software instrumentation is active: execution is changed

• DTrace minimises probe effect when not being used…
• ... but has a very significant impact when it is used
• Disproportionate effect on probed events

• Potential perturbations:
• Speed relative to other cores (e.g., lock hold times)
• Speed relative to external events (e.g., timer ticks)
• Microarchitectural effects (e.g., cache, branch predictor)

• What does this mean for us?
• Don’t benchmark while running DTrace ...
• ... unless measuring probe effect
• Be aware that traced applications may behave differently
• E.g., more timer ticks will fire, I/O will “seem faster” relative 

to computation, as latter may slow down due to probe effect
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Probe effect example:
dd(1) execution time
• Simple (naïve) microbenchmark – dd(1)
• dd copies blocks from input to output

• Copy 10M buffer from /dev/zero to /dev/null
• (“Do nothing .. But do it slowly”)

• Execution time measured with /usr/bin/time

# dd if=/dev/zero of=/dev/null bs=10m count=1 status=none

• Simultaneously, run various DTrace scripts

• Compare resulting execution times using ministat
• Difference is probe effect (+/- measurement error)
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Probe effect 1: memory allocation
• Using the dtmalloc provider, count kernel memory allocations:

36

• No statistically significant overhead at 95% confidence level

x no-dtrace
+ dtmalloc-count
+------------------------------------------------------------------------------+
| * |
| * |
| * +|
|x * +|
|x * +|
|* * *|
|        |_______________|______A______M__________A_____|__________________| |
+------------------------------------------------------------------------------+

N           Min           Max        Median           Avg Stddev
x  11           0.2          0.22          0.21    0.20818182  0.0060302269
+  11           0.2          0.22          0.21    0.21272727  0.0064666979
No difference proven at 95.0% confidence

dtmalloc:::
{ @count = count(); }



Probe effect 2: locking
• Using the lockstat provider, track kernel lock acquire, release:

37
• 109% overhead – 170K locking operations vs. 6 malloc() calls!

x no-dtrace
+ lockstat-count
+------------------------------------------------------------------------------+
| x +|
| x +|
| x +   +|
|x x +   +|
|x  x +   +|
|x  x  x +  +   +|
| |_A_|                                                                   |_A_M|
+------------------------------------------------------------------------------+

N           Min           Max        Median           Avg Stddev
x  11           0.2          0.22          0.21    0.20818182  0.0060302269
+  11          0.42          0.44          0.44    0.43454545  0.0068755165
Difference at 95.0% confidence

0.226364 +/- 0.00575196
108.734% +/- 2.76295%
(Student's t, pooled s = 0.0064667)

lockstat:::
{ @count = count(); }



Probe effect 3: limiting to dd(1)?
• Limit the action to processes with the name dd:
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• Well, crumbs.  Now 168% overhead!

x no-dtrace
+ lockstat-count-dd
+------------------------------------------------------------------------------+
|                                                                           + |
|  x + |
|  x + |
|  x + |
|  x + |
|x x + |
|x x + |
|x x x                                                                  + + + +|
||_A|                                                                     |_A| |
+------------------------------------------------------------------------------+

N           Min           Max        Median           Avg Stddev
x  11           0.2          0.22          0.21    0.20818182  0.0060302269
+  11          0.54          0.57          0.56    0.55818182  0.0075075719
Difference at 95.0% confidence

0.35 +/- 0.0060565
168.122% +/- 2.90924%
(Student's t, pooled s = 0.00680908)

lockstat::: /execname == "dd"/
{ @count = count(); }



Probe effect 4: stack traces
• Gather more locking information in action – capture call stacks:
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x no-dtrace
+ lockstat-stack
* lockstat-stack-dd
+------------------------------------------------------------------------------+
| * |
|                                                                     * |
|                                                                * |
|                                                                  * |
|xx ++ ** |
|xx ++ ** |
|xx +  +++ ** *+|
|AM                                                                  |_MA_|A|  |
+------------------------------------------------------------------------------+

N           Min           Max        Median           Avg Stddev
x  11           0.2          0.22          0.21    0.20818182  0.0060302269
+  11          1.38          1.57          1.44     1.4618182   0.058449668

1.25364 +/- 0.0369572
602.183% +/- 17.7524%

*  11           1.5          1.55          1.51     1.5127273   0.014206273
1.30455 +/- 0.00970671
626.638% +/- 4.66261%

lockstat::: { @stacks[stack()] = count(); }
lockstat::: /execname == "dd"/ { @stacks[stack()] =  count(); }



The kernel: “Just a C program”?
• I claimed that the kernel was mostly “just a C program”
• This is indeed mostly true, especially in higher-level subsystems

40

Userspace Kernel
crt/csu locore

rtld Kernel linker
Shared objects Kernel modules
main() main(), platform_start()
libc libkern

POSIX threads API kthread KPI
POSIX filesystem API VFS KPI
POSIX sockets API socket KPI
DTrace DTrace
… …



The kernel: not just any C program

• Core kernel: ≈3.4M LoC in ≈6,450 files
• Kernel runtime: Run-time linker, object model, scheduler, 

memory allocator, threads, debugger, tracing, I/O routines, 
timekeeping

• Base kernel: VM, process model, IPC, VFS w/20+ filesystems, 
network stack (IPv4/IPv6, 802.11, ATM, …), crypto framework

• Includes roughly ≈70K lines of assembly over ≈6 architectures
• Alternative C runtime – e.g., SYSINIT, curthread
• Highly concurrent – really very, very concurrent
• Virtual memory makes pointers .. odd
• Debugging features – e.g., WITNESS lock-order verifier
• Device drivers: ≈3.0M LoC in ≈3,500 files

• 415 device drivers (may support multiple devices)
41



Spelunking the kernel

• Kernel source lives in /usr/src/sys:
• kern/ – core kernel features
• sys/ – core kernel headers

• Useful resource: http://fxr.watson.org/
42

% ls
Makefile ddb/            mips/           nfs/            sys/
amd64/          dev/            modules/        nfsclient/      teken/
arm/            fs/             net/            nfsserver/      tools/
boot/           gdb/            net80211/       nlm/            ufs/
bsm/            geom/           netgraph/       ofed/           vm/
cam/            gnu/            netinet/        opencrypto/     x86/
cddl/           i386/           netinet6/       pc98/           xdr/
compat/         isa/            netipsec/       powerpc/        xen/
conf/           kern/           netnatm/        rpc/
contrib/        kgssapi/        netpfil/        security/
crypto/         libkern/        netsmb/         sparc64/

% ls kern
Make.tags.inc kern_racct.c subr_prof.c
Makefile kern_rangelock.c subr_rman.c
bus_if.m kern_rctl.c subr_rtc.c
capabilities.conf kern_resource.c subr_sbuf.c
clock_if.m kern_rmlock.c subr_scanf.c
...



How work happens in the kernel
• Kernel code executes concurrently in multiple threads

• User threads in the kernel (e.g., a system call)
• Shared worker threads (e.g., callouts)
• Subsystem worker threads (e.g., network-stack workers)
• Interrupt threads (e.g., Ethernet interrupt handling)
• Idle threads
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# procstat -at
PID    TID COMM             TDNAME           CPU  PRI STATE   WCHAN

0 100000 kernel swapper -1   84 sleep swapin
0 100006 kernel dtrace_taskq -1   84 sleep -

...
10 100002 idle - -1  255 run -
11 100003 intr swi3: vm 0   36 wait -
11 100004 intr swi4: clock (0)   -1   40 wait -
11 100005 intr swi1: netisr 0    -1   28 wait -

...
11 100018 intr intr16: ti_adc0    0   20 wait -
11 100019 intr intr91: ti_wdt0    0   20 wait -
11 100020 intr swi0: uart -1   24 wait -

...
739 100064 login            - -1  108 sleep   wait
740 100079 csh - -1  140 sleep ttyin
751 100089 procstat - 0  140 run -



Work processing and distribution
• Many operations begin with system calls in a user thread

• But may trigger work in many other threads; for example:

• Triggering a callback in an interrupt thread when I/O is complete

• Eventually writing back data to disk from the buffer cache

• Delayed transmission if TCP isn’t able to send immediately

• We will need to be careful about these things, as not all 

work we are analysing will be in the obvious user thread

• Multiple mechanisms provide this asynchrony; e.g.:
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callout Closure called after wall-clock delay

eventhandler Closure called for key global events

task Closure called .. eventually

SYSINIT Function called when module loads/unloads

* Where closure in C means: function pointer, opaque data pointer



For next time

• McKusick, et al. – Chapter 3
• Cantrill, et al. 2004 – full article

• Read Ellard and Seltzer, NFS Tricks and 
Benchmarking Traps
• Skim the handout, L41: DTrace Quick Start 

(available from L41 module website)
• Be prepared to try out DTrace on a real system
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