
L41: Lab 5 - TCP Latency and Bandwidth

Dr Robert N. M. Watson Dr Graeme Jenkinson

2019-2020

The goals of this lab are to:

• Learn to draw TCP time-bandwidth graphs.

• Evaluate the effects of latency on effective TCP bandwidth.

• Evaluate the effects of socket-buffer size on effective TCP bandwidth.

Lab 5 builds on the investigation started in Lab 4, and uses the same TCP benchmark.

Background: TCP, latency, and bandwidth
The Transmission Control Protocol (TCP) layers an reliable, ordered, octet-stream service over the Internet Proto-
col (IP). As explored in the previous lab, TCP goes through complex setup and shutdown procedures, but (ideally)
spends the majority of its time in the ESTABLISHED state, in which stream data can be transmitted to the remote
endpoint. TCP specifies two rate-control mechanisms:

Flow control allows a receiver to limit the amount of unacknowledged data transmitted by the remote sender,
preventing receiver buffers from being overflowed. This is implemented via window advertisements sent
via acknowledgments back to the sender. When using the sockets API, the advertised window size is based
on available space in the receive socket buffer, meaning that it will be sensitive to both the size configured
by the application (using socket options) and the rate at which the application reads data from the buffer.

Contemporary TCP implementations auto-resize socket buffers if a specific size has not been requested
by the application, avoiding use of a constant default size that may substantially limit overall performance
(as the sender may not be able to fully fill the bandwidth-delay product of the network)1. Note that this
requirement for large buffer sizes is in tension with local performance behaviour explored in prior IPC labs.

Congestion control allows the sender to avoid overfilling the network path to the receiving host, avoiding unnec-
essary packet loss and negative impacting on other traffic on the network (fairness). This is implemented
via a variety of congestion-detection techniques, depending on the specific algorithm and implementation –
but most frequently, interpretation of packet-loss events as a congestion indicator. When a receiver notices
a gap in the received sequence-number series, it will return a duplicate ACK, which hints to the sender that
a packet has been lost and should be retransmitted2.

TCP congestion control maintains a congestion window on the sender – similar in effect to the flow-control
window, in that it limits the amount of unacknowledged data a sender can place into the network. When a
connection first opens, and also following a timeout after significant loss, the sender will enter slow start, in
which the window is ‘opened’ gradually as available bandwidth is probed. The name ‘slow start’ is initially
confusing as it is actually an exponential ramp-up. However, it is in fact slow compared to the original TCP
algorithm, which had no notion of congestion and overfilled the network immediately!

When congestion is detected (i.e., because the congestion window has gotten above available bandwidth
triggering a loss), a cycle of congestion recovery and avoidance is entered. The congestion window will be
reduced, and then the window will be more slowly reopened, causing the congestion window to continually

1Bandwidth (bits/s) * Round Trip Time (s)
2This is one reason why it is important that underlying network substrates retain packet ordering for TCP flows: misordering may be

interpreted as packet loss, triggering unnecessary retransmission.

1



(gently) probe for additional available bandwidth, (gently) falling back when it re-exceeds the limit. In the
event a true timeout is experienced – i.e., significant packet loss – then the congestion window will be cut
substantially and slow start will be re-entered.

The steady state of TCP is therefore responsive to the continual arrival and departure of other flows, as
well as changes in routes or path bandwidth, as it detects newly available bandwidth, and reduces use as
congestion is experienced due to over utilisation.

TCP composes these two windows by taking the minimum: it will neither send too much data for the remote
host, nor for the network itself. One limit is directly visible in the packets themselves (the advertised window from
the receiver), but the other must either be intuited from wire traffic, or more preferably, monitored using end-host
instrumentation. Two further informal definitions will be useful:

Latency is the time it takes a packet to get from one endpoint to another. TCP implementations measure Round-
Trip Time (RTT) in order to tune timeouts detecting packet loss. More subtlely, RTT also limits the rate at
which TCP will grow the congestion window, especially during slow start: the window can grow only as
data is acknowledged, which requires round-trip times as ACKs are received.

Bandwidth is the throughput capacity of a link (or network path) to carry data, typically measured in bits or bytes
per second. TCP attempts to discover the available bandwidth by iteratively expanding the congestion-
control window until congestion is experienced, and then backing off. While bandwidth and latency are
notionally independent of one another, they are entangled in TCP as the protocol relies on acknowledgments
to control the rate at which the congestion window is expanded, which is dependent upon round-trip time.

Background: Plotting TCP connections
TCP time-bandwidth graphs plot time on a linear X axis, and bandwidth achieved by TCP on a linear or log Y
axis. Bandwidth may be usefully calculated as the change in sequence number (i.e., bytes) over a window of time
– e.g., a second. Care should be taken to handle wrapping in the 32-bit sequence space; for shorter measurements
this might be accomplished by dropping traces from experimental runs in which sequence numbers wrap.

This graph type may benefit from overlaying of additional time-based data, such as specific annotation of trace
events from the congestion-control implementation, such as packet-loss detection or a transition out of slow start.
Rather than directly overlaying, which can be visually confusing, a better option may be to “stack” the graphs:
place them on the same X axis (time), horizontally aligned but vertically stacked. Possible additional data points
(and Y axes) might include advertised and congestion-window sizes in bytes.

The benchmark
This lab uses the same IPC benchmark as prior labs. You will run the benchmark both with, and without, set-
ting the socket-buffer size, allowing you to explore the effects of manual versus automatic socket-buffer tuning.
The benchmark continues to send its data on the accepted server-side socket on port 10141. This means that
data segments carrying benchmark data from the sender to the receiver will have a source port of 10141, and
acknowledgements from the receiver to the sender will have a destination port of 10141. Do ensure that, as in
Lab 2, you have increased the kernel’s maximum socket-buffer size.

DTrace probes
As in Lab 4, you will utilise the tcp do segment FBT probe to track TCP input. However, you will now
take advantage of access to the TCP control block (tcpcb structure – args[3] to the tcp do segment FBT
probe) to gain additional insight into TCP behaviour. The following fields may be of interest:

snd wnd On the sender, the last received advertised flow-control window.

snd cwnd On the sender, the current calculated congestion-control window.

snd ssthresh On the sender, the current slow-start threshold – if snd cwnd is less than or equal to
snd ssthresh, then the connection is in slow start; otherwise, it is in congestion avoidance.

2



When writing DTrace scripts to analyse a flow in a particular direction, you can use the port fields in the TCP
header to narrow analysis to only the packets of interest. For example, when instrumenting tcp do segment
to analyse received acknowledgments, it will be desirable to use a predicate of /args[1]->th dport ==
htons(10141)/ to select only packets being sent to the server port (e.g., ACKs), and the similar (but subtly
different) /args[1]->th sport == htons(10141)/ to select only packets being sent from the server
port (e.g., data). Note that you will wish to take care to ensure that you are reading fields from within the tcpcb
at the correct end of the connection – the ‘send’ values, such as last received advertised window and congestion
window, are properties of the server, and not client, side of this benchmark, and hence can only be accessed from
instances of tcp do segment that are processing server-side packets.

To calculate the length of a segment in the probe, you can use the tcp:::send probe to trace the ip length
field in the ipinfo t structure (args[2]):

typedef struct ipinfo {
uint8_t ip_ver; /* IP version (4, 6) */
uint16_t ip_plength; /* payload length */
string ip_saddr; /* source address */
string ip_daddr; /* destination address */

} ipinfo_t;

As is noted in the DTrace documentation for this probe this ip plength is the expected IP payload length
so no further corrections need be applied.

Data for the two types of graphs described above is typically gathered at (or close to) one endpoint in order
to provide timeline consistency – i.e., the viewpoint of just the client or the server, not some blend of the two
time lines. As we will be measuring not just data from packet headers, but also from the TCP implementation
itself, we recommend gathering most data close to the sender. As described here, it may seem natural to collect
information on data-carrying segments on the receiver (where they are processed by tcp do segment), and
to collect information on ACKs on the server (where they are similarly processes). However, given a significant
latency between client and server, and a desire to plot points coherently on a unified real-time X axis, capturing
both at the same endpoint will make this easier.

It is similarly worth noting that tcp do segment’s entry FBT probe is invoked before the ACK or data
segment has been processed – so access to the tcpcb will take into account only state prior to the packet that
is now being processed, not that data itself. For example, if the received packet is an ACK, then printed tcpcb
fields will not take that ACK into account.

Flushing the TCP host cache
FreeBSD implements a host cache that stores sampled round-trip times, bandwidth estimates, and other informa-
tion to be used across different TCP connections to the same remote host. Normally, this feature allows improved
performance as, for example, by allowing past estimates of bandwidth to trigger a transition from slow start to
steady state without ‘overshooting’, potentially triggering significant loss. However, in the context of this lab, car-
rying of state between connections reduces the independence of our experimental runs. As such, we recommend
issuing the following command (as root) between runs of the IPC benchmark:

sysctl net.inet.tcp.hostcache.purgenow=1

This will flush all entries from the host cache, preventing information that may affect congestion-control decisions
from being carried between runs.

Experimental questions (part 2)
These questions supplement the experimental questions in the Lab 4 handout. Configure the benchmark as follows:

• To use the statically linked version: ipc-static

• To use TCP: -i tcp

3



• To use a 2-thread configuration: 2thread

• To use a fixed 1MB buffer -b 1048576

• To set (or not set) the socket-buffer size: -s

• To use only I/O-loop analysis

• Flush the TCP host cache between all benchmark runs

Explore the following experimental questions, which consider only the TCP steady state, and not the three-way
handshake or connection close:

• Plot DUMMYNET-imposed latency (0ms .. 40ms in 5ms intervals) on the X axis and effective bandwidth on
the Y axis, considering both the case where the socket-buffer size is set versus allowing it to be auto-resized.
Is the relationship between round-trip latency and bandwidth linear? How does socket-buffer auto-resizing
help, hurt, or fail to affect performance as latency varies?

• Plot a time–bandwidth graph comparing the effects of setting the socket-buffer size versus allowing it to be
auto-resized by the stack. Stack additional graphs showing the sender last received advertised window and
congestion window on the same X axis. How does socket-buffer auto-resizing affect overall performance,
as explained in terms of the effect of window sizes?

• Be sure, in your lab report, to describe any apparent simulation or probe effects.

Ensure that your final lab report answers all of the experimental questions in both labs 4 and 5.

4


