
Interactive Formal Verification (L21)

Exercises and Marking Scheme

Prof. Lawrence C Paulson
Computer Laboratory, University of Cambridge

Michaelmas Term, 2019

Interactive Formal Verification consists of twelve lectures and four prac-
tical sessions. The handouts for the first two practical sessions will not be
assessed. You may find that these handouts contain more work than you
can complete in an hour, but you are not required to complete them: they
are merely intended to be instructive. Many more exercises can be found
at http://isabelle.in.tum.de/exercises/, but they tend to be easy. The as-
sessed exercises are considerably harder, as you can see by looking at those
of previous years.

The handouts for the last two practical sessions determine your final
mark (50% each). For each assessed exercise, please complete the indicated
tasks and write a brief document explaining your work. You may earn addi-
tional credit by preparing this document using Isabelle’s theory presentation
facility.1 Alternatively, write the document using your favourite word pro-
cessing package. Please ensure that your specifications are correct (because
proofs based on incorrect specifications could be worthless) and that your
Isabelle theory actually runs.

Each assessed exercise is worth 100 marks.

• 50 marks are for completing the tasks. Proofs should be competently
done and tidily presented. Be sure to delete obsolete material from
failed proof attempts. Excessive length (within reason) is not pe-
nalised, but slow or redundant proof steps may be. Sledgehammer
may be used, but multi-line sledgehammer proofs can be unreadable
and should not be presented in their raw form.

• 20 marks are for a clear, basic write-up. It can be just a few pages,
and probably no longer than 6 pages. It should explain your proofs,
preferably displaying these proofs if they are not too long. It could
perhaps outline the strategic decisions that affected the shape of your

1See section 4.2 of the Isabelle/HOL Tutorial, https://www.cl.cam.ac.uk/research/
hvg/Isabelle/dist/Isabelle2019/doc/tutorial.pdf.

1

http://isabelle.in.tum.de/exercises/
https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2019/doc/tutorial.pdf
https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2019/doc/tutorial.pdf


proof and include notes about your experience in completing it. Please
don’t copy the text of the exercises into your own write-up.

• The final 30 marks are for exceptional work. To earn some of these
marks, you may need to vary your proof style, maybe expanding some
apply-style proofs into structured proofs. The point is not to make
your proofs longer (brevity is a virtue) but to demonstrate a variety
of Isabelle skills, perhaps even techniques not covered in the course.
Taking the effort to make your proofs more readable can help.

An exceptional write-up also gains a few marks in this category, while
untidy proofs will lose marks. Very few students will gain more than
half of these marks, but note that 85% is a very high score.

Isabelle theory files for all four sessions can be downloaded from the course
materials website. These files contain necessary Isabelle declarations that
you can use as a basis for your own work.

You must work on these assignments as an individual; collaboration is
forbidden. Copying material found elsewhere counts as plagiarism. Here are
the deadline dates. Exercises are due at 12 noon.

• 1st exercise: Wednesday, 6 November 2019

• 2nd exercise: Wednesday, 20 November 2019

For each exercise, submit both the Isabelle theory file and the accompanying
write-up by the deadline, using Moodle.

2



1 Replace, Reverse and Delete

Define a function replace, such that replace x y zs yields zs with every
occurrence of x replaced by y.

consts replace :: "’a ⇒ ’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems. You may
have to prove some lemmas first.

theorem "rev(replace x y zs) = replace x y (rev zs)"
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
theorem "replace y z (replace x y zs) = replace x z zs"

Define two functions for removing elements from a list: del1 x xs deletes
the first occurrence (from the left) of x in xs, delall x xs all of them.

consts del1 :: "’a ⇒ ’a list ⇒ ’a list"
delall :: "’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems.

theorem "del1 x (delall x xs) = delall x xs"
theorem "delall x (delall x xs) = delall x xs"
theorem "delall x (del1 x xs) = delall x xs"
theorem "del1 x (del1 y zs) = del1 y (del1 x zs)"
theorem "delall x (del1 y zs) = del1 y (delall x zs)"
theorem "delall x (delall y zs) = delall y (delall x zs)"
theorem "del1 y (replace x y xs) = del1 x xs"
theorem "delall y (replace x y xs) = delall x xs"
theorem "replace x y (delall x zs) = delall x zs"
theorem "replace x y (delall z zs) = delall z (replace x y zs)"
theorem "rev(del1 x xs) = del1 x (rev xs)"
theorem "rev(delall x xs) = delall x (rev xs)"

3



2 Power, Sum

2.1 Power

Define a primitive recursive function pow x n that computes xn on natural
numbers.

consts
pow :: "nat => nat => nat"

Prove the well known equation xm·n = (xm)n:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity
and commutativity of multiplication: the corresponding simplification rules
are named mult_ac.

2.2 Summation

Define a (primitive recursive) function sum ns that sums a list of natural
numbers: sum[n1, . . . , nk] = n1 + · · ·+ nk.

consts
sum :: "nat list => nat"

Show that sum is compatible with rev. You may need a lemma.

theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k − 1: Sum f k =
f 0 + · · ·+ f(k − 1).

consts
Sum :: "(nat => nat) => nat => nat"

Show the following equations for the pointwise summation of functions.
Determine first what the expression whatever should be.

theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k"
theorem "Sum f (k + l) = Sum f k + Sum whatever l"

What is the relationship between powSum_ex.sum and Sum? Prove the fol-
lowing equation, suitably instantiated.

theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j]

on lists in theory List.

4



3 Assessed Exercise I: Basic Number Theory

This exercise concerns prime powers that divide a natural number. It im-
ports the theory of prime numbers, HOL-Computational_Algebra.Primes.

Task 1 As a warmup, prove the two lemmas below. [5 marks]

lemma dvd_power_iff_le:
fixes k::nat
shows "2 ≤ k =⇒ k^m dvd k^n ←→ m ≤ n"

lemma primepow_divides_prod:
fixes r::nat
assumes "prime r" "(r^k) dvd (m * n)"
shows "∃ i j. (r^i) dvd m ∧ (r^j) dvd n ∧ k = i + j"

Task 2 Prove the following lemma. [5 marks]

lemma le_power2:
assumes "k ≥ 2" shows "m ≤ k^m"

Task 3 Prove the following lemma. The constant Max should be useful here.
[5 marks]

lemma maximum_index:
fixes n::nat
assumes "n > 0" "2 ≤ r"
shows "∃ k. r^k dvd n ∧ (∀ l>k. ¬ r^l dvd n)"

Now we define the index of a divisor to a natural number. Degenerate
cases map to 0, whilst otherwise it returns the maximum j such that rj

divides n.

definition index where
"index r n
≡ if r ≤ Suc 0 ∨ n = 0 then 0 else card {j. 1 ≤ j ∧ r^j dvd n}"

Task 4 Prove the following proposition and its two corollaries. [10 marks]

proposition pow_divides_index:
"r^k dvd n ←→ n = 0 ∨ r = Suc 0 ∨ k ≤ index r n"

corollary le_index:
"k ≤ index r n ←→ (n = 0 ∨ r = 1 −→ k = 0) ∧ r^k dvd n"

corollary exp_index_divides: "r^(index r n) dvd n"

5



Task 5 Prove the following lemma. [10 marks]

lemma index_trivial_bound: "index r n ≤ n"

Task 6 Prove the following proposition and its corollary. [15 marks]

proposition index_mult:
assumes "prime p" "m > 0" "n > 0"
shows "index p (m * n) = index p m + index p n"

corollary index_exp:
assumes "prime p"
shows "index p (n^k) = k * index p n"

No proof should require more than 25 lines.

6



4 Assessed Exercise II: Basic Combinatorics

This exercise concerns a function f(n, k): the number of ways of selecting
k objects, no two consecutive, from n objects arranged in a row. It makes
sense to assume that the “objects” are simply the natural numbers below
n. Then we can express “no two consecutive” as Suc j /∈ K if j ∈ K.

Task 1 Define the function mf_family, denoting the actual set of ways of
selecting k out of n objects, as described above. Then define mf as its cardi-
nality and test your definitions by proving the following elementary proper-
ties. [10 marks]

lemma mf_n_0 [simp]: "mf n 0 = 1"

lemma mf_n_1 [simp]: "mf n (Suc 0) = n"

lemma mf_0 [simp]: "mf 0 k = (if k=0 then 1 else 0)"

lemma mf_1 [simp]: "mf (Suc 0) k = (if k < 2 then Suc 0 else 0)"

lemma mf_eq_zero:
assumes "n > Suc 0" and "k ≥ n"
shows "mf n k = 0"

Task 2 The following proposition reduces the case f(n, k) to two smaller
cases. The reasoning is that if we reject the last object, namely n− 1, then
we still have k elements to choose from the remaining n−1 objects. If instead
we select the last object, then because of “no two consecutive”, we must reject
its neighbour, namely n− 2. Working through this simple argument requires
a fair bit of reasoning. [25 marks]

proposition mf:
assumes "Suc 0 < k" "k < n"
shows "mf n k = mf (n-1) k + mf (n-2) (k-1)"

Task 3 The following proposition expresses our function using binomial co-
efficients, using the result of the previous task. It requires complete (aka
course-of-values) induction on n+k, using the Isabelle theorem less_induct.
You’ll need to eliminate the degenerate cases first. [15 marks]

proposition mf_closed_form: "mf n k = (Suc n - k) choose k"

7


	Replace, Reverse and Delete
	Power, Sum
	Power
	Summation

	Assessed Exercise I: Basic Number Theory
	Assessed Exercise II: Basic Combinatorics

