Topics in Logic and Complexity

Handout 5

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/1920/L15

Complexity of First-Order Logic

The problem of deciding whether $\mathbb{A} \models \phi$ for first-order ϕ is in time $O(\ln^m)$ and $O(m \log n)$ space.

where n is the size of A, I is the length of ϕ and m is the quantifier rank of ϕ .

We have seen that the problem is PSPACE-complete, even for fixed \mathbb{A} . For each fixed ϕ , the problem is in L.

Is FO contained in an initial segment of P?

Is there a fixed c such that for every first-order ϕ , $\operatorname{Mod}(\phi)$ is decidable in time $O(n^c)$?

If P = PSPACE, then the answer is yes, as the satisfaction relation is then itself decidable in time $O(n^c)$.

Thus, though we expect the answer is no, this would be difficult to prove.

A more uniform version of the question is:

Is there a constant c and a computable function f so that the satisfaction relation for first-order logic is decidable in time $O(f(I)n^c)$?

In this case we say that the satisfaction problem is *fixed-parameter tractable* (FPT) with the formula length as parameter.

Parameterized Problems

```
Some problems are given a graph G and a positive integer k Independent Set: does G contain k vertices that are pairwise distinct and non-adjacent?
```

Dominating Set: does G contain k vertices such that every vertex is among them or adjacent to one of them?

Vertex Cover: does G contain k vertices such that every edge is incident on one of them?

For each fixed value of k, there is a first-order sentence ϕ_k such that $G \models \phi_k$ if, and only if, G contains an independent set of k vertices. Similarly for dominating set and vertex cover.

Parameterized Complexity

FPT—the class of problems of input size n and parameter l which can be solved in time $O(f(l)n^c)$ for some computable function f and constant c. There is a hierarchy of intractable classes.

$$\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq \mathsf{AW}[\star]$$

Vertex Cover is FPT. Independent Set is W[1]-complete. Dominating Set is W[2]-complete.

Parameterized Complexity of First-Order Satisfaction

Writing Π_t for those formulas which, in prenex normal form have t alternating blocks of quantifiers starting with a universal block:

The satisfaction problem restricted to Π_t formulas (parameterized by the length of the formula) is hard for the class W[t].

The satisfaction relation for first-order logic ($\mathbb{A} \models \phi$), parameterized by the length of ϕ is $\mathsf{AW}[\star]$ -complete.

Thus, if the satisfaction problem for first-order logic were FPT, this would collapse the edifice of parameterized complexity theory.

Restricted Classes

One way to get a handle on the complexity of first-order satisfaction is to consider restricted classes of structures.

Given: a first-order formula ϕ and a structure $\mathbb{A} \in \mathcal{C}$

Decide: if $\mathbb{A} \models \phi$

For many interesting classes C, this problem has been shown to be FPT, even for formulas of MSO.

We say that satisfaction of FO (or MSO) is *fixed-parameter tractable on* \mathcal{C} .

Words as Relational Structures

For an alphabet $\Sigma = \{a_1, \ldots, a_s\}$ let

$$\sigma_{\Sigma} = (<, P_{\mathsf{a_1}}, \dots, P_{\mathsf{a_s}})$$

where

< is binary; and P_{a_1}, \ldots, P_{a_s} are unary.

With each $w \in \Sigma^*$ we associate the canonical structure

$$S_w = (\{1, \ldots, n\}, <, P_{a_1}, \ldots, P_{a_s})$$

where

- n is the length of w
- < is the natural linear order on $\{1, \ldots, n\}$.
- $i \in P_a$ if, and only if, the ith symbol in w is a.

Languages Defined by Formulas

The sentence ϕ in the signature σ_{Σ} defines:

$$\{w \mid S_w \models \phi\}.$$

The class of structures isomorphic to word models is given by:

$$lo(<) \land \forall x \bigvee_{a \in \Sigma} P_a(x) \land \forall x \bigwedge_{a,b \in \Sigma, a \neq b} (P_a(x) \rightarrow \neg P_b(x)),$$

where

lo(<) is the formula that states that < is a linear order

Examples

The set of strings of length 3 or more:

$$\exists x \exists y \exists z (x \neq y \land y \neq z \land x \neq z).$$

The set of strings which begin with an a:

$$\exists x (P_a(x) \land \forall y \ y \ge x)$$

The set of strings of even length:

$$\exists X \ \forall x (\forall y \ x \leq y) \to X(x) \land \\ \forall x \forall y \ (x < y \land \forall z (z \leq x \lor y \leq z)) \\ \to (X(x) \leftrightarrow \neg X(y)) \land \\ \forall x (\forall y \ y \leq x) \to \neg X(x).$$

Examples

$$\begin{array}{ll} (ab)^* \colon & \\ \forall x (\forall y & x \leq y) \to P_a(x) \land \\ \forall x \forall y & (x < y \land \forall z (z \leq x \lor y \leq z)) \\ & \to (P_a(x) \leftrightarrow P_b(y)) \land \\ \forall x (\forall y & y \leq x) \to P_b(x). \end{array}$$

MSO on Words

Theorem (Büchi-Elgot-Trakhtenbrot)

A language L is defined by a sentence of MSO if, and only if, L is regular.

Recall that a language *L* is *regular* if:

- it is the set of words matching a regular expression; or equivalently
- it is the set of words accepted by some nondeterministic finite automaton; or equivalently
- it is the set of words accepted by some deterministic finite automaton.

Myhill-Nerode Theorem

Let \sim be an equivalence relation on Σ^* .

```
We say \sim is right invariant if, for all u, v \in \Sigma^*, if u \sim v, then for all w \in \Sigma^*, uw \sim vw.
```

Theorem (Myhill-Nerode)

The following are equivalent for any language $L \subseteq \Sigma^*$:

- L is regular;
- L is the union of equivalence classes of a right invariant equivalence relation of finite index on Σ*.

MSO Equivalence

We write $\mathbb{A} \equiv_m^{\mathsf{MSO}} \mathbb{B}$ to denote that, for all MSO sentences ϕ with $\mathrm{qr}(\phi) \leq m$,

$$\mathbb{A} \models \phi$$
 if, and only if, $\mathbb{B} \models \phi$.

We count both first and second order quantifiers towards the rank.

The relation \equiv_{m}^{MSO} has finite index for every m.

For any m, there are up to logical equivalence, only finitely many formulas with quantifier rank at most m, with at most k free variables.

Invariance

Suppose u_1, u_2, v_1, v_2 are words over an alphabet Σ such that

$$u_1 \equiv_m^{\mathsf{MSO}} u_2$$
 and $v_1 \equiv_m^{\mathsf{MSO}} v_2$

then $u_1v_1 \equiv_m^{\mathsf{MSO}} u_2v_2$.

Dulpicator has a winning strategy on the game played on the pair of words u_1v_1 , u_2v_2 that is obtained as a composition of its strategies in the games on u_1 , u_2 and v_1 , v_2 .

It follows that \equiv_{m}^{MSO} is right invariant.

For any MSO sentence ϕ , the language defiend by ϕ is the union of equivalence classes of \equiv_{m}^{MSO} where m is the quantifier rank of ϕ .

Regular Expressions to MSO

For the converse, we translate a regular expression r to an MSO sentence ϕ_r .

$$r = \emptyset \colon \phi_r = \exists x (x \neq x).$$

$$r = \varepsilon \colon \phi_r = \neg \exists x (x = x).$$

$$r = a \colon \phi_r = \exists x \forall y (y = x \land P_a(x)).$$

$$r = s + t \colon \phi_r = \phi_s \lor \psi_t.$$

$$r = st \colon \phi_r = \exists x (\phi_s^{
where $\phi_s^{ and $\phi_t^{\geq x}$ are obtained from ϕ_s and ϕ_t by relativising the first order quantifiers.

That is, every subformula of ϕ_s of the form $\exists y \psi$ is replaced by $\exists y (y < x \land \psi^{
and similarly every subformula $\exists y \psi$ of ϕ_t by $\exists y (y \geq x \land \psi^{\geq x})$$$$$

Kleene Star

$$r = s^*$$
:

$$\phi_{r} = \phi_{\varepsilon} \vee \\
\exists X \ \forall x(X(x) \land \forall y(y < x \to \neg X(y)) \to \phi_{s}^{$$

where $\phi_s^{\geq x, \leq y}$ is obtained from ϕ_s by relativising all first order quantifiers simultaneously with < y and $\ge x$.

First-Order Languages

The class of *star-free* regular expressions is defined by:

- the strings \emptyset and ε are star-free regular expressions;
- for any element $a \in A$, the string a is a star-free regular expression;
- if r and s are star-free regular expressions, then so are (rs), (r+s) and (\bar{r}) .

A language is defined by a first order sentence *if*, *and only if*, it is denoted by a star-free regular expression.

Applications

A class of linear orders is definable by a sentence of MSO if, and only if, its set of cardinalities is *eventually periodic*.

Some results on graphs:

The class of balanced bipartite graphs is not definable in MSO.

The class of Hamiltonian graphs is not definable by a sentence of MSO.

MSO is FPT on Words

There is a computable function f such that the problem of deciding, given a word w and an MSO sentence ϕ whether,

$$S_w \models \phi$$

can be decided in time O(f(I)n) where I is the length of ϕ and n is the length of w.

The algorithm proceeds by constructing, from ϕ an automaton \mathcal{A}_{ϕ} such that the language recognized by \mathcal{A}_{ϕ} is

$$\{w \mid S_w \models \phi\}$$

then running \mathcal{A}_{ϕ} on w.

The automaton \mathcal{A}_{ϕ}

The states of \mathcal{A}_{ϕ} are the equivalence classes of \equiv_{m}^{MSO} where m is the quantifier rank of ϕ .

We write $\mathsf{Type}^{\mathsf{MSO}}_m(\mathbb{A})$ for the set of all formulas ϕ with $\mathsf{qr}(\phi) \leq m$ such that $\mathbb{A} \models \phi$.

 $\mathbb{A} \equiv_{m}^{\mathsf{MSO}} \mathbb{B}$ is equivalent to

$$\mathsf{Type}^{\mathsf{MSO}}_m(\mathbb{A}) = \mathsf{Type}^{\mathsf{MSO}}_m(\mathbb{B})$$

There is a single formula $\theta_{\mathbb{A}}$ that characterizes $\mathsf{Type}^{\mathsf{MSO}}_m(\mathbb{A})$. It turns out that we can compute $\theta_{S_{w,a}}$ from $\theta_{S_{w}}$.