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1. Show that, for every nondeterministic machine M which uses O(log n)
work space, there is a machine R with three tapes (input, work and
output) which works as follows. On input x, R produces on its out-
put tape a description of the configuration graph for M,x, and R uses
O(log |x|) space on its work tape.

Explain why this means that if Reachability is in L, then L = NL.

2. Show that a language L is in co-NP if, and only if, there is a nondeter-
ministic Turing machine M and a polynomial p such that M halts in time
p(n) for all inputs of length x, and L is exactly the set of strings x such
that all computations of M on input x end in an accepting state.

3. Define a strong nondeterministic Turing machine as one where each com-
putation has three possible outcomes: accept, reject or maybe. If M is
such a machine, we say that it accepts L, if for every x ∈ L, every compu-
tation path of M on x ends in either accept or maybe, with at least one
accept and for x 6∈ L, every computation path of M on x ends in reject
or maybe, with at least one reject.

Show that if L is decided by a strong nondeterministic Turing machine
running in polynomial time, then L ∈ NP ∩ co-NP.

4. Geography and HEX are examples of two-player games played on graphs
for which the problem of deciding which of the two players has a winning
strategy is PSpace-complete (defined at the end of Handout 1). The games
are defined as follows.

Geography We are given a directed graph G = (V,E) with a distin-
guished start vertex s ∈ V . At the beginning of the game, s is
marked. The players mover alternately. The player whose turn it is
marks a previouasly unmarked vertex v such that there is an edge
from u to v, where u is the vertex marked most recently by the other
player. A player who gets stuck (i.e. the vertex most recently marked
is u and all edges leaving u go to marked vertices) loses the game.

HEX We are given a directed graph G = (V,E) with two distinguished
vertices a, b ∈ V . There are two players (red and blue) who take
alternate turns. In each turn, the player chooses a vertex not previ-
ously coloured and colours it with its own colour (player red colours
it red or player blue colours it blue). The game ends when all nodes
have been coloured. If there is a path from a to b consisting entirely
of red vertices, then player red has won, otherwise blue has won.
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Explain why both these problems are in PSpace. Prove, by means of
suitable reductions, that they are PSpace-complete.

5. A second-order Horn sentence (SO-Horn sentence, for short) is one of the
form

Q1R1 . . . QpRp(∀x
∧
i

Ci)

where, each Qi is either ∃ or ∀, each Ri is a relational variable and each
Ci is a Horn clause, which is defined for our purposes as a disjunction
of atomic and negated atomic formulas such that it contains at most
one positive occurrence of a relational variable. A sentence is said to be
ESO-Horn if it is as above, and all Qi are ∃.

(a) Show that any ESO-Horn sentence in a relational signature defines a
class of structures decidable in polynomial time.

(b) Show that, if K is an isomorphism-closed class of structures in a rela-
tional signature including <, such that each structure in K interprets
< as a linear order and

{[A]< | A ∈ K}

is decidable in polynomial time, then there is an ESO-Horn sentence
that defines K.

(c) Show that any SO-Horn sentence is equivalent to an ESO-Horn sen-
tence.

6. Recall that a Boolean formula is in conjunctive normal form if it is the
conjunction of a collection of clauses, each of which is the disjunction of a
set of literals. Each literal is either a propositional variable or the negation
of a propositional variable. We say that a formula is in 3-CNF if it is in
conjunctive normal form and each clause contains exactly 3 literals. It
is in 2-CNF if it is in conjunctive normal form and each clause contains
exactly 2 literals.

The problem of deciding whether a given formula in 3-CNF is satisfiable
is known to be NP-complete. Here, the aim is to show that the problem
of deciding whether a given formula in 2-CNF is satisfiable is in NL.

(a) Show that every clause containing 2 literals can be written as an
implication in exactly two ways.

For any formula φ in 2-CNF, define the directed graph Gφ to be the graph
whose set of vertices is the set of all literals that occur in φ, and in which
there is an edge from literal x to literal y if, and only if, the implication
(x→ y) is equivalent to one of the clauses in φ.

(b) Show that φ is unsatisfiable if, and only if, there is a literal x such
that there is a path in Gφ from x to ¬x and a path from ¬x to x.
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(c) Explain why it follows that the problem of determining whether a
formula in 2-CNF is satisfiable is in NL.

7. Show that Cook’s theorem—that the problem SAT is NP-complete—can
be obtained as a consequence of Fagin’s theorem.

8. A graph G = (V,E) is said to be Hamiltonian if it contains a cycle which
visits every vertex exactly once. The problem of determining whether a
graph is Hamiltonian is known to be NP-complete. Write down a sentence
of ESO that defines this property.

9. We have seen a sentence of ESO that defines the structures with an even
number of elements (Handout 2, slide 22). Can you define the property
in USO?

10. We have seen a sentence of ESO that defines the 3-colourable graphs
(Handout 2, slide 24). We can, of course, write a similar sentence to define
the 2-colourable graphs. However, the property of being 2-colourable is
in P, since a graph is 2-colourable if, and only if, it has no cycles of
odd length. Can you write a USO sentence that defines the 2-colourable
graphs?

11. Recall that a graph is planar if it can be drawn in the plane without any
crossing edges. It is decidable in polynomial time whether a given graph
is planar. Can you write a USO sentence that defines the planar graphs?
How about an ESO sentence?

12. Show that the levels of the polynomial hierarchy are closed under polyno-
mial time reductions. That is to say, if L1 is a decision problem in Σn (or
Πn) for some n and L2 ≤P L1 then L2 is also in Σn (or Πn respectively).

13. Recall the definition of quantified Boolean formulas (Handout 2, slide 13).
We now define the following restricted classes of formulas.

• A quantified Boolean formula is said to be Σ1 if it consists of a se-
quence of existential quantifiers followed by a Boolean formula with-
out quantifiers.

• A quantified Boolean formula is said to be Π1 if it consists of a se-
quence of universal quantifiers followed by a Boolean formula without
quantifiers.

• A quantified Boolean formula is said to be Σn+1 if it consists of a
sequence of existential quantifiers followed by a Πn formula.

• A quantified Boolean formula is said to be Πn+1 if it consists of a
sequence of universal quantifiers followed by a Σn formula.

For each n define Σn-QBF to be the problem of determining, given a
Σn formula without free variables, whether or not it evaluates to true.
Πn-QBF is defined similarly for Πn formulas.
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Prove that Σn-QBF is complete for the complexity class Σ1
n (i.e. the

nth existential level of the polynomial hierarchy), and that Πn-QBF is
complete for the complexity class Π1

n.

14. If σ is a relational signature (i.e. it contains no function or constant sym-
bols), and A and B are σ-structures, write A + B for the structure whose
universe is the disjoint union of the universes of A and B and where each
relation symbol R of σ is interpreted by the corresponding union of its
interpretations in A and B. Similarly, write nA for the disjoint union of
n copies of A.

(a) Show that, if A ≡q A′ and B ≡q B′, then A + B ≡q A′ + B′.

(b) Show that, for n,m ≥ q, nA ≡q mA.

15. A clique in a graph G = (V,E) is a set X ⊆ V of vertices such that for
any u, v ∈ X if u 6= v then (u, v) is an edge in E. The decision problem
Clique is the problem of deciding, given a graph G and a positive integer
k whether or not G contains a clique with k or more elements. This
problem is known to be NP-complete.

We will represent this problem as a class of structures as follows. The
vocabulary consists of two binary relations E and < and one constant k.
Consider structures G = (V,E,<, k) in this vocabulary where (V,E) is a
graph, < is a linear order on V and k is some element of V . We say that
G is in Clique if there is a set X ⊆ V of vertices which forms a clique in
the graph (V,E) and so that the number of elements in X is larger than
the number of elements in {v ∈ V | v < k}, i.e. the number of elements
before k in the linear order.

(a) Give a sentence of existential second-order logic that defines the class
of structures Clique.

(b) Prove that there is no sentence of first-order logic that defines this
class of structures.
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