L11: Algebraic Path Problems with applications to Internet Routing

Timothy G. Griffin
timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK
Michaelmas Term, 2019

Semigroup properties (so far). Call this set of properties $\mathbb{P}_{0}^{S G}$

$$
\begin{aligned}
\mathbb{A S}(S, \bullet) & \equiv \forall a, b, c \in S, a \bullet(b \bullet c)=(a \bullet b) \bullet c \\
\mathbb{I I D}(S, \bullet \alpha) & \equiv \forall a \in S, a=\alpha \bullet a=a \bullet \alpha \\
\mathbb{I D}(S, \bullet) & \equiv \exists \alpha \in S, \mathbb{I D}(S, \bullet, \alpha) \\
\mathbb{I A N}(S, \bullet, \omega) & \equiv \forall a \in S, \omega=\omega \bullet a=a \bullet \omega \\
\mathbb{A} \mathbb{N}(S, \bullet) & \equiv \exists \omega \in S, \mathbb{I A N}(S, \bullet \omega) \\
\mathbb{C M}(S, \bullet) & \equiv \forall a, b \in S, a \bullet b=b \bullet a \\
\mathbb{S L}(S, \bullet) & \equiv \forall a, b \in S, a \bullet b \in\{a, b\} \\
\mathbb{P}(S, \bullet) & \equiv \forall a \in S, a \bullet a=a
\end{aligned}
$$

Bisemigroup properties (so far). Call this set of properties $\mathbb{P}_{0}^{B S}$

```
L\mathbb{D}(S,\oplus,\otimes) \equiv \foralla,b,c\inS,a\otimes(b\oplusc)=(a\otimesb)\oplus(a\otimesc)
R\mathbb{D}(S,\oplus,\otimes) \equiv \foralla,b,c\inS,(a\oplusb)\otimesc=(a\otimesc)\oplus(b\otimesc)
Z\mathbb{A}(S,\oplus,\otimes) \equiv\exists\overline{0}\inS, \mathbb{IID}(S,\oplus,\overline{0})\wedge\mathbb{IAN}(S,\otimes,\overline{0})
\mathbb { O A } ( S , \oplus , \otimes ) ~ \equiv \exists \overline { 1 } \in S , \mathbb { I I D D } ( S , \otimes , \overline { 1 } ) \wedge \mathbb { I A N } ( S , \oplus , \overline { 1 } )
```


Start with an (expandable) set of base structures

Semigroups

S	\bullet	α	ω	$\mathbb{C M}$	$\mathbb{S L}$	$\mathbb{P} P$
S	left				\star	\star
S	right				\star	\star
\mathbb{N}	\min		0	\star	\star	\star
\mathbb{N}	\max	0		\star	\star	\star
\mathbb{N}	+	0		\star		

Bisemigroups

S	\oplus	\otimes	$\overline{0}$	$\overline{1}$	$\mathbb{L D}$	$\mathbb{R D}$	$\mathbb{Z} \mathbb{A}$	$\mathbb{O} \mathbb{A}$
\mathbb{N}	\min	+		0	\star	\star		\star
\mathbb{N}	\max	+	0	0	\star	\star		
\mathbb{N}	\max	\min	0		\star	\star	\star	
\mathbb{N}	\min	\max		0	\star	\star		\star

CAS idea

- We want to develop a set of combinators for constructing new semigroups and bisemigroups.
- A CAS expression will be built from base structures and combinators.
- We want the collection of combinators to be closed in the following sense:

For each property \mathbb{Q} we can compute if a CAS expression satisfies \mathbb{Q} or if it satisfies $\neg \mathbb{Q}$.

Add identity

$$
\operatorname{AddId}(\alpha,(S, \bullet)) \equiv\left(S \uplus\{\alpha\}, \stackrel{\bullet}{\alpha}_{\alpha}^{\mathrm{id}}\right)
$$

where $A \uplus B \equiv\{\operatorname{inl}(a) \mid a \in A\} \cup\{\operatorname{inr}(b) \mid b \in B\}$ and

$$
a \bullet{ }_{\alpha}^{\text {id }} b \equiv\left\{\begin{array}{cl}
a & \text { (if } b=\operatorname{inr}(\alpha)) \\
b & \text { (if } a=\operatorname{inr}(\alpha)) \\
\operatorname{inl}(x \bullet y) & \text { (if } a=\operatorname{inl}(x), b=\operatorname{inl}(y))
\end{array}\right.
$$

Easy Exercises

$$
\begin{aligned}
& \mathbb{A} \mathbb{S}(\operatorname{AddId}(\alpha,(S, \bullet))) \Leftrightarrow \mathbb{A}(S, \bullet) \\
& \mathbb{I D}(\operatorname{AddId}(\alpha,(S, \bullet))) \Leftrightarrow \mathbb{T} \mathbb{R} \mathbb{E} \\
& \mathbb{A} \mathbb{N}(\operatorname{AddId}(\alpha,(S, \bullet))) \Leftrightarrow \mathbb{A}(S, \bullet) \\
& \mathbb{C M}(\operatorname{AddId}(\alpha,(S, \bullet))) \Leftrightarrow \mathbb{C M}(S, \bullet) \\
& \mathbb{I P}(\operatorname{AddId}(\alpha,(S, \bullet))) \Leftrightarrow \mathbb{I P}(S, \bullet) \\
& \mathbb{S L}(\operatorname{AddId}(\alpha,(S, \bullet))) \Leftrightarrow \mathbb{S L}(S, \bullet)
\end{aligned}
$$

Adding an annihilator

$$
\operatorname{AddAn}(\omega,(S, \bullet)) \equiv\left(S \uplus\{\omega\}, \bullet_{\omega}^{\text {an }}\right)
$$

where

$$
a \bullet{ }_{\omega}^{\text {an }} b \equiv\left\{\begin{array}{cl}
\operatorname{inr}(\omega) & \text { (if } b=\operatorname{inr}(\omega)) \\
\operatorname{inr}(\omega) & \text { (if } a=\operatorname{inr}(\omega)) \\
\operatorname{inl}(x \bullet y) & \text { (if } a=\operatorname{inl}(x), b=\operatorname{inl}(y))
\end{array}\right.
$$

Easy Exercises

$$
\begin{aligned}
\operatorname{AS}(\operatorname{AddAn}(\alpha,(S, \bullet))) & \Leftrightarrow \mathbb{A S}(S, \bullet) \\
\mathbb{I D}(\operatorname{AddAn}(\alpha,(S, \bullet))) & \Leftrightarrow \mathbb{I D}(S, \bullet) \\
\operatorname{AN}(\operatorname{AddAn}(\alpha,(S, \bullet))) & \Leftrightarrow \mathbb{T R U E} \\
\mathbb{C M}(\operatorname{AddAn}(\alpha,(S, \bullet))) & \Leftrightarrow \mathbb{C M}(S, \bullet) \\
\mathbb{P}(\operatorname{AddAn}(\alpha,(S, \bullet))) & \Leftrightarrow \mathbb{I P}(S, \bullet) \\
\mathbb{S L}(\operatorname{AddAn}(\alpha,(S, \bullet))) & \Leftrightarrow \mathbb{S L}(S, \bullet)
\end{aligned}
$$

Direct Product of Semigroups

Let (S, \bullet) and (T, \diamond) be semigroups.
Definition (Direct product semigroup)
The direct product is denoted

$$
(S, \bullet) \times(T, \diamond) \equiv(S \times T, \star)
$$

where
is defined as

$$
\left(s_{1}, t_{1}\right) \star\left(s_{2}, t_{2}\right)=\left(s_{1} \bullet s_{2}, t_{1} \diamond t_{2}\right)
$$

Easy exercises

$$
\begin{aligned}
\mathbb{A S}((S, \bullet) \times(T, \diamond)) & \Leftrightarrow \mathbb{A S}(S, \bullet) \wedge \mathbb{A}(T, \diamond) \\
\mathbb{I D}((S, \bullet) \times(T, \diamond)) & \Leftrightarrow \mathbb{I D}(S, \bullet) \wedge \mathbb{I D}(T, \diamond) \\
\mathbb{A N}((S, \bullet) \times(T, \diamond)) & \Leftrightarrow \mathbb{A N}(S, \bullet) \wedge \mathbb{A N}(T, \diamond) \\
\mathbb{C M}((S, \bullet) \times(T, \diamond)) & \Leftrightarrow \mathbb{C M}(S, \bullet) \wedge \mathbb{C M}(T, \diamond) \\
\mathbb{I P}((S, \bullet) \times(T, \diamond)) & \Leftrightarrow \mathbb{I P}(S, \bullet) \wedge \mathbb{I P}(T, \diamond)
\end{aligned}
$$

What about SL?

Consider the product of two selective semigroups, such as $(\mathbb{N}, \min) \times(\mathbb{N}, \max)$.
$(10,10) \star(1,3)=(1,10) \notin\{(10,10),(1,3)\}$
The result in this case is not selective!

Direct product and $\mathbb{S L}$?

$$
\mathbb{S L}((S, \bullet) \times(T, \diamond)) \Leftrightarrow(\mathbb{R}(S, \bullet) \wedge \mathbb{R}(T, \diamond)) \vee(\mathbb{I L}(S, \bullet) \wedge \mathbb{L}(T, \diamond))
$$

$$
\begin{aligned}
& \mathbb{R} \quad \text { is right } \\
& \mathbb{I} \mathbb{L} \quad \text { is left }
\end{aligned} \equiv \forall s, t \in S, s \bullet t=t, ~ \equiv \forall s, t \in S, s \bullet t=s
$$

$$
\begin{aligned}
& \mathbb{R}((S, \bullet) \times(T, \diamond)) \\
& \mathbb{R L}((S, \bullet) \times(T, \diamond)) \Leftrightarrow \mathbb{I R}(S, \bullet) \wedge \mathbb{I}(\mathbb{R}(T, \diamond) \\
& \mathbb{I}(S, \bullet) \wedge \mathbb{L}(T, \diamond)(T, \diamond)
\end{aligned}
$$

Remember : we have an implicit assumtion that $2 \leqslant|S|$.

Revisit other semigroup constructions ...

To close our simple collection \{AddId, AddAn\} of semigroup combinators we need

$$
\mathbb{P}_{1}^{S G} \equiv \mathbb{P}_{0}^{S G} \cup\{\mathbb{R}, \mathbb{R}, \mathbb{L}\}
$$

and

$$
\begin{aligned}
\mathbb{R}(\operatorname{AddId}(\alpha,(S, \bullet))) & \Leftrightarrow \mathbb{F A L S E} \\
\mathbb{I L}(\operatorname{AddId}(\alpha,(S, \bullet))) & \Leftrightarrow \mathbb{F A L S E} \\
\mathbb{I R}(\operatorname{AddAn}(\alpha,(S, \bullet))) & \Leftrightarrow \mathbb{F A L S E} \\
\mathbb{I L}(\operatorname{AddAn}(\alpha,(S, \bullet))) & \Leftrightarrow \mathbb{F A L S E}
\end{aligned}
$$

Operations for adding a zero, a one

$$
\begin{aligned}
& \operatorname{AddZero}(\overline{0},(S, \oplus, \otimes)) \equiv\left(S_{\uplus\{\overline{0}\}}, \oplus_{\frac{1}{\mathrm{id}},}, \otimes_{0}^{\text {an }}\right) \\
& \operatorname{AddOne}(\overline{1},(S, \oplus, \otimes)) \equiv\left(S_{\uplus\{\overline{1}\}, \oplus_{1}^{\text {an }},}, \otimes_{1}^{\text {id }}\right)
\end{aligned}
$$

Easy Exercises

$$
\begin{aligned}
& \mathbb{L D}(\operatorname{AddZero}(\overline{0},(S, \oplus, \otimes))) \Leftrightarrow \mathbb{L D}(S, \oplus, \otimes) \\
& \mathbb{R D}(\operatorname{AddZero}(\overline{0},(S, \oplus, \otimes))) \Leftrightarrow \mathbb{R D}(S, \oplus, \otimes) \\
& \mathbb{Z} \mathbb{A}(\operatorname{AddZero}(\overline{0},(S, \oplus, \otimes))) \Leftrightarrow \mathbb{T} \mathbb{R} \mathbb{E} \\
& \mathbb{O} \mathbb{A}(\operatorname{AddZero}(\overline{0},(S, \oplus, \otimes))) \Leftrightarrow \mathbb{O} \mathbb{A}(S, \oplus, \otimes)
\end{aligned}
$$

Easy Exercises?

Consider left distributivity (LLD)

a	b	c	$a \otimes_{0}^{\operatorname{an}}\left(b \oplus_{0}^{\text {id }} c\right)$	$\left(a \otimes_{0}^{\operatorname{an}} b\right) \oplus_{0}^{\text {id }}\left(a \otimes_{0}^{\mathrm{an}} c\right)$
$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inl}\left(b^{\prime}\right)$	$\operatorname{inl}\left(c^{\prime}\right)$	$\operatorname{inl}\left(a^{\prime} \otimes\left(b^{\prime} \oplus c^{\prime}\right)\right)$	$\operatorname{inl}\left(\left(a^{\prime} \otimes b^{\prime}\right) \oplus\left(a^{\prime} \otimes c^{\prime}\right)\right)$
$\operatorname{inr}(\overline{0})$	$\operatorname{inl}\left(b^{\prime}\right)$	$\operatorname{inl}\left(c^{\prime}\right)$	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$
$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inr}(\overline{0})$	$\operatorname{inl}\left(c^{\prime}\right)$	$\operatorname{inl}\left(a^{\prime} \oplus c^{\prime}\right)$	$\operatorname{inl}\left(a^{\prime} \oplus c^{\prime}\right)$
$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inl}\left(b^{\prime}\right)$	$\operatorname{inr}(\overline{0})$	$\operatorname{inl}\left(a^{\prime} \oplus b^{\prime}\right)$	$\operatorname{inl}\left(a^{\prime} \oplus b^{\prime}\right)$
$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{\overline{0}})$
$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$

However, adding a one is more complicated!

Consider left distributivity (LDD)

a	b	c	$a \otimes_{\overline{1}}^{\text {id }}\left(b \oplus_{\overline{1}}^{\text {an }} c\right)$	$\left(a \otimes \otimes_{\overline{1}}^{\text {id }} b\right) \oplus_{\overline{1}}^{\text {an }}\left(a \otimes \frac{\text { d }}{\overline{1}} c\right)$
$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inl}\left(b^{\prime}\right)$	$\operatorname{inl}\left(c^{\prime}\right)$	$\operatorname{inl}\left(a^{\prime} \otimes\left(b^{\prime} \oplus c^{\prime}\right)\right)$	$\operatorname{inl}\left(\left(a^{\prime} \otimes b^{\prime}\right) \oplus\left(a^{\prime} \otimes c^{\prime}\right)\right)$
$\operatorname{inr}(\overline{\mathbf{1}})$	$\operatorname{inl}\left(b^{\prime}\right)$	$\operatorname{inl}\left(c^{\prime}\right)$	$\operatorname{inl}\left(b^{\prime} \oplus c^{\prime}\right)$	$\operatorname{inl}\left(b^{\prime} \oplus c^{\prime}\right)$
$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inr}(\overline{1})$	$\operatorname{inl}\left(c^{\prime}\right)$	$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inl}\left(\left(a^{\prime} \oplus\left(a^{\prime} \otimes c^{\prime}\right)\right)\right.$
$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inl}\left(b^{\prime}\right)$	$\operatorname{inr}(\overline{1})$	$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inl}\left(\left(a^{\prime} \otimes b^{\prime}\right) \oplus a^{\prime}\right)$
$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inr}(\overline{1})$	$\operatorname{inr}(\overline{1})$	$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inl}\left(a^{\prime} \oplus a^{\prime}\right)$
$\operatorname{inr}(\overline{1})$	$\operatorname{inr}(\overline{1})$	$\operatorname{inr}(\overline{1})$	$\operatorname{inr}(\overline{1})$	$\operatorname{inr}(\overline{1})$

Absorption

what does $a=(a \otimes b) \oplus$ a represent?
Let $a \leqslant b \equiv a=a \oplus b$. Then $a=(a \otimes b) \oplus a$ is telling us something else, that

$$
a \leqslant a \otimes b
$$

That is, that multiplication is inflationary or non-decreasing.
$\mathbb{A} \mathbb{B}$ sorption properties (name is from lattice theory)
$\mathbb{R A} \mathbb{B}(S, \oplus, \otimes) \equiv \forall a, b \in S, a=(a \otimes b) \oplus a=a \oplus(a \otimes b)$
$\mathbb{L A} \mathbb{B}(S, \oplus, \otimes) \equiv \forall a, b \in S, a=(b \otimes a) \oplus a=a \oplus(b \otimes a)$
To close our simple collection \{AddZero, AddOne\} of bisemigroup combinators we need

$$
\mathbb{P}_{1}^{B S} \equiv \mathbb{P}_{0}^{B S} \cup\{\mathbb{R} \mathbb{A} \mathbb{B}, \mathbb{L} \mathbb{A} \mathbb{B}\}
$$

Rules for absorption for AddZero? Consider $\mathbb{R} A \mathbb{B}$
AddZero

a	b	$\left(a \otimes_{\overline{0}}^{\text {an }} b\right) \oplus \oplus_{\overline{0}}^{\text {id }} a$	$a \oplus \oplus_{\overline{0}}^{\text {id }}\left(a \otimes_{\overline{0}}^{\text {an }} b\right)$
$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inl}\left(b^{\prime}\right)$	$\operatorname{inl}\left(\left(a^{\prime} \otimes b^{\prime}\right) \oplus a\right)$	$\operatorname{inl}\left(a^{\prime} \oplus\left(a^{\prime} \otimes b^{\prime}\right)\right)$
$\operatorname{inr}(\overline{0})$	$\operatorname{inl}\left(b^{\prime}\right)$	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$
$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inr}(\overline{0})$	$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inl}\left(a^{\prime}\right)$
$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$

$\mathbb{R} \mathbb{A B}(\operatorname{AddZero}(\overline{0},(S, \oplus, \otimes))) \Leftrightarrow \mathbb{R} \mathbb{A} \mathbb{B}(S, \oplus, \otimes)$
$\mathbb{L} \mathbb{A} \mathbb{B}(\operatorname{AddZero}(\overline{0},(S, \oplus, \otimes))) \Leftrightarrow \mathbb{L} \mathbb{A} \mathbb{B}(S, \oplus, \otimes)$

Rules for absorption for AddOne? Consider $\mathbb{R} \mathbb{A} \mathbb{B}$

AddOne			
a	b	$\left(a \otimes \frac{\mathrm{id}}{\text { id }} b\right) \oplus_{\frac{1}{\text { an }}} a$	$a \oplus{ }_{\frac{1}{1}}^{\text {an }}\left(a \otimes \frac{\text { da }}{\text { d }}\right.$ b
$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inl}\left(b^{\prime}\right)$	$\operatorname{inl}\left(\left(a^{\prime} \otimes b^{\prime}\right) \oplus a\right)$	$\operatorname{inl}\left(a^{\prime} \oplus\left(a^{\prime} \otimes b^{\prime}\right)\right)$
$\operatorname{inr}(\overline{1})$	$\operatorname{inl}\left(b^{\prime}\right)$	$\operatorname{inr}(\overline{1})$	$\operatorname{inr}(\overline{1})$
$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inr}(\overline{1})$	$\operatorname{inl}\left(a^{\prime}\right)$	$\operatorname{inl}\left(a^{\prime} \oplus a^{\prime}\right)$
$\operatorname{inr}(\overline{1})$	$\operatorname{inr}(\overline{1})$	$\operatorname{inr}(\overline{1})$	$\operatorname{inr}(\overline{1})$

Property management for AddOne

```
    \(\mathbb{L D}(\) AddOne \((\overline{1},(S, \oplus, \otimes))) \Leftrightarrow \mathbb{L D}(S, \oplus, \otimes) \wedge \mathbb{R} \mathbb{A} \mathbb{B}(S, \oplus, \otimes)\)
        \(\wedge \mathbb{I P}(S, \oplus)\)
\(\mathbb{R D}(\) AddOne \((\overline{1},(S, \oplus, \otimes))) \Leftrightarrow \mathbb{R} \mathbb{D}(S, \oplus, \otimes) \wedge \mathbb{L} \mathbb{A} \mathbb{B}(S, \oplus, \otimes)\)
    \(\wedge \mathbb{I P}(S, \oplus)\)
\(\mathbb{Z} \mathbb{A}(\operatorname{AddOne}(\overline{1},(S, \oplus, \otimes))) \Leftrightarrow \mathbb{Z} \mathbb{A}(S, \oplus, \otimes)\)
\(\mathbb{O A}(\) AddOne \((\overline{1},(S, \oplus, \otimes))) \Leftrightarrow \mathbb{T} \mathbb{R} \mathbb{E}\)
\(\mathbb{R A B}(\) AddOne \((\overline{1},(S, \oplus, \otimes))) \Leftrightarrow \mathbb{R A B}(S, \oplus, \otimes) \wedge \mathbb{P}(S, \oplus)\)
\(\mathbb{L} \mathbb{A} \mathbb{B}(\) AddOne \((\overline{1},(S, \oplus, \otimes))) \Leftrightarrow \mathbb{L} \mathbb{A} \mathbb{B}(S, \oplus, \otimes) \wedge \mathbb{P}(S, \oplus)\)
```


Lexicographic Product of Semigroups

Lexicographic product semigroup

Suppose that semigroup (S, \bullet) is commutative, idempotent, and selective and that (T, \diamond) is a semigroup.

$$
(S, \bullet) \vec{x}(T, \diamond) \equiv(S \times T, \star)
$$

where $\star \equiv \bullet \vec{x} \diamond$ is defined as

$$
\left(s_{1}, t_{1}\right) \star\left(s_{2}, t_{2}\right)= \begin{cases}\left(s_{1} \bullet s_{2}, t_{1} \diamond t_{2}\right) & s_{1}=s_{1} \bullet s_{2}=s_{2} \\ \left(s_{1} \bullet s_{2}, t_{1}\right) & s_{1}=s_{1} \bullet s_{2} \neq s_{2} \\ \left(s_{1} \bullet s_{2}, t_{2}\right) & s_{1} \neq s_{1} \bullet s_{2}=s_{2}\end{cases}
$$

Examples

$(\mathbb{N}, \min) \vec{x}(\mathbb{N}, \min)$

$$
\begin{aligned}
(1,17) \star(2,3) & =(1,17) \\
(2,17) \star(2,3) & =(2,3) \\
(2,3) \star(2,3) & =(2,3)
\end{aligned}
$$

$(\mathbb{N}, \min) \vec{x}(\mathbb{N}, \max)$

$$
\begin{aligned}
(1,17) \star(2,3) & =(1,17) \\
(2,17) \star(2,3) & =(2,17) \\
(2,3) \star(2,3) & =(2,3)
\end{aligned}
$$

$(\mathbb{N}, \max) \overrightarrow{\times}(\mathbb{N}, \min)$

$$
(1,17) \star(2,3)=(2,3)
$$

$(2,17) \star(2,3)=(2,3)$
$(2,3) \star(2,3)=(2,3)$

Assuming $\mathbb{C M}(S, \bullet) \wedge \mathbb{S L}(S, \bullet)$

$$
\begin{aligned}
\mathbb{A S}((S, \bullet) \overrightarrow{\times}(T, \diamond)) & \Leftrightarrow \mathbb{A S}(S, \bullet) \wedge \mathbb{A} \mathbb{S}(T, \diamond) \\
\mathbb{I D}((S, \bullet) \overrightarrow{\times}(T, \diamond)) & \Leftrightarrow \mathbb{I D}(S, \bullet) \wedge \mathbb{I D}(T, \diamond) \\
\mathbb{A N}((S, \bullet) \overrightarrow{\times}(T, \diamond)) & \Leftrightarrow \mathbb{A N}(S, \bullet) \wedge \mathbb{A}(T, \diamond) \\
\mathbb{C M}((S, \bullet) \overrightarrow{\times}(T, \diamond)) & \Leftrightarrow \mathbb{C M}(T, \diamond) \\
\mathbb{P}((S, \bullet) \overrightarrow{\times}(T, \diamond)) & \Leftrightarrow \mathbb{I P}(T, \diamond) \\
\mathbb{S L}((S, \bullet) \overrightarrow{\times}(T, \diamond)) & \Leftrightarrow \mathbb{S L}(T, \diamond) \\
\mathbb{R}((S, \bullet) \overrightarrow{\times}(T, \diamond)) & \Leftrightarrow \mathbb{F A L S E} \\
\mathbb{I L}((S, \bullet) \overrightarrow{\times}(T, \diamond)) & \Leftrightarrow \mathbb{F A L S E}
\end{aligned}
$$

All easy, except for \mathbb{A} (very tedious!). We are assuming commutativity and selectivity in order to guarantee associativity.

Lexicographic product for Bi-Semigroups

Assume $\mathbb{A}(S, \oplus s) \wedge \mathbb{A}\left(T, \oplus_{T}\right) \wedge \mathbb{C M}(S, \oplus s) \wedge \mathbb{S L}\left(S, \oplus_{s}\right)$
Let
$\left(S, \oplus_{S}, \otimes_{S}\right) \vec{x}\left(T, \oplus_{T}, \otimes_{T}\right) \equiv\left(S \times T, \oplus_{S} \overrightarrow{\times} \oplus_{T}, \otimes_{S} \times \otimes_{T}\right)$
That is, the additive component is a lexicographic product, and the multiplicative component is a direct product.

Examples

$\oplus=\min \vec{x} \max , \otimes=+\times \min$

$$
\begin{aligned}
(3,10) \otimes((17,21) \oplus(11,4)) & =(3,10) \otimes(11,4) \\
& =(14,4) \\
((3,10) \otimes(17,21)) \oplus((3,10) \otimes(11,4)) & =(20,10) \oplus(14,4) \\
& =(14,4)
\end{aligned}
$$

$\oplus=\max \overrightarrow{\times} \min , \otimes=\min \times+$

$$
\begin{aligned}
(3,10) \otimes((17,21) \oplus(11,4)) & =(3,10) \otimes(17,21) \\
& =(3,31) \\
((3,10) \otimes(17,21)) \oplus((3,10) \otimes(11,4)) & =(3,31) \oplus(3,14) \\
& =(3,14)
\end{aligned}
$$

Distributivity?

Theorem: If \oplus_{s} is commutative and selective, then

$$
\begin{aligned}
& \mathbb{L D D}\left(\left(S, \oplus_{S}, \otimes_{S}\right) \overrightarrow{\times}\left(T, \oplus_{T}, \otimes_{T}\right)\right) \Leftrightarrow \\
& \quad \mathbb{L D}\left(S, \oplus_{S}, \otimes_{S}\right) \wedge \mathbb{L D D}\left(T, \oplus_{T}, \otimes_{T}\right) \wedge\left(\mathbb{L} \mathbb{C}\left(S, \otimes_{S}\right) \vee \mathbb{L} \mathbb{K}\left(T, \otimes_{T}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R} \mathbb{D}\left(\left(S, \oplus_{S}, \otimes_{S}\right) \overrightarrow{\times}\left(T, \oplus_{T}, \otimes_{T}\right)\right) \Leftrightarrow \\
& \quad \mathbb{R D}\left(S, \oplus_{S}, \otimes_{S}\right) \wedge \mathbb{R D}\left(T, \oplus_{T}, \otimes_{T}\right) \wedge\left(\mathbb{R} \mathbb{C}\left(S, \otimes_{S}\right) \vee \mathbb{R} \mathbb{K}\left(T, \otimes_{T}\right)\right)
\end{aligned}
$$

Left and Right Cancellative

$$
\begin{aligned}
& \mathbb{L C}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a=c \bullet b \Rightarrow a=b \\
& \mathbb{R} \mathbb{C}(X, \bullet) \equiv \forall a, b, c \in X, a \bullet c=b \bullet c \Rightarrow a=b
\end{aligned}
$$

Left and Right Constant

$$
\begin{aligned}
& \mathbb{L K}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a=c \bullet b \\
& \mathbb{R} \mathbb{K}(X, \bullet) \equiv \forall a, b, c \in X, a \bullet c=b \bullet c
\end{aligned}
$$

Why bisemigroups?

But wait! How could any semiring satisfy either of these properties?

$$
\begin{aligned}
& \mathbb{L C}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a=c \bullet b \Rightarrow a=b \\
& \mathbb{L K}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a=c \bullet b
\end{aligned}
$$

- For $\mathbb{L C}$, note that we always have $\overline{0} \otimes a=\overline{0} \otimes b$, so $\mathbb{L} \mathbb{C}$ could only hold when $S=\{\overline{0}\}$.
- For $\mathbb{L} \mathbb{K}$, let $a=\overline{1}$ and $b=\overline{0}$ and $\mathbb{L} \mathbb{K}$ leads to the conclusion that every c is equal to $\overline{0}$ (again!).

Normally we will add a zero and/or a one as the last step(s) of constructing a semiring. Alternatively, we might want to complicate our properties so that things work for semirings. A design trade-off!

Proof of \Leftarrow for $\mathbb{U D}$ (Very carefully ...)
Assume
(1) $\mathbb{L D}\left(S, \oplus_{S}, \otimes_{S}\right)$
(2) $\mathbb{L D}\left(T, \oplus_{T}, \otimes_{T}\right)$
(3) $\mathbb{L} \mathbb{C}\left(S, \otimes_{S}\right) \vee \mathbb{L} \mathbb{K}\left(T, \otimes_{T}\right)$
(4) $\mathbb{I P}(S, \oplus s)$.

Let $\oplus \equiv \oplus_{S} \overrightarrow{\times} \oplus T$ and $\otimes \equiv \otimes_{S} \times \otimes_{T}$. Suppose

$$
\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{3}\right) \in S \times T
$$

We want to show that

$$
\begin{aligned}
\text { lhs } & \equiv\left(s_{1}, t_{1}\right) \otimes\left(\left(s_{2}, t_{2}\right) \oplus\left(s_{3}, t_{3}\right)\right) \\
& =\left(\left(s_{1}, t_{1}\right) \otimes\left(s_{2}, t_{2}\right)\right) \oplus\left(\left(s_{1}, t_{1}\right) \otimes\left(s_{3}, t_{3}\right)\right) \\
& \equiv \text { rhs }
\end{aligned}
$$

Proof of \Leftarrow for $\mathbb{L} \mathbb{D}$

We have

$$
\begin{aligned}
\text { lhs } & \equiv\left(s_{1}, t_{1}\right) \otimes\left(\left(s_{2}, t_{2}\right) \oplus\left(s_{3}, t_{3}\right)\right) \\
& =\left(s_{1}, t_{1}\right) \otimes\left(s_{2} \oplus s s_{3}, t_{\mathrm{lhs}}\right) \\
& =\left(s_{1} \otimes_{S}\left(s_{2} \oplus_{s} s_{3}\right), t_{1} \otimes_{T} t_{\mathrm{lhs}}\right) \\
\text { rhs } & \equiv\left(\left(s_{1}, t_{1}\right) \otimes\left(s_{2}, t_{2}\right)\right) \oplus\left(\left(s_{1}, t_{1}\right) \otimes\left(s_{3}, t_{3}\right)\right) \\
& =\left(s_{1} \otimes_{S} s_{2}, t_{1} \otimes_{T} t_{2}\right) \oplus\left(s_{1} \otimes_{S} s_{3}, t_{1} \otimes_{T} t_{3}\right) \\
& =\left(\left(s_{1} \otimes_{S} s_{2}\right) \oplus s\left(s_{1} \otimes_{S} s_{3}\right), t_{\mathrm{rhs}}\right) \\
& =(1)\left(s_{1} \otimes_{S}\left(s_{2} \oplus_{S} s_{3}\right), t_{\mathrm{rhs}}\right)
\end{aligned}
$$

where $t_{\text {lhs }}$ and $t_{\text {rhs }}$ are determined by the appropriate case in the definition of \oplus. Finally, note that

$$
\mathrm{lhs}=\mathrm{rhs} \Leftrightarrow t_{\mathrm{rhs}}=t_{1} \otimes t_{\mathrm{lhs}} .
$$

Proof by cases on $s_{2} \oplus S_{3}$

Case 1: $s_{2}=s_{2} \oplus s s_{3}=s_{3}$. Then $t_{\mathrm{lhs}}=t_{2} \oplus T t_{3}$ and

$$
t_{1} \otimes_{T} t_{\mathrm{lhs}}=t_{1} \otimes_{T}\left(t_{2} \oplus_{T} t_{3}\right)={ }_{(2)}\left(t_{1} \otimes_{T} t_{2}\right) \oplus_{T}\left(t_{1} \otimes_{T} t_{3}\right) .
$$

Since $s_{2}=s_{3}$ we have $s_{1} \otimes_{S} s_{2}=s_{1} \otimes_{S} s_{3}$ and

$$
s_{1} \otimes_{S} s_{2}={ }_{(4)}\left(s_{1} \otimes_{S} s_{2}\right) \oplus_{S}\left(s_{1} \otimes_{S} s_{3}\right)={ }_{(4)} s_{1} \otimes_{S} s_{3}
$$

Therefore,

$$
t_{\mathrm{rhs}}=\left(t_{1} \otimes_{T} t_{2}\right) \oplus\left(t_{1} \otimes_{T} t_{3}\right)=t_{1} \otimes_{T} t_{\mathrm{lhs}}
$$

Case 2: $s_{2}=s_{2} \oplus s s_{3} \neq s_{3}$. Then $t_{\text {lhs }}=t_{2}$ and

$$
t_{1} \otimes_{T} t_{\mathrm{lhs}}=t_{1} \otimes_{T} t_{2}
$$

Since $s_{2}=s_{2} \oplus s s_{3}$ we have

$$
s_{1} \otimes_{S} s_{2}=s_{1} \otimes_{S}\left(s_{2} \oplus_{s} s_{3}\right)={ }_{(1)}\left(s_{1} \otimes_{S} s_{2}\right) \oplus_{s}\left(s_{1} \otimes_{S} s_{3}\right)
$$

Case $2.1 s_{1} \otimes_{S} s_{2} \neq s_{1} \otimes_{S} s_{3}$. Then $t_{\mathrm{rhs}}=t_{1} \otimes_{T} t_{2}=t_{1} \otimes_{T} t_{\mathrm{lhs}}$.
Case $2.2 s_{1} \otimes_{s} s_{2}=s_{1} \otimes_{s} s_{3}$. Then

$$
t_{\mathrm{rhs}}=\left(t_{1} \otimes_{T} t_{2}\right) \oplus_{T}\left(t_{1} \otimes_{T} t_{3}\right)={ }_{(2)} t_{1} \otimes_{T}\left(t_{2} \oplus_{T} t_{3}\right)
$$

We need to consider two subcases.
Case 2.2.1: Assume $\mathbb{L} \mathbb{C}\left(S, \otimes_{S}\right)$. But $s_{1} \otimes_{S} s_{2}=s_{1} \otimes_{S} s_{3} \Rightarrow s_{2}=s_{3}$, which is a contradiction.
Case 2.2.2 : Assume $\mathbb{L K}\left(T, \otimes_{T}\right)$. In this case we know

$$
\forall a, b \in X, t_{1} \otimes_{T} a=t_{1} \otimes_{T} b
$$

Letting $a=t_{2} \oplus T t_{3}$ and $b=t_{2}$ we have

$$
t_{\mathrm{rhs}}=t_{1} \otimes_{T}\left(t_{2} \oplus_{T} t_{3}\right)=t_{1} \otimes_{T} t_{2}=t_{1} \otimes_{T} t_{\mathrm{lhs}} .
$$

Case $3: s_{2} \neq s_{2} \oplus s s_{3}=s_{3}$. Similar to Case 2.

Other direction, \Rightarrow (Very carefully ...)

Prove this:
$\neg \mathbb{L D}\left(S, \oplus_{S}, \otimes_{S}\right) \vee \neg \mathbb{L} \mathbb{D}\left(T, \oplus_{T}, \otimes_{T}\right) \vee\left(\neg \mathbb{L} \mathbb{C}\left(S, \otimes_{S}\right) \wedge \neg \mathbb{L K}\left(T, \otimes_{T}\right)\right)$ $\Rightarrow \neg \mathbb{L D}\left(\left(S, \oplus_{S}, \otimes_{S}\right) \overrightarrow{\times}\left(T, \oplus_{T}, \otimes_{T}\right)\right)$.

Case 1: $\neg \mathbb{L} \mathbb{D}\left(S, \oplus_{S}, \otimes_{S}\right)$. That is

$$
\exists a, b, c \in S, a \otimes_{S}\left(b \oplus_{S} c\right) \neq\left(a \otimes_{S} b\right) \oplus_{S}\left(a \otimes_{S} c\right)
$$

Pick any $t \in T$. Then for some $t_{1}, t_{2}, t_{3} \in T$ we have

$$
\begin{aligned}
& (a, t) \otimes((b, t) \oplus(c, t)) \\
= & (a, t) \otimes\left(b \oplus_{S} c, t_{1}\right) \\
= & \left(a, \otimes_{S}\left(b \oplus_{S} c\right), t_{2}\right) \\
\neq & \left(\left(a \otimes_{S} b\right) \oplus_{S}\left(a \otimes_{S} c\right), t_{3}\right) \\
= & \left(a \otimes_{S} b, t \otimes_{T} t\right) \oplus\left(a \otimes_{S} c, t \otimes_{T} t\right) \\
= & ((a, t) \otimes(b, t)) \oplus((a, t) \otimes(c, t))
\end{aligned}
$$

Case 2: $\neg \mathbb{L} \mathbb{D}\left(T, \oplus_{T}, \otimes_{T}\right)$. Similar.

Case 3: $\left(\neg \mathbb{L} \mathbb{C}\left(S, \otimes_{S}\right) \wedge \neg \mathbb{L} \mathbb{K}\left(T, \otimes_{T}\right)\right)$. That is

$$
\exists a, b, c \in S, c \otimes_{S} a=c \otimes_{S} b \wedge a \neq b
$$

and

$$
\exists x, y, z \in T, z \otimes_{T} x \neq z \otimes_{T} y .
$$

Since $\oplus s$ is selective and $a \neq b$, we have $a=a \oplus s b$ or $b=a \oplus s b$.
Case 3.1 : Assume $a=a \oplus_{s} b \neq b$.
Suppose that $t_{1}, t_{2}, t_{3} \in T$. Then

$$
\begin{aligned}
\text { lhs } & \equiv\left(c, t_{1}\right) \otimes\left(\left(a, t_{2}\right) \oplus\left(b, t_{3}\right)\right) \\
& =\left(c, t_{1}\right) \otimes\left(a, t_{2}\right) \\
& =\left(c \otimes_{S} a, t_{1} \otimes_{T} t_{2}\right) \\
\text { rhs } & \equiv\left(\left(c, t_{1}\right) \otimes\left(a, t_{2}\right)\right) \oplus\left(\left(c, t_{1}\right) \otimes\left(b, t_{3}\right)\right) \\
& =\left(c \otimes_{S} a, t_{1} \otimes_{T} t_{2}\right) \oplus\left(c \otimes_{S} b, t_{1} \otimes_{T} t_{3}\right) \\
& =\left(c \otimes_{S} a,\left(t_{1} \otimes_{T} t_{2}\right) \oplus_{T}\left(t_{1} \otimes_{T} t_{3}\right)\right)
\end{aligned}
$$

Our job now is to select t_{1}, t_{2}, t_{3} so that

$$
t_{\mathrm{lhs}} \equiv t_{1} \otimes_{T} t_{2} \neq\left(t_{1} \otimes_{T} t_{2}\right) \oplus T\left(t_{1} \otimes_{T} t_{3}\right) \equiv t_{\mathrm{rhs}} .
$$

We don't have very much to work with! Only

$$
\exists x, y, z \in T, z \otimes_{T} x \neq z \otimes_{T} y .
$$

In addition, we can assume $\mathbb{L D}\left(T, \oplus_{T}, \otimes_{T}\right)$ (otherwise, use Case 2!), so

$$
t_{\mathrm{rhs}}=t_{1} \otimes_{T}\left(t_{2} \oplus_{T} t_{3}\right) .
$$

We need to select t_{1}, t_{2}, t_{3} so that

$$
t_{\mathrm{lhs}} \equiv t_{1} \otimes_{T} t_{2} \neq t_{1} \otimes_{T}\left(t_{2} \oplus_{T} t_{3}\right) \equiv t_{\mathrm{rhs}}
$$

Case 3.1.1: $z \otimes_{T} x=z \otimes_{T}\left(x \oplus_{T} y\right)$. Then letting $t_{1}=z, t_{2}=y$, and $t_{3}=x$ we have

$$
t_{\mathrm{lhs}}=z \otimes_{T} y \neq z \otimes_{T} x=z \otimes_{T}\left(x \oplus_{T} y\right)=z \otimes_{T}\left(y \oplus_{T} x\right)=t_{\mathrm{rhs}} .
$$

Case 3.1.2: $z \otimes_{T} x \neq z \otimes_{T}\left(x \oplus_{T} y\right)$. Then letting $t_{1}=z, t_{2}=x$, and $t_{3}=y$ we have

$$
t_{\mathrm{lhs}}=z \otimes_{T} x \neq z \otimes_{T}\left(x \oplus_{T} y\right)=t_{\mathrm{rhs}}
$$

Case 3.2 : Assume $b=a \oplus s b \neq a$.
Suppose that $t_{1}, t_{2}, t_{3} \in T$. Then

$$
\begin{aligned}
\text { lhs } & \equiv\left(c, t_{1}\right) \otimes\left(\left(a, t_{2}\right) \oplus\left(b, t_{3}\right)\right) \\
& =\left(c, t_{1}\right) \otimes\left(b, t_{3}\right) \\
& =\left(c \otimes_{S} b, t_{1} \otimes_{T} t_{3}\right) \\
\text { rhs } & \equiv\left(\left(c, t_{1}\right) \otimes\left(a, t_{2}\right)\right) \oplus\left(\left(c, t_{1}\right) \otimes\left(b, t_{3}\right)\right) \\
& =\left(c \otimes_{S} a, t_{1} \otimes_{T} t_{2} \oplus\left(c \otimes_{S} b, t_{1} \otimes_{T} t_{3}\right)\right. \\
& =\left(c \otimes_{S} b,\left(t_{1} \otimes_{T} t_{2}\right) \oplus T\left(t_{1} \otimes_{T} t_{3}\right)\right) \\
& =\left(c \otimes_{S} b, t_{1} \otimes_{T}\left(t_{2} \oplus T t_{3}\right)\right)
\end{aligned}
$$

We need to select t_{1}, t_{2}, t_{3} so that

$$
t_{\mathrm{lhs}} \equiv t_{1} \otimes T t_{3} \neq t_{1} \otimes T\left(t_{2} \oplus T t_{3}\right) \equiv t_{\mathrm{rhs}}
$$

Case 3.2.1: $z \otimes_{T} x=z \otimes_{T}(x \oplus T y)$. Then Then letting $t_{1}=z, t_{2}=x$, and $t_{3}=y$ we have

$$
t_{\mathrm{lhs}}=z \otimes_{T} y \neq z \otimes_{T} x=z \otimes_{T}\left(x \oplus_{T} y\right)=t_{\mathrm{rhs}}
$$

Case 3.2.2: $z \otimes_{T} x \neq z \otimes_{T}\left(x \oplus_{T} y\right)$. letting $t_{1}=z, t_{2}=y$, and $t_{3}=x$ we have

$$
t_{\mathrm{lhs}}=z \otimes_{T} x \neq z \otimes_{T}\left(x \oplus_{T} y\right)=z \otimes_{T}\left(y \oplus_{T} x\right)=t_{\mathrm{rhs}} .
$$

Computing Counter Examples

Note that from (a, b, c) such $c \otimes_{S} a=c \otimes_{S} b \wedge a \neq b$ and (x, y, z) such that $z \otimes_{T} x \neq z \otimes_{T} y$ our proof computes a counter example to LD as

```
if \(a=a \oplus_{s} b\)
then if \(z \otimes_{T} x=\left(z \otimes_{T} x\right) \oplus_{T}\left(z \otimes_{T} y\right)\)
    then \(((a, z),(b, y),(c, x))\)
    else \(((a, z),(b, x),(c, y))\)
else if \(z \otimes_{T} x=\left(z \otimes_{T} x\right) \oplus_{T}\left(z \otimes_{T} y\right)\)
    then \(((a, z),(b, x),(c, y))\)
    else \(((a, z),(b, y),(c, x))\)
```


Examples

True or counter example

name	S	\oplus	\otimes	$\mathbb{L D}$	$\mathbb{L} \mathbb{C}(S, \otimes)$	$\mathbb{L} \mathbb{K}(S, \otimes)$
min_plus	\mathbb{N}	\min	+	\star	\star	$(0,0,1)$
max_min	\mathbb{N}	\max	\min	\star	$(0,0,1)$	$(1,0,1)$

For example, $(0,0,1)$ is a counter example for $\mathbb{L} \mathbb{C}(\mathbb{N}, \min)$ since $0 \min 0=0 \min 1$, but $0 \neq 1$.

Let's turn the crank

```
    LDD(min_plus }\vec{\times}\mathrm{ max_min)
\Leftrightarrow\mathbb{LD}(\mathrm{ min_plus ) }\wedge\mathbb{LD}(\mathrm{ max_min ) ^( }\mathbb{LC}(\mathbb{N},+)\vee\mathbb{LK}(\mathbb{N},min})
 TRUE
```


Examples

Another turn of the crank

```
    LDD(max_min \vec{x min_plus)}
\Leftrightarrow\mathbb{LD}(\mathrm{ max_min ) }\wedge\mathbb{LD}(\mathrm{ min_plus ) }\wedge(\mathbb{LC}(\mathbb{N},\operatorname{min})\vee\mathbb{LK}(\mathbb{N},+))
FALSE
```

Note that the counter examples to $\mathbb{L C}$ and $\mathbb{L} \mathbb{K}$ can be plugged into the proof above to produce the a counter example to $\mathbb{L D}$,

$$
((0,0),(0,0),(1,1))
$$

and sure enough, with $\oplus=\max \overrightarrow{\times} \min$ and $\otimes=\min \times+$ we have

$$
(0,0) \otimes((0,0) \oplus(1,1))=(0,0) \otimes(1,1)=(0,1)
$$

but
$((0,0) \otimes(0,0)) \oplus((0,0) \otimes(1,1))=(0,0) \oplus(0,1)=(0,0)$

Another construction

Suppose that $\left(S, \oplus_{S}\right)$ and $\left(T, \oplus_{T}\right)$ are both commutative and idempotent semigroups. Recall that $S \uplus T$ represents the disjoint union of sets S and T. That is,

$$
S \uplus T \equiv\{\operatorname{inl}(s) \mid s \in S\} \cup\{\operatorname{inr}(t) \mid t \in T\} .
$$

Define the operation $\oplus \equiv \oplus_{S}+\oplus_{T}$ over $S \uplus T$ as

$$
\begin{aligned}
\operatorname{inl}(s) \oplus \operatorname{inl}\left(s^{\prime}\right) & \equiv \operatorname{inl}\left(s \oplus s s^{\prime}\right) \\
\operatorname{inr}(t) \oplus \operatorname{inr}\left(t^{\prime}\right) & \equiv \operatorname{inr}\left(t \oplus T t^{\prime}\right) \\
\operatorname{inl}(s) \oplus \operatorname{inr}(t) & \equiv \operatorname{inl}(s) \\
\operatorname{inr}(t) \oplus \operatorname{inl}(s) & \equiv \operatorname{inl}(s)
\end{aligned}
$$

Homework 1: Due 1 November

Recall

$$
S \uplus T \equiv\{\operatorname{inl}(s) \mid s \in S\} \cup\{\operatorname{inr}(t) \mid t \in T\}
$$

Suppose that $\left(S, \oplus_{S}, \otimes_{S}\right)$ and $\left(T, \oplus_{T}, \otimes_{T}\right)$. are two semirings.
(1) We want to define a combinator (combinators?) to combine these semirings to produce a semiring of the form

$$
(S \uplus T, \oplus, \otimes) .
$$

Explore ways in which you can define \oplus and \otimes.
(2) Can you give an informal interpretation for the resulting semiring(s)?
(3) Present a network configuration using the above.

