L11: Algebraic Path Problems with applications to Internet Routing

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK
Michaelmas Term, 2019

Shortest paths example, $\mathrm{sp}=\left(\mathbb{N}^{\infty}, \min ,+, \infty, 0\right)$

The adjacency matrix

$\mathbf{A}=$| 1 |
| :--- |
| 2 |
| 3 |
| 4 |
| 5 |\(\left[\begin{array}{ccccc}1 \& 2 \& 3 \& 4 \& 5

\infty \& 2 \& 1 \& 6 \& \infty

2 \& \infty \& 5 \& \infty \& 4

1 \& 5 \& \infty \& 4 \& 3

6 \& \infty \& 4 \& \infty \& \infty

\infty \& 4 \& 3 \& \infty \& \infty\end{array}\right]\)

Shortest paths solution

$$
\mathbf{A}^{*}=\begin{aligned}
& 1 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{lllll}
0 & 3 & 4 & 5 \\
2 & 2 & 1 & 5 & 4 \\
1 & 0 & 3 & 7 & 4 \\
5 & 7 & 0 & 4 & 0 \\
4 & 4 & 3 & 7 & 0
\end{array}\right]
$$

solves this global optimality problem:

$$
\mathbf{A}^{*}(i, j)=\min _{p \in \pi(i, j)} w(p),
$$

where $\pi(i, j)$ is the set of all paths from i to j.

Widest paths example, $\mathrm{bw}=\left(\mathbb{N}^{\infty}, \max , \min , 0, \infty\right)$

$$
\mathbf{A}^{*}=\begin{gathered}
1 \\
1 \\
2 \\
3 \\
4 \\
5
\end{gathered}\left[\begin{array}{ccccc}
\infty & 4 & 4 & 6 & 4 \\
4 & \infty & 5 & 4 & 4 \\
4 & 5 & \infty & 4 & 4 \\
6 & 4 & 4 & \infty & 4 \\
4 & 4 & 4 & 4 & \infty
\end{array}\right]
$$

solves this global optimality problem:

$$
\mathbf{A}^{*}(i, j)=\max _{p \in \pi(i, j)} w(p),
$$

where $w(p)$ is now the minimal edge weight in p.

Unfamiliar example, $\left(2^{\{a, b, c\}}, \cup, \cap,\{ \},\{a, b, c\}\right)$

We want \mathbf{A}^{*} to solve this global optimality problem:

$$
\mathbf{A}^{*}(i, j)=\bigcup_{p \in \pi(i, j)} w(p)
$$

where $w(p)$ is now the intersection of all edge weights in p.

For $x \in\{a, b, c\}$, interpret $x \in \mathbf{A}^{*}(i, j)$ to mean that there is at least one path from i to j with x in every arc weight along the path.

$$
\mathbf{A}^{*}(4,1)=\{a, b\} \quad \mathbf{A}^{*}(4,5)=\{b\}
$$

Another unfamiliar example, $\left(2^{\{a, b, c\}}, \cap, \cup\right)$

We want matrix \mathbf{R} to solve this global optimality problem:

$$
\mathbf{A}^{*}(i, j)=\bigcap_{p \in \pi(i, j)} w(p)
$$

where $w(p)$ is now the union of all edge weights in p.

For $x \in\{a, b, c\}$, interpret $x \in \mathbf{A}^{*}(i, j)$ to mean that every path from i to j has at least one arc with weight containing x.

$$
\mathbf{A}^{*}(4,1)=\{b\} \quad \mathbf{A}^{*}(4,5)=\{b\} \quad \mathbf{A}^{*}(5,1)=\{ \}
$$

Semirings (generalise $(\mathbb{R},+, \times, 0,1)$)

name	S	\oplus,	\otimes	$\overline{0}$	$\overline{1}$	possible routing use
sp	\mathbb{N}^{∞}	\min	+	∞	0	minimum-weight routing
bw	\mathbb{N}^{∞}	\max	\min	0	∞	greatest-capacity routing
rel	$[0,1]$	\max	\times	0	1	most-reliable routing
use	$\{0,1\}$	\max	\min	0	1	usable-path routing
	2^{W}	\cup	\cap	$\}$	W	shared link attributes?
	2^{W}	\cap	\cup	W	$\}$	shared path attributes?

A wee bit of notation!	
Symbol	Interpretation
\mathbb{N}	Natural numbers (starting with zero)
\mathbb{N}^{∞}	Natural numbers, plus infinity
$\overline{0}$	Identity for \oplus
$\overline{1}$	Identity for \otimes

Recommended (on reserve in CL library)

Semiring axioms

We will look at all of the axioms of semirings, but the most important are
distributivity

$$
\begin{aligned}
& \mathbb{L D D}: a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c) \\
& \mathbb{R D}:(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)
\end{aligned}
$$

Distributivity, illustrated

$$
\begin{aligned}
a \otimes(b \oplus c) & =(a \otimes b) \oplus(a \otimes c) \\
j \text { makes the choice } & =i \text { makes the choice }
\end{aligned}
$$

Should distributivity hold in Internet Routing?

- j prefers long path though one of its customers (not the shorter path through a competitor)
- given two routes from a provider, i prefers the one with a shorter path
- More on inter-domain routing in the Internet later in the term ...

Widest shortest-paths

- Metric of the form (d, b), where d is distance $(\min ,+)$ and b is capacity (max, min).
- Metrics are compared lexicographically, with distance considered first.
- Such things are found in the vast literature on Quality-of-Service (QoS) metrics for Internet routing.

Widest shortest-paths

Weights are globally optimal (we have a semiring)

Widest shortest-path weights computed by Dijkstra and Bellman-Ford

$\mathbf{R}=$| |
| :--- |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |\(\left[\begin{array}{ccccc}0 \& 1 \& 2 \& 3 \& 4

(0, \infty) \& (1,10) \& (3,10) \& (2,5) \& (2,10)

(1,10) \& (0, \infty) \& (2,100) \& (1,5) \& (1,100)

(3,10) \& (2,100) \& (0, \infty) \& (1,100) \& (1,100)

(2,5) \& (1,5) \& (1,100) \& (0, \infty) \& (2,100)

(2,10) \& (1,100) \& (1,100) \& (2,100) \& (0, \infty)\end{array}\right]\)

But what about the paths themselves?

Four optimal paths of weight $(3,10)$.

$$
\begin{aligned}
& \mathbf{P}_{\text {optimal }}(0,2)=\{(0,1,2),(0,1,4,2)\} \\
& \mathbf{P}_{\text {optimal }}(2,0)=\{(2,1,0),(2,4,1,0)\}
\end{aligned}
$$

There are standard ways to extend Bellman-Ford and Dijkstra to compute paths (or the associated next hops).

Do these extended algorithms find all optimal paths?

Surprise!

Four optimal paths of weight $(3,10)$

$$
\begin{aligned}
& \mathbf{P}_{\text {optimal }}(0,2)=\{(0,1,2),(0,1,4,2)\} \\
& \mathbf{P}_{\text {optimal }}(2,0)=\{(2,1,0),(2,4,1,0)\}
\end{aligned}
$$

Paths computed by (extended) Dijkstra

$$
\begin{aligned}
& \mathbf{P}_{\text {Dijkstra }}(0,2)=\{(0,1,2),(0,1,4,2)\} \\
& \mathbf{P}_{\text {Dijkstra }}(2,0)=\{(2,4,1,0)\}
\end{aligned}
$$

Notice that 0's paths cannot both be implemented with next-hop forwarding since $\mathbf{P}_{\text {Dijkstra }}(1,2)=\{(1,4,2)\}$.

Paths computed by distributed Bellman-Ford

$$
\begin{aligned}
& \mathbf{P}_{\text {Bellman }}(0,2)=\{(0,1,4,2)\} \\
& \mathbf{P}_{\text {Bellman }}(2,0)=\{(2,1,0),(2,4,1,0)\}
\end{aligned}
$$

Optimal paths from 0 to 2. Computed by Dijkstra but not by Bellman-Ford

Optimal paths from 2 to 1. Computed by Bellman-Ford but not by Dijkstra

How can we understand this (algebaically)?

> The Algorithm to Algebra (A2A) method
> $\left(\begin{array}{c}\text { original metric } \\ + \\ \text { complex algorithm }\end{array}\right) \rightarrow\left(\begin{array}{c}\text { modified metric } \\ + \\ \text { matrix equations (generic algorithm) }\end{array}\right)$

Preview

- We can add paths explicitly to the widest shortest-path semiring to obtain a new algebra.
- We will see that distributivity does not hold for this algebra.
- Why? We will see that it is because min is not cancellative! (amin $b=a \min c$ does not imply that $b=c$)

Towards a non-classical theory of algebraic path finding

We need theory that can accept algebras that violate distributivity.
Global optimality

$$
\mathbf{A}^{*}(i, j)=\underset{p \in P(i, j)}{\oplus} w(p),
$$

Left local optimality (distributed Bellman-Ford)

$$
\mathbf{L}=(\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I} .
$$

Right local optimality (Dijkstra's Algorithm)

$$
\mathbf{R}=(\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I} .
$$

Embrace the fact that all three notions can be distinct.

Lectures 2, 3

- Semigroups
- A few important semigroup properties
- Semigroup and partial orders

Semigroups

Semigroup

A semigroup (S, \bullet) is a non-empty set S with a binary operation such that

```
\(\mathbb{A}\) associative \(\equiv \forall a, b, c \in S, a \bullet(b \bullet c)=(a \bullet b) \bullet c\)
```

Important Assumption - We will ignore trival semigroups We will impicitly assume that $2 \leqslant|S|$.

Note
Many useful binary operations are not semigroup operations. For example, (\mathbb{R}, \bullet), where $a \bullet b \equiv(a+b) / 2$.

Some Important Semigroup Properties

identity	$\equiv \exists \alpha \in S, \forall a \in S, a=\alpha \bullet a=a \bullet \alpha$
$\mathbb{I D}$ annihilator	$\equiv \exists \omega \in S, \forall a \in S, \omega=\omega \bullet a=a \bullet \omega$
$\mathbb{A N}$ CM commutative	$\equiv \forall a, b \in S, a \bullet b=b \bullet a$
$\mathbb{S L}$ selective	$\equiv \forall a, b \in S, a \bullet b \in\{a, b\}$
$\mathbb{I P}$ idempotent	$\equiv \forall a \in S, a \bullet a=a$

A semigroup with an identity is called a monoid.
Note that

$$
\mathbb{S L}(S, \bullet) \Longrightarrow \mathbb{I P}(S, \bullet)
$$

A few concrete semigroups

S	\bullet	description	α	ω	$\mathbb{C M}$	$\mathbb{S L}$	$\mathbb{I P}$
S	left	x left $y=x$				\star	\star
S	right	x right $y=y$				\star	\star
S^{*}	\cdot	concatenation	ϵ				
S^{+}	\cdot	concatenation					
$\{t, f\}$	\wedge	conjunction	t	f	\star	\star	\star
$\{t, f\}$	\vee	disjunction	f	t	\star	\star	\star
\mathbb{N}	min	minimum		0	\star	\star	\star
\mathbb{N}	max	maximum	0		\star	\star	\star
2^{W}	\cup	union	$\}$	W	\star		\star
2^{W}	\cap	intersection	W	$\}$	\star		\star
fin $\left(2^{U}\right)$	\cup	union	$\}$		\star		\star
$\operatorname{fin}\left(2^{U}\right)$	\cap	intersection		$\}$	\star		\star
\mathbb{N}	+	addition	0		\star		
\mathbb{N}	\times	multiplication	1	0	\star		

W a finite set, U an infinite set. For set $Y, \operatorname{fin}(Y) \equiv\{X \in Y \mid X$ is finite $\}$

A few abstract semigroups

S	\bullet	description	α	ω	$\mathbb{C M}$	$\mathbb{S L}$	$\mathbb{I P}$
2^{U}	\cup	union	$\}$	U	\star		\star
2^{U}	\cap	intersection	U	$\}$	\star		\star
$2^{U \times U}$	\bowtie	relational join	\mathcal{I}_{U}	$\}$			
$X \rightarrow X$	\circ	composition	$\lambda x . X$				

U an infinite set
$X \bowtie Y \equiv\{(x, z) \in U \times U \mid \exists y \in U,(x, y) \in X \wedge(y, z) \in Y\}$ $\mathcal{I}_{U} \equiv\{(u, u) \mid u \in U\}$

subsemigroup

Suppose (S, \bullet) is a semigroup and $T \subseteq S$. If T is closed w.r.t • (that is, $\forall x, y \in T, x \bullet y \in T)$, then (T, \bullet) is a subsemigroup of S.

Order Relations

We are interested in order relations $\leqslant \subseteq S \times S$
Definition (Important Order Properties)
$\mathbb{R} \mathbb{X} \quad$ reflexive $\equiv a \leqslant a$
$\mathbb{T} \quad$ transitive $\equiv a \leqslant b \wedge b \leqslant c \rightarrow a \leqslant c$
$\mathbb{A} \mathbb{Y}$ antisymmetric $\equiv a \leqslant b \wedge b \leqslant a \rightarrow a=b$
$\mathbb{T}($ total $\equiv a \leqslant b \vee b \leqslant a$

	pre-order	partial order	preference order	total order
$\mathbb{R X}$	\star	\star	\star	\star
$\mathbb{T} \mathbb{R}$	\star	\star	\star	\star
$\mathbb{A} \mathbb{Y}$		\star		\star
$\mathbb{T O}$			\star	\star

Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)

$$
\begin{aligned}
& a \unlhd_{\bullet}^{R} b \equiv \exists c \in S: b=a \bullet c \\
& a \unlhd \cdot b \equiv \exists c \in S: a=b \bullet c
\end{aligned}
$$

Lemma (Sanity check)

Associativity of • implies that these relations are transitive.

Proof.

Note that $a \unlhd_{\bullet}^{R} b$ means $\exists c_{1} \in S: b=a \bullet c_{1}$, and $b \unlhd_{\bullet}^{R} c$ means $\exists c_{2} \in S: c=b \bullet c_{2}$. Letting $c_{3}=c_{1} \bullet c_{2}$ we have $c=b \bullet c_{2}=\left(a \bullet c_{1}\right) \bullet c_{2}=a \bullet\left(c_{1} \bullet c_{2}\right)=a \bullet c_{3}$. That is, $\exists c_{3} \in S: c=a \bullet c_{3}$, so $a \unlhd_{\bullet}^{R} c$. The proof for \unlhd_{\bullet}^{L} is similar.

Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)
A commutative semigroup (S, \bullet) is canonically ordered when $a \unlhd_{\bullet}^{R} c$ and $a \unlhd{ }_{\bullet}^{L} c$ are partial orders.

Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \cdot a^{-1}=a^{-1} \cdot a=\alpha$.

Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)

Only a trivial group is canonically ordered.

Proof.

If $a, b \in S$, then $a=\alpha \bullet \bullet a=\left(b \bullet b^{-1}\right) \bullet a=b \bullet\left(b^{-1} \bullet a\right)=b \bullet c$, for $c=b^{-1} \bullet a$, so $a \unlhd_{\bullet}^{L} b$. In a similar way, $b \unlhd_{\bullet}^{R} a$. Therefore $a=b$.

Natural Orders

Definition (Natural orders)

Let (S, \bullet) be a semigroup.

$$
\begin{aligned}
& a \leqslant_{\bullet}^{L} b \equiv a=a \bullet b \\
& a \leqslant_{\bullet}^{R} b \equiv b=a \bullet b
\end{aligned}
$$

Lemma

If \bullet is commutative and idempotent, then $a \unlhd_{\bullet}^{D} b \Longleftrightarrow a \leqslant_{\bullet}^{D} b$, for $D \in\{R, L\}$.

Proof.

$$
\begin{aligned}
a \unlhd{ }_{\bullet}^{R} b & \Longleftrightarrow b=a \bullet c=(a \bullet a) \bullet c=a \bullet(a \bullet c) \\
& \Longleftrightarrow a \bullet b \Longleftrightarrow a \leq \bullet b \\
a \unlhd \bullet b & \Longleftrightarrow a=b \bullet c=(b \bullet b) \bullet c=b \bullet(b \bullet c) \\
& =b \bullet a=a \bullet b \Longleftrightarrow a \leqslant_{\bullet}^{L} b
\end{aligned}
$$

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all $a, a \leqslant_{\bullet}^{L} \alpha$ and $\alpha \leqslant_{\bullet}^{R} a$
- If ω exists, then for all $a, \omega \leqslant_{\bullet}^{L}$ a and $a \leqslant_{\bullet}^{R} \omega$
- If α and ω exist, then S is bounded.

$$
\begin{array}{lllll}
\omega & \leqslant \stackrel{1}{L} & a & \leqslant \dot{\square} & \alpha \\
\alpha & \leqslant \cdot R & a & \leqslant \cdot & \omega
\end{array}
$$

Remark (Thanks to Iljitsch van Beijnum)

Note that this means for $(\min ,+)$ we have

$$
\begin{array}{rlll}
0 & \leqslant_{\min }^{L} & a \leqslant_{\min }^{L} & \infty \\
\infty & \leqslant_{\min }^{B} & a & \leqslant_{\min }^{P}
\end{array}
$$

and still say that this is bounded, even though one might argue with the terminology!

Examples of special elements

S	\bullet	α	ω	$\leqslant \cdot$	$\leqslant_{\bullet}^{\mathrm{R}}$
\mathbb{N}^{∞}	\min	∞	0	\leqslant	\geqslant
$\mathbb{N}^{-\infty}$	\max	0	$-\infty$	\geqslant	\leqslant
$\mathcal{P}(W)$	\cup	$\}$	W	\subseteq	\supseteq
$\mathcal{P}(W)$	\cap	W	$\}$	\supseteq	\subseteq

Property Management

Lemma

Let $D \in\{R, L\}$.
(1) $\mathbb{I P}(S, \bullet) \Longleftrightarrow \mathbb{R} \mathbb{X}\left(S, \leqslant_{\bullet}^{D}\right)$
(2) $\mathbb{C M}(S, \bullet) \Longrightarrow \mathbb{A} \mathbb{Y}\left(S, \leqslant_{\bullet}^{D}\right)$
(3) $\mathbb{A S}(S, \bullet) \Longrightarrow \mathbb{T}\left(S, \leqslant_{\bullet}^{D}\right)$
(4) $\mathbb{C M}(S, \bullet) \Longrightarrow\left(\mathbb{S L}(S, \bullet) \Longleftrightarrow \mathbb{T O}\left(S, \leqslant_{\bullet}^{D}\right)\right)$

Proof.

(1) $a \leqslant_{\bullet}^{D} a \Longleftrightarrow a=a \bullet a$,
(2) $a \leqslant_{b}^{L} b \wedge b \leqslant_{0}^{L} a \Longleftrightarrow a=a \bullet b \wedge b=b \cdot a \Longrightarrow a=b$
(3) $a \leqslant_{\bullet}^{L} b \wedge b \leqslant_{\cdot}^{L} c \Longleftrightarrow a=a \bullet b \wedge b=b \cdot c \Longrightarrow a=a \bullet(b \cdot c)=$ $(a \bullet b) \bullet c=a \bullet c \Longrightarrow a \leqslant_{\bullet}^{L} c$
(4) $a=a \bullet b \vee b=a \bullet b \Longleftrightarrow a \leqslant!b \vee b \leqslant_{\bullet}^{L} a$

Bounds

Suppose (S, \leqslant) is a partially ordered set.

greatest lower bound

For $a, b \in S$, the element $c \in S$ is the greatest lower bound of a and b, written $c=a \operatorname{glb} b$, if it is a lower bound ($c \leqslant a$ and $c \leqslant b$), and for every $d \in S$ with $d \leqslant a$ and $d \leqslant b$, we have $d \leqslant c$.

least upper bound

For $a, b \in S$, the element $c \in S$ is the least upper bound of a and b, written $c=a$ lub b, if it is an upper bound ($a \leqslant c$ and $b \leqslant c$), and for every $d \in S$ with $a \leqslant d$ and $b \leqslant d$, we have $c \leqslant d$.

Semi-lattices

Suppose (S, \leqslant) is a partially ordered set.

meet-semilattice

S is a meet-semilattice if $a \mathrm{glb} b$ exists for each $a, b \in S$.

join-semilattice

S is a join-semilattice if a lub b exists for each $a, b \in S$.

Fun Facts

Fact 1

Suppose (S, \bullet) is a commutative and idempotent semigroup.

- $\left(S, \leqslant_{0}^{L}\right)$ is a meet-semilattice with $a \mathrm{glb} b=a \bullet b$.
- $\left(S, \leqslant_{\bullet}^{R}\right)$ is a join-semilattice with a lub $b=a \bullet b$.

Fact 2

Suppose (S, \leqslant) is a partially ordered set.

- If (S, \leqslant) is a meet-semilattice, then $(S$, glb $)$ is a commutative and idempotent semigroup.
- If (S, \leqslant) is a join-semilattice, then (S, lub) is a commutative and idempotent semigroup.

That is, semi-lattices represent the same class of structures as commutative and idempotent semigroups.

Lecture 3

- Semirings
- Matrix semirings
- Shortest paths
- Minimax

Bi-semigroups and Pre-Semirings

(S, \oplus, \otimes) is a bi-semigroup when

- (S, \oplus) is a semigroup
- (S, \otimes) is a semigroup
(S, \oplus, \otimes) is a pre-semiring when
- (S, \oplus, \otimes) is a bi-semigroup
- \oplus is commutative
and left- and right-distributivity hold,

$$
\begin{aligned}
& \mathbb{L D D}: a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c) \\
& \mathbb{R D}:(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)
\end{aligned}
$$

Semirings

$(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring when

- (S, \oplus, \otimes) is a pre-semiring
- $(S, \oplus, \overline{)})$ is a (commutative) monoid
- $(S, \otimes, \overline{1})$ is a monoid
- $\overline{0}$ is an annihilator for \otimes

Examples

Pre-semirings

name	S	\oplus,	\otimes	$\overline{0}$	$\overline{1}$
min_plus	\mathbb{N}	\min	+		0
max_min	\mathbb{N}	\max	\min	0	

Semirings

name	S	\oplus,	\otimes	$\overline{0}$	$\overline{1}$
sp	\mathbb{N}^{∞}	\min	+	∞	0
bw	\mathbb{N}^{∞}	max	\min	0	∞

Note the sloppiness - the symbols +, max, and min in the two tables represent different functions....

How about (max, +)?

Pre-semiring

| name | S | \oplus, | \otimes | $\overline{0}$ | $\overline{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| max_plus | \mathbb{N} | \max | + | 0 | 0 |

- What about " $\overline{0}$ is an annihilator for \otimes "? No!

Fix that ...

name	S	\oplus	\otimes	$\overline{0}$	$\overline{1}$
max_plus $^{-\infty}$	$\mathbb{N} \uplus\{-\infty\}$	\max	+	$-\infty$	0

Matrix Semirings

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- Define the semiring of $n \times n$-matrices over $S:\left(\mathbb{M}_{n}(S), \oplus, \otimes, \mathbf{J}, \mathbf{I}\right)$
\oplus and \otimes

$$
\begin{aligned}
& (\mathbf{A} \oplus \mathbf{B})(i, j)=\mathbf{A}(i, j) \oplus \mathbf{B}(i, j) \\
& (\mathbf{A} \otimes \mathbf{B})(i, j)=\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)
\end{aligned}
$$

J and I

$$
\begin{aligned}
& \mathbf{J}(i, j)=\overline{0} \\
& \mathbf{I}(i, j)= \begin{cases}\overline{1} & \text { (if } i=j) \\
\overline{0} & \text { (otherwise) }\end{cases}
\end{aligned}
$$

Associativity

$\mathbf{A} \otimes(\mathbf{B} \otimes \mathbf{C})=(\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C}$

$$
\begin{aligned}
& (\mathbf{A} \otimes(\mathbf{B} \otimes \mathbf{C}))(i, j) \\
& =\oplus \mathbf{A}(i, u) \otimes(\mathbf{B} \otimes \mathbf{C})(u, j) \quad(\operatorname{def} \rightarrow) \\
& =\bigoplus_{1 \leqslant u \leqslant n}^{\oplus} \mathbf{A}(i, u) \otimes\left(\bigoplus_{1 \leqslant v \leqslant n} \mathbf{B}(u, v) \otimes \mathbf{C}(v, j)\right) \quad(\text { def } \rightarrow) \\
& =\oplus \oplus \mathbf{A}(i, u) \otimes(\mathbf{B}(u, v) \otimes \mathbf{C}(v, j)) \quad(\mathbb{L} \mathbb{D}) \\
& \bigoplus^{1 \leqslant u \leqslant n} \bigoplus^{\oplus}(\mathbf{A}(i, u) \otimes \mathbf{B}(u, v)) \otimes \mathbf{C}(v, j) \quad(\mathbb{A S}, \mathbb{C M}) \\
& 1 \leqslant v \leqslant n 1 \leqslant u \leqslant n \\
& =\oplus(\oplus \mathbf{A}(i, u) \otimes \mathbf{B}(u, v)) \otimes \mathbf{C}(v, j) \quad(\mathbb{R} \mathbb{D}) \\
& 1 \leqslant v \leqslant n 1 \leqslant u \leqslant n \\
& =\underset{\substack{1 \leqslant k \leqslant n}}{ }(\mathbf{A} \otimes \mathbf{B})(i, v) \otimes \mathbf{C}(v, j) \quad(\text { def } \leftarrow) \\
& =((\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C})(i, j) \\
& (\text { def } \leftarrow)
\end{aligned}
$$

Left Distributivity

$\mathbf{A} \otimes(\mathbf{B} \oplus \mathbf{C})=(\mathbf{A} \otimes \mathbf{B}) \oplus(\mathbf{A} \otimes \mathbf{C})$

$$
\begin{array}{rll}
& (\mathbf{A} \otimes(\mathbf{B} \oplus \mathbf{C}))(i, j) & (\text { def } \rightarrow) \\
=\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes(\mathbf{B} \oplus \mathbf{C})(q, j) & (\text { def } \rightarrow) \\
=\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes(\mathbf{B}(q, j) \oplus \mathbf{C}(q, j)) & (\mathbb{L D}) \\
=\bigoplus_{1 \leqslant q \leqslant n}(\mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus(\mathbf{A}(i, q) \otimes \mathbf{C}(q, j)) & \tag{LD}\\
=\left(\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)\right) \oplus\left(\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes \mathbf{C}(q, j)\right) & (\mathbb{A S}, \mathbb{C M}) \\
= & ((\mathbf{A} \otimes \mathbf{B}) \oplus(\mathbf{A} \otimes \mathbf{C}))(i, j) & (\text { def } \leftarrow)
\end{array}
$$

Matrix encoding path problems

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- $G=(V, E)$ a directed graph
- $w \in E \rightarrow S$ a weight function

Path weight

The weight of a path $p=i_{1}, i_{2}, i_{3}, \cdots, i_{k}$ is

$$
w(p)=w\left(i_{1}, i_{2}\right) \otimes w\left(i_{2}, i_{3}\right) \otimes \cdots \otimes w\left(i_{k-1}, i_{k}\right)
$$

The empty path is given the weight $\overline{1}$.
Adjacency matrix A

$$
\mathbf{A}(i, j)= \begin{cases}w(i, j) & \text { if }(i, j) \in E \\ \overline{0} & \text { otherwise }\end{cases}
$$

The general problem of finding globally optimal path weights

Given an adjacency matrix \mathbf{A}, find \mathbf{A}^{*} such that for all $i, j \in V$

$$
\mathbf{A}^{*}(i, j)=\bigoplus_{p \in \pi(i, j)} w(p)
$$

where $\pi(i, j)$ represents the set of all paths from i to j.
How can we solve this problem?

Stability

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
$a \in S$, define powers a^{k}

$$
\begin{aligned}
a^{0} & =\overline{1} \\
a^{k+1} & =a \otimes a^{k}
\end{aligned}
$$

Closure, a^{*}

$$
\begin{aligned}
a^{(k)} & =a^{0} \oplus a^{1} \oplus a^{2} \oplus \cdots \oplus a^{k} \\
a^{*} & =a^{0} \oplus a^{1} \oplus a^{2} \oplus \cdots \oplus a^{k} \oplus \cdots
\end{aligned}
$$

Definition (q stability)

If there exists a q such that $a^{(q)}=a^{(q+1)}$, then a is q-stable. By induction: $\forall t, 0 \leqslant t, a^{(q+t)}=a^{(q)}$. Therefore, $a^{*}=a^{(q)}$.

Matrix methods

Matrix powers, \mathbf{A}^{k}

$$
\begin{aligned}
\mathbf{A}^{0} & =\mathbf{I} \\
\mathbf{A}^{k+1} & =\mathbf{A} \otimes \mathbf{A}^{k}
\end{aligned}
$$

Closure, \mathbf{A}^{*}

$$
\begin{aligned}
\mathbf{A}^{(k)} & =\mathbf{I} \oplus \mathbf{A}^{1} \oplus \mathbf{A}^{2} \oplus \cdots \oplus \mathbf{A}^{k} \\
\mathbf{A}^{*} & =\mathbf{I} \oplus \mathbf{A}^{1} \oplus \mathbf{A}^{2} \oplus \cdots \oplus \mathbf{A}^{k} \oplus \cdots
\end{aligned}
$$

Note: \mathbf{A}^{*} might not exist. Why?

Matrix methods can compute optimal path weights

- Let $\pi(i, j)$ be the set of paths from i to j.
- Let $\pi^{k}(i, j)$ be the set of paths from i to j with exactly k arcs.
- Let $\pi^{(k)}(i, j)$ be the set of paths from i to j with at most k arcs.

Theorem

(1) $\quad \mathbf{A}^{k}(i, j)=\underset{p \in \pi^{\kappa}(i, j)}{\bigoplus} w(p)$
(2) $\quad \mathbf{A}^{(k)}(i, j)=\bigoplus_{p \in \pi^{(k)}(i, j)} w(p)$
(3)

$$
\mathbf{A}^{*}(i, j)=\bigoplus_{p \in \pi(i, j)} w(p)
$$

Warning again: for some semirings the expression $\mathbf{A}^{*}(i, j)$ might not be well-defeind. Why?

Proof of (1)

By induction on k. Base Case: $k=0$.

$$
\pi^{0}(i, i)=\{\epsilon\}
$$

so $\mathbf{A}^{0}(i, i)=\mathbf{I}(i, i)=\overline{1}=w(\epsilon)$.

And $i \neq j$ implies $\pi^{0}(i, j)=\{ \}$. By convention

$$
\bigoplus_{p \in\{ \}} w(p)=\overline{0}=\mathbf{I}(i, j) .
$$

Proof of (1)

Induction step.

$$
\begin{aligned}
\mathbf{A}^{k+1}(i, j) & =\left(\mathbf{A} \otimes \mathbf{A}^{k}\right)(i, j) \\
& =\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes \mathbf{A}^{k}(q, j) \\
& =\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes\left(\bigoplus_{p \in \pi^{k}(q, j)} w(p)\right) \\
& =\bigoplus_{1 \leqslant q \leqslant n} \bigoplus_{p \in \pi^{k}(q, j)} \mathbf{A}(i, q) \otimes w(p) \\
& =\bigoplus_{(i, q) \in E} \bigoplus_{p \in \pi^{k}(q, j)} w(i, q) \otimes w(p) \\
& =\bigoplus_{p \in \pi^{k+1}(i, j)} w(p)
\end{aligned}
$$

Fun Facts

Fact 3

If $\overline{1}$ is an annihiltor for \oplus, then every $a \in S$ is 0 -stable!

Fact 4

If S is 0 -stable, then $\mathbb{M}_{n}(S)$ is $(n-1)$-stable. That is,

$$
\mathbf{A}^{*}=\mathbf{A}^{(n-1)}=\mathbf{I} \oplus \mathbf{A}^{1} \oplus \mathbf{A}^{2} \oplus \cdots \oplus \mathbf{A}^{n-1}
$$

Why? Because we can ignore paths with loops.

$$
(a \otimes c \otimes b) \oplus(a \otimes b)=a \otimes(\overline{1} \oplus c) \otimes b=a \otimes \overline{1} \otimes b=a \otimes b
$$

Think of c as the weight of a loop in a path with weight $a \otimes b$.

Shortest paths example, $\left(\mathbb{N}^{\infty}, \min ,+\right)$

The adjacency matrix

$\mathbf{A}=$| 0 |
| :--- |
| 1 |
| 2 |
| 3 |
| 4 |\(\left[\begin{array}{ccccc}0 \& 1 \& 2 \& 3 \& 4

\infty \& 2 \& 1 \& 6 \& \infty

2 \& \infty \& 5 \& \infty \& 4

1 \& 5 \& \infty \& 4 \& 3

6 \& \infty \& 4 \& \infty \& \infty

\infty \& 4 \& 3 \& \infty \& \infty\end{array}\right]\)

Note that the longest shortest path is $(1,0,2,3)$ of length 3 and weight 7.
(min , +) example

Our theorem tells us that $\mathbf{A}^{*}=\mathbf{A}^{(n-1)}=\mathbf{A}^{(4)}$
$\mathbf{A}^{*}=\mathbf{A}^{(4)}=\mathbf{I} \min \mathbf{A} \min \mathbf{A}^{2} \min \mathbf{A}^{3} \min \mathbf{A}^{4}=\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 2 \\ & 4\end{aligned}\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0\end{array}\right]$
(min, +) example

$\mathbf{A}=$| 0 |
| :---: |
| 1 |
| 2 |
| 3 |
| 4 |\(\left[\begin{array}{ccccc}0 \& 1 \& 2 \& 3 \& 4

\infty \& 2 \& 1 \& 6 \& \infty

2 \& \infty \& 5 \& \infty \& 4

1 \& 5 \& \infty \& 4 \& 3

6 \& \infty \& 4 \& \infty \& \infty

\infty \& 4 \& 3 \& \infty \& \infty\end{array}\right] \quad \mathbf{A}^{3}=\)| 0 |
| :---: |
| 1 |
| 2 |
| 3 |
| 4 |\(\left[\begin{array}{ccccc}0 \& 1 \& 2 \& 3 \& 4

8 \& 4 \& 3 \& 8 \& 10

4 \& 8 \& 7 \& 7 \& 6

3 \& 7 \& 8 \& 6 \& 5

8 \& 7 \& 6 \& 11 \& 10

10 \& 6 \& 5 \& 10 \& 12\end{array}\right]\)

$\mathbf{A}^{2}=$| 0 |
| :---: |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |\(\left[\begin{array}{ccccc}0 \& 1 \& 2 \& 3 \& 4

2 \& 6 \& 7 \& 5 \& \frac{4}{4}

6 \& 4 \& 3 \& 8 \& 8

7 \& 3 \& 2 \& 7 \& 9

5 \& 8 \& 7 \& 8 \& 7

4 \& 8 \& 9 \& 7 \& 6\end{array}\right] \quad \mathbf{A}^{4}=\)| 0 |
| :---: |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |\(\left[\begin{array}{cccc}4 \& 8 \& 9 \& 3

7 \& 4

8 \& 6 \& 5 \& 10

9 \& 5 \& 4 \& 9

7 \& 10 \& 9 \& 10

6 \& 10 \& 11 \& 9

8\end{array}\right]\)

First appearance of final value is in red and underlined. Remember: we are looking at all paths of a given length, even those with cycles!

\mathbf{A} vs $\mathbf{A} \oplus \mathbf{I}$

Lemma

If \oplus is idempotent, then

$$
(\mathbf{A} \oplus \mathbf{I})^{k}=\mathbf{A}^{(k)} .
$$

Proof. Base case: When $k=0$ both expressions are I.
Assume $(\mathbf{A} \oplus \mathbf{I})^{k}=\mathbf{A}^{(k)}$. Then

$$
\begin{aligned}
(\mathbf{A} \oplus \mathbf{I})^{k+1} & =(\mathbf{A} \oplus \mathbf{I})(\mathbf{A} \oplus \mathbf{I})^{k} \\
& =(\mathbf{A} \oplus \mathbf{I}) \mathbf{A}^{(k)} \\
& =\mathbf{A} \mathbf{A}^{(k)} \oplus \mathbf{A}^{(k)} \\
& =\mathbf{A}\left(\mathbf{I} \oplus \mathbf{A} \oplus \cdots \oplus \mathbf{A}^{k}\right) \oplus \mathbf{A}^{(k)} \\
& =\mathbf{A} \oplus \mathbf{A}^{2} \oplus \cdots \oplus \mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)} \\
& =\mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)} \\
& =\mathbf{A}^{(k+1)}
\end{aligned}
$$

back to ($\min ,+$) example

$$
\begin{aligned}
(\mathbf{A} \oplus \mathbf{I})^{1}= & \left.\left.\begin{array}{l}
0 \\
1 \\
2 \\
3 \\
4
\end{array}\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 \\
0 & 2 & 1 & 6 & \infty \\
2 & 0 & 5 & \infty & 4 \\
1 & 5 & 0 & 4 & 3 \\
6 & \infty & 4 & 0 & \infty \\
\infty & 4 & 3 & \infty & 0
\end{array}\right] \oplus \mathbf{I}\right)^{3}=\begin{array}{llllll}
0
\end{array}\right]\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 1 & 5 & 4 \\
2 & 0 & 3 & 7 & 4 \\
1 & 3 & 0 & 4 & 3 \\
3 & 4 \\
4 & 7 & 4 & 0 & 7 \\
4 & 4 & 3 & 7 & 0
\end{array}\right] \\
(\mathbf{A} \oplus \mathbf{I})^{2}= & \left.\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 \\
2 \\
3 & 2 & 1 & 5 & 4 \\
2 & 0 & 3 & 8 & 4 \\
1 & 3 & 0 & 4 & 3 \\
5 & 8 & 4 & 0 & 7 \\
4 & 4 & 3 & 7 & 0
\end{array}\right]
\end{aligned}
$$

Semigroup properties (so far)

$$
\begin{aligned}
\mathbb{A} S(S, \bullet) & \equiv \forall a, b, c \in S, a \bullet(b \bullet c)=(a \bullet b) \bullet c \\
\mathbb{I I D}(S, \bullet, \alpha) & \equiv \forall a \in S, a=\alpha \bullet a=a \bullet \alpha \\
\mathbb{I D}(S, \bullet) & \equiv \exists \alpha \in S, \mathbb{I I D}(S, \bullet, \alpha) \\
\mathbb{I A N}(S, \bullet \omega) & \equiv \forall a \in S, \omega=\omega \bullet a=a \bullet \omega \\
\mathbb{N}(S, \bullet) & \equiv \exists \omega \in S, \mathbb{I A N}(S, \bullet, \omega) \\
\mathbb{C M}(S, \bullet) & \equiv \forall a, b \in S, a \bullet b=b \bullet a \\
\mathbb{S L}(S, \bullet) & \equiv \forall a, b \in S, a \bullet b \in\{a, b\} \\
\mathbb{P}(S, \bullet) & \equiv \forall a \in S, a \bullet a=a \\
\mathbb{R}(S, \bullet) & \equiv \forall s, t \in S, s \bullet t=t \\
\mathbb{R}(S, \bullet) & \equiv \forall s, t \in S, s \bullet t=s
\end{aligned}
$$

Recall that is right (\mathbb{R}) and is left ($\mathbb{I L}$) are forced on us by wanting an \Leftrightarrow-rule for $\operatorname{SL}((S, \bullet) \times(T, \diamond))$

Bisemigroup properties (so far)

$$
\begin{aligned}
& \mathbb{A} \mathbb{A}(S, \oplus, \otimes) \equiv \mathbb{A}(S, \oplus) \\
& \mathbb{A l I D}(S, \oplus, \otimes) \equiv \mathbb{I D}(S, \oplus) \\
& \operatorname{ACM}(S, \oplus, \otimes) \equiv \mathbb{C M}(S, \oplus) \\
& \operatorname{MAS}(S, \oplus, \otimes) \equiv \mathbb{A}(S, \otimes) \\
& \operatorname{MIID}(S, \oplus, \otimes) \equiv \mathbb{I D}(S, \otimes) \\
& \mathbb{L D}(S, \oplus, \otimes) \equiv \forall a, b, c \in S, a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c) \\
& \mathbb{R} \mathbb{D}(S, \oplus, \otimes) \equiv \forall a, b, c \in S,(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c) \\
& \mathbb{Z} \mathbb{A}(S, \oplus, \otimes) \equiv \exists \overline{0} \in S, \mathbb{I I D}(S, \oplus, \overline{0}) \wedge \mathbb{I} \mathbb{N}(S, \otimes, \overline{0}) \\
& \mathbb{O A}(S, \oplus, \otimes) \equiv \exists 1 \in S, \mathbb{I I D}(S, \otimes, 1) \wedge \mathbb{I} \mathbb{N}(S, \oplus, 1) \\
& \operatorname{ASL}(S, \oplus, \otimes) \equiv \mathbb{S L}(S, \oplus) \\
& \operatorname{AIIP}(S, \oplus, \otimes) \equiv \mathbb{I P}(S, \oplus)
\end{aligned}
$$

A Minimax Semiring

$$
\begin{gathered}
\operatorname{minimax} \equiv\left(\mathbb{N}^{\infty}, \min , \max , \infty, 0\right) \\
17 \min \infty=17 \\
17 \max \infty=\infty
\end{gathered}
$$

How can we interpret this?

$$
\mathbf{A}^{*}(i, j)=\min _{p \in \pi(i, j)} \max _{(u, v) \in p} \mathbf{A}(u, v),
$$

One possible interpretation of Minimax

- Given an adjacency matrix A over minimax,
- suppose that $\mathbf{A}(i, j)=0 \Leftrightarrow i=j$,
- suppose that \mathbf{A} is symmetric $(\mathbf{A}(i, j)=\mathbf{A}(j, i)$,
- interpret $\mathbf{A}(i, j)$ as measured dissimilarity of i and j,
- interpret $\mathbf{A}^{*}(i, j)$ as inferred dissimilarity of i and j,

Many uses

- Hierarchical clustering of large data sets
- Classification in Machine Learning
- Computational phylogenetics

Dendrograms

Dendrogram

from Hierarchical Clustering With Prototypes via Minimax Linkage, Bien and Tibshirani, 2011.

A minimax graph

The solution \mathbf{A}^{*} drawn as a dendrogram

Hierarchical clustering? Why?
Suppose $(Y, \leqslant,+)$ is a totally ordered with least element 0 .

Metric

A metric for set X over $(Y, \leqslant,+)$ is a function $d \in X \times X \rightarrow Y$ such that

- $\forall x, y \in X, d(x, y)=0 \Leftrightarrow x=y$
- $\forall x, y \in X, d(x, y)=d(y, x)$
- $\forall x, y, z \in X, d(x, y) \leqslant d(x, z)+d(z, y)$

Ultrametric

An ultrametric for set X over (Y, \leqslant) is a function $d \in X \times X \rightarrow Y$ such that

- $\forall x \in X, d(x, x)=0$
- $\forall x, y \in X, d(x, y)=d(y, x)$
- $\forall x, y, z \in X, d(x, y) \leqslant d(x, z) \max d(z, y)$

Fun Facts

Fact 5

If \mathbf{A} is an $n \times n$ symmetric minimax adjacency matrix, then \mathbf{A}^{*} is a finite ultrametric for $\{0,1, \ldots, n-1\}$ over $\left(\mathbb{N}^{\infty}, \leqslant\right)$).

Fact 6

Suppose each arc weight is unique. Then the set of arcs

$$
\left\{(i, j) \in E \mid \mathbf{A}(i, j)=\mathbf{A}^{*}(i, j)\right\}
$$

is a minimum spanning tree.

A spanning tree derived from \mathbf{A} and \mathbf{A}^{*}

