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Shortest paths example, sp = (N*, min, +, 00, 0)

The adjacency matrix

1 2 3 4 5

2 4 o 2 1 6 o
2 o 5 o 4

1 5 oo 4 3

6 o 4 o o
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Shortest paths solution

1 2 3 4 5

1[0215 4

2{ 20374

{— % - 3/ 13043
# 457407
s| 44370

solves this global optimality
problem:

A*(i, j) = min w(p),
pen(i, j)

where 7 (i, j) is the set of all paths
from i to j.
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Widest paths example, bw = (N*, max, min, 0, o)

AN

1 2 3 4 5
2 5 4 1o 4 4 6 4
/k 2| 4 © 5 4 4
A* = 3/ 4 5 o 4 4
1 1 3 3 5
ﬁ/ O 4| 6 4 4 o 4
6 4 5 4 4 4 4 o«
\é solves this global optimality
problem:

A*(i, j) = max w(p),
pen(i, f)

where w(p) is now the minimal
edge weight in p.
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Unfamiliar example, (212 ¢ U, n, {}, {a, b, ¢})

We want A* to solve this global
optimality problem:

1@ tabe} 1ol A )= | wip)
<E{bCHiP{b}>:> e
where w(p) is now the intersection
{ab} {b} of all edge weights in p.

®

For x € {a, b, c}, interpret x € A*(i, j) to mean that there is at least
one path from j to j with x in every arc weight along the path. J

A*(4,1)={a, b} A*(4,5)={b}
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Another unfamiliar example, (2{& ¢~ U)

We want matrix R to solve this
global optimality problem:

ta) {abgcj el A= () wp),
<E{bCHiP{b}>:> e
where w(p) is now the union of all
{ab} {b} edge weights in p.

®

For x € {a, b, c}, interpret x € A*(i, j) to mean that every path from i
to j has at least one arc with weight containing x. J

A*(4,1)={b} A*(4,5)={b} A*(5 1)={}
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Semirings (generalise (R, +, x,0,1))

name S @, ®
sp N* min  +
bw N®  max min
rel [0, 1] max x

use {0, 1} max min
2W

possible routing use
minimum-weight routing
greatest-capacity routing
most-reliable routing
usable-path routing
shared link attributes?
shared path attributes?

() N

ow N U

S o o o §| ol

A wee bit of notation!

Symbol Interpretation

Natural numbers (starting with zero)
Natural numbers, plus infinity
Identity for ®

Identity for ®

—~lolzZ
g

v
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Recommended (on reserve in CL library)

Path Problems in

Networks
Michel Gondran
Michel Minoux
John Baras

i A Graphs, Dioids
and Semirings

New Models and Algorithms

S'I.\ THESIS LECTURES ON
CoMMUNICATION NETWORKS

@ Springer
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Semiring axioms ...

We will look at all of the axioms of semirings, but the most important
are

distributivity

LD : a®((bdc) = (a®b)@®(a®c)
RD : (a®@b)®c = ( )
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Distributivity, illustrated

b
a
( () (0
Cc
ap (bedc) = (a®b)@®(a®c)
j makes the choice = i makes the choice
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Should distributivity hold in Internet Routing?

long path through a customer

customer provider

short path through a peer

@ j prefers long path though one of its customers (not the shorter
path through a competitor)

@ given two routes from a provider, i prefers the one with a shorter
path

@ More on inter-domain routing in the Internet later in the term ...
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Widest shortest-paths

@ Metric of the form (d, b), where d is distance (min, +) and b is
capacity (max, min).

@ Metrics are compared lexicographically, with distance considered
first.

@ Such things are found in the vast literature on Quality-of-Service
(QoS) metrics for Internet routing.
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Widest shortest-paths

(1,100) (1,100)

(0)—— (1,10) / (2,90)

h

1,5) (1,100)
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Weights are globally optimal (we have a semiring)

Widest shortest-path weights computed by Dijkstra and
Bellman-Ford

0 1 2 3 4
(0,0) (1,10) (3,10) (2,5) (2,10)
(1,10) (0,0) (2,100) (1,5) (1,100)
3,10) (2,100) (0,00) (1,100) (1,100)
(2,5 (1,5 (1,100) (0,%0) (2,100)
(2,10) (1,100) (1,100) (2,100) (0O,0)

X0
Il

A w2 O
~—~
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But what about the paths themselves?

Four optimal paths of weight (3,10).

POPﬁmal(Oaz) = {( 5 Ug )7 ( Al
POPtimal(‘Z?O) = {( il )7 ( i

—_

There are standard ways to extend Bellman-Ford and Dijkstra to
compute paths (or the associated next hops).

Do these extended algorithms find all optimal paths?
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Surprise!

Four optimal paths of weight (3, 10)

Poptimal(07 2) = {(07 1 ) 2)a (07 1 ) 47 2)}
Poptimal(za O) = {(27 1, 0), (27 47 1 > O)}

Paths computed by (extended) Dijkstra

PDijkstra(072) = {(07 172)7 (07 17472)}
PDijkstra(27 0) = {(2’ 47 1 ) 0)}

Notice that O’s paths cannot both be implemented with next-hop
forwarding since Ppijsira(1,2) = {(1,4,2)}.
Paths computed by distributed Bellman-Ford

PBellman(Ovz) = {(0717472)}
Pgeaman(2,0) = {(2,1,0), (2,4,1,0)}
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Optimal paths from 0 to 2. Computed by Dijkstra but

not by Bellman-Ford K

(1,100) (1,100)

@— (1,10) :G< (2,90) —ﬁ
(

1,5) (1,100)

Ny
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Optimal paths from 2 to 1. Computed by Bellman-Ford

but not by Dijkstra /@

(1,100) (1,100)

(0)+— (1,10) —(1 ) (2,90)
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How can we understand this (algebaically)?

The Algorithm to Algebra (A2A) method

original metric modified metric
+ — +
complex algorithm matrix equations (generic algorithm)
Preview

@ We can add paths explicitly to the widest shortest-path semiring to
obtain a new algebra.

@ We will see that distributivity does not hold for this algebra.

@ Why? We will see that it is because min is not cancellative!
(amin b = amin ¢ does not imply that b = ¢)
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Towards a non-classical theory of algebraic path
finding
We need theory that can accept algebras that violate distributivity.

Global optimality
A*(i, )= @D wi(p),

peP(i, )

Left local optimality (distributed Bellman-Ford)
L=(A®L) ol

Right local optimality (Dijkstra’s Algorithm)

R=(RRA) &I

Embrace the fact that all three notions can be distinct.
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Lectures 2, 3

@ Semigroups
@ A few important semigroup properties
@ Semigroup and partial orders
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Semigroups

Semigroup

A semigroup (S, e) is a non-empty set S with a binary operation such
that

AS associative = Va,b,ce S, ae(bec)=(aeb)ec

Important Assumption — We will ignore trival semigroups
We will impicitly assume that 2 <| S |.

Note

Many useful binary operations are not semigroup operations. For
example, (R,e), where ae b= (a+ b)/2.
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Some Important Semigroup Properties

D identity
AN annihilator
CM commutative
SLL selective
IP  idempotent

Jae S, Vae S, a=aea=aea
Jwe S, Vae S, w=wea=aew
Va,be S, aeb=bea

Va,be S, aebe {a, b}

Vae S, aea=a

A semigroup with an identity is called a monoid.
Note that
SL(S, o) = IP(S, )
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A few concrete semigroups

S . description a | w |CM|SL |IP
S left xlefty = x
S right | xrighty =y
S* . concatenation | €
St - | concatenation

{t, f} A conjunction | t | f | * | x | *
{t, f} | v disjunction flt ]« | x|
N min minimum 0| = *x |
N max maximum * *x | %
2w U union { * *
2w n | intersection | W | {} | * *
fin(2Y) | U union { * *
fin(2Y) | ~ | intersection | = *
N + addition 0 *
N X multiplication | 1 | 0 | «

W a finite set, U an infinite set. Forset Y, fin(Y) = {X € Y | X is finite}
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A few abstract semigroups

S e | description w |CM | SL | TP
2V |y union 0 |u
2V |~ | intersection | U |{}

2UxU | x| relational join | Zy | {}

X — X | o | composition | Ax.x

U an infinite set
XHMY={(x,2)eUxU|IyeU, (x,y)eXn(y, 2)e Y}
Zy={(u, u)|ue U}

subsemigroup

Suppose (S, o) is a semigroupand T < S. If T is closed w.r.t e (that
is,Vx,y e T,xeye T),then (T, e) is a subsemigroup of S.
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Order Relations

We are interested in order relations < <

SxS

Definition (Important Order Properties)

RX reflexive = a<a
TR transitve = a<bab<c—a<c
AY antisymmetric = a<bab<a—a=>b
TO total = a<bvb<a
partial preference total
pre-order order order order
RX * * * *
TR * * * *
AY * *
TO * *

tgg22 (cl.cam.ac.uk)
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Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)

a<dfib = 3JceS:b=aec
a<tb = 3ceS:a=bec

Lemma (Sanity check)
Associativity of e implies that these relations are transitive.

Proof.

Note that a < bmeans 3c; € S: b= aecy, and b <F ¢ means
dco e S:c=becy. Letting c3 = ¢1 o ¢, we have
C=beco,=(aeci)ec, =ae(ciecCy) =aecs. Thatis,

Jeze S:c = aecs, s0 a< c. The proof for <t is similar.
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Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, e) is canonically ordered when a <ff ¢
and a <! c are partial orders.

Definition (Groups)

A monoid is a group if for every a e S there exists a a~' € S such that
aea'=alea=na.
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Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)
Only a trivial group is canonically ordered.

Proof.

lfa, be S, thena=a.ea=(beb'Yea=be (b 'ea)=Dbec,for
c=b"ea soa<kb. Inasimilar way, b <7 a. Thereforea=b. [

v
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Natural Orders
Definition (Natural orders)
Let (S, o) be a semigroup.

I
|
\V}
°
(ey

Lemma

If » is commutative and idempotent, then a<P b — a <P b, for
De (R, L).

Proof.

a<fib «— b=aec=(aea)ec=ae(asc)
— aeb <— a<fb

adtb <= a=bec=(beb)ec=be(bec)
= bea=aeb < a<tp
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Special elements and natural orders
Lemma (Natural Bounds)
@ Ifa exists, then forall a, a <t o and o <P a
o Ifw exists, then for all a, w <t aand a <P w
@ If o and w exist, then S is bounded.

w <t a <t oa
aé?aéfw

Remark (Thanks to lljitsch van Beijnum)
Note that this means for (min, +) we have

0 <t a <t o'e)

\rBin \rﬁin
% <min a <min 0

and still say that this is bounded, even though one might argue with the

terminology!

tgg22 (cl.cam.ac.uk)
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Examples of special elements

S . al w [<L<R
N min | oo | O < | =
N |max| 0 | -0 | = | <
PW) v |[{}| W] c |2
PW)l n |W] {} | 2| <
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Property Management

Lemma

LetDe {R, L}.

Q@ IP(S, ») — RX(S, <P

Q CM(S, o) — AY(S, <P)

Q AS(S, o) — TR(S, <P)

Q CM(S, o) = (SL(S, ») <« TO(S, <?))

Proof.
Q@ a<la <= a=aeg

Q@ a<itbab<la «— a=aebrb=bea — a=0>b

Q@ a<tbrb<lc <= a=aebrab=bec =— a=ae(bec)=

(aeb)ec=aec — a<tc
Q a—aebvb=aeb «— a<tbvb<lta

O]

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice

T.G.Griffin@©2017

v

33/107



Bounds

Suppose (S, <) is a partially ordered set.

greatest lower bound

For a, be S, the element ¢ € S is the greatest lower bound of a and b,
written ¢ = a glb b, if it is a lower bound (¢ < aand ¢ < b), and for
every d e Swithd < aand d < b, we have d < c.

least upper bound

For a, b e S, the element ¢ € S is the least upper bound of g and b,
written ¢ = alub b, if it is an upper bound (a < ¢ and b < ¢), and for
every d e Switha< d and b < d, we have ¢ < d.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2017 34/107



Semi-lattices

Suppose (S, <) is a partially ordered set.

meet-semilattice
S is a meet-semilattice if a glb b exists for each a, be S.

join-semilattice

S is a join-semilattice if a lub b exists for each a, be S.
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Fun Facts

Fact 1

Suppose (S, o) is a commutative and idempotent semigroup.
o (S, <) is a meet-semilattice with aglb b = a e b.
e (S, <F)is ajoin-semilattice with alub b = a e b.

Fact 2
Suppose (S, <) is a partially ordered set.

@ If (S, <) is a meet-semilattice, then (S, glb) is a commutative and
idempotent semigroup.

@ If (S, <) is ajoin-semilattice, then (S, lub) is a commutative and
idempotent semigroup.

That is, semi-lattices represent the same class of structures as
commutative and idempotent semigroups.
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Lecture 3

@ Semirings

@ Matrix semirings
@ Shortest paths
@ Minimax
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Bi-semigroups and Pre-Semirings

(S, @, ®) is a bi-semigroup when
S, @) is a semigroup

o (
@ (S, ®) is a semigroup

(S, @, ®) is a pre-semiring when
@ (S, ®, ®) is a bi-semigroup
@ @ is commutative

and left- and right-distributivity hold,

LD : a®(b®dc) = (a®b)
RD : (a®@b)®c = ( )
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Semirings

®, 0, 1) is a semiring when
, @, ®) is a pre-semiring

, ®, 0) is a (commutative) monoid
, ®, 1) is a monoid

an

0 is an annihilator for ®

tgg22 (cl.cam.ac.uk)
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Examples

Pre-semirings

name S @ ® 0 1
min_plus N min  + 0
max_min N max min 0

Semirings
name S @ ©® 0 1
sp N® min + o 0
bw N® max min 0 oo

Note the sloppiness — the symbols +, max, and min in the two tables
represent different functions....
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How about (max, +)?

Pre-semiring
name S ®, ® 0
max_plus N max + O

oO| =

@ What about “0 is an annihilator for ®”? No!

Fix that ...

name S ® ® 0 1
max_plus™™ Nw{-w} max + - 0
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Matrix Semirings

e (S, @ ®, 0, 1) asemiring
@ Define the semiring of n x n-matrices over S : (M,(S), @, ®, J, 1)

@ and ®
(A®B)(i, j) = A(, ))®B(, )
1<g<n
Jand |
Ji,j) = 0

T (ifi=j)
G, J) = {

0 (otherwise)

V.
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Associativity

A®(B®C)=(A®B)®C J
(A®(BeC)( )
= @ Al e BEC)(U,)) (def —)
= KQUr)@A(i, V(P Bu, v)®C(v, j)) (def—)
- B @ A6 0o B vecy, ) LD
= 1<GUL)@KQVr)@(A(/ u)®B(u, v))®C(v, j) (AS,CM)
= B (& ai wesw vecw. ) &)
B AeB)i ety ) (def )
~ (A®B)®Ci, ) (det )
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Left Distributivity

A® (B®C)= (A®B)®(A®C) ]

(A®(BOC)I, ))

= @ A(, 9@ B®C)g. j) (def —)
- D A6 9@ B )eca ) (et )
_ D (A 9©B@ ) ® A 99C@ ) LD
(& Al 9B )O( @ Al 8C(@ ) (4S.CH)
_ (AGBlE@ABC)G ) (det )

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2017 44 /107



Matrix encoding path problems

° (S, @ ®, 0, 1)asemiring
@ G = (V, E) adirected graph
@ we E — S aweight function

Path weight
The weight of a path p = i3, o, i3, - - - , Ik iS
w(p) = w(iy, ) @ W(, i3) ®--- ® W(ik—1, Ix)-

The empty path is given the weight 1.

Adjacency matrix A

w(i, j) it (i, j) e E,
A(’v /) = {

0 otherwise

v
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The general problem of finding globally optimal path

weights

Given an adjacency matrix A, find A* such that for all i, je V

A*(i, )= D wip)

pem (i, j)

where 7 (i, j) represents the set of all paths from i to j.

How can we solve this problem?
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Stability
® (S, @, ®, 0, 1) asemiring

ae S, define powers g

a =1
éak-F1 = a C) éik
Closure, a*
ak = Poeoaeoare. - @ a
at = Peoa oo - -0adoe .-

Definition (g stability)

If there exists a g such that al@ = a(@*t") then ais g-stable. By
induction: Vt,0 < t,a@+t) = a(@_ Therefore, a* = a9.
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Matrix methods

Matrix powers, A%

J U

Akt — A®Ak

Closure, A*
Ak

A*

IoA"®A2® .- @ Ak

= loA'"oA2 .- -pAF® - --

Note: A* might not exist. Why?

tgg22 (cl.cam.ac.uk)
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Matrix methods can compute optimal path weights

@ Let «(i,j) be the set of paths from i to j.
@ Let 7/(i, ) be the set of paths from i to j with exactly k arcs.
o Let 79 (i, j) be the set of paths from / to j with at most k arcs.

Theorem
(1) A j) = P wp
pemk (i, j)
(2) AW, j) = @ wp)

per X (i, j)
3 A*i,j) = @D wlp)
pen(i, j)

Warning again: for some semirings the expression A*(i, j) might not
be well-defeind. Why?
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Proof of (1)

By induction on k. Base Case: k = 0.

w0(i, i) = {e},
SO A%(i i) = 1I(i, i) = T = w(e).

And i + jimplies 7°(i,j) = {}. By convention

D wp) =0=1(, j).

pe{}
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Proof of (1)

Induction step.
A )y = (A AN, )

- @ Al, 9 ®A g, )

1<q<n
= @ Al,ge( B wp)
1<gs<n pem(q, j)

= @ © Al 9ewp)
1<q<npenk(q, j)

= @ @D wi, gewp)
(i, Q)€E perk(q.j)

= @ wp

peﬂ—kJH o)
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Fun Facts

Fact 3
If 1 is an annihiltor for @, then every a e S is 0-stable!

Fact 4
If Sis O-stable, then M,(S) is (n — 1)-stable. That is,

A*ZA(n_1)=|(—BA1@A2@"'@A”_1

Why? Because we can ignore paths with loops.
(a®ceb) @ (a®b) =ar(1@c)®@b=a®1®b=a®b

Think of ¢ as the weight of a loop in a path with weight a® b.
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Shortest paths example, (N*, min, +)

The adjacency matrix
0o 1 2
2 5 4
4

6

e

8§88 A8 o w

1
5
o0
4
3

N W N = O
8§ o=nNnS§
A 8 M

Note that the longest shortest path is (1, 0, 2, 3) of length 3 and
weight 7.
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(min, +) example

Our theorem tells us that A* = A("=1) = A4)

o 1 2 3 4

o[0 2 1 5 4

112 0 3 7 4

A* =A@ = min A min A2 min A minA*=2| 1 3 0 4 3
3| 57 407

sl 4 4 370

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2017 54 /107



(min, +) example

0 1 2 3 4 0 1 2 3 4
o[ 0 2 1 6 o o[ 8 4 3 8 10
1 2 o 5 o 4 1 4 8 7 7 6
A= 21 5 o 4 3 A = 2 3 78 6 5
3 6 o 4 oo 3 8 7 6 11 10
4] 0 4 3 o ® 4110 6 5 10 12

0 1 2 3 4 0o 1 2 3 4

o[ 2 6 7 5 4 o[4 8 9 7 6

1|16 4 3 8 8 118 6 5 10 10

A2 = 2|7 3279 A* = 219 5 4 9 11
3|15 8 7 8 7 3| 7 10 9 10 9

41 4 8 9 7 6 41 6 10 11 9 8

First appearén?;e of final value is in red and underlined. Remember:
we are looking at all paths of a given length, even those with cycles!
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Avs Al

Lemma
If ® is idempotent, then

(A@hk = AK.

Proof. Base case: When k = 0 both expressions are I.
Assume (A@ 1)¥ = A%, Then

Ak = (A@DADX
(A@DAK

AA) @ A
AloA® - A @AW
A@AZ@”_®A/(+1 @A(k)
Ak+1 (—BA(k)

Alk+1)
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back to (min, +) example

3 0 4 3

1
2 0 3 8 4

3 0 4 3

A@l)? =

57 /107
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Semigroup properties (so far)

AS(S, o) = Vab,ce S, ae(bec)=(aeb)ec
I[ID(S, o, ) = Vae S, a=aea=aec

ID(S, o) = Jae S, IID(S, o, a)
TAN(S, o, w) = Vae S, w=wea=aew

AN(S, o) = 3Jwe S, IAN(S, o, w)

CM(S, o) = Va,be S, aeb=bea

SL(S, o) = Vabe S, asbe{a, b}

IP(S, o) = Vac$S, asa=a

IR(S, o) = Vs,teS,set=t

IL(S, ¢) = Vs ,teS,set=s

Recall that is right (IR) and is left (IL) are forced on us by wanting an
<-rule for SL((S,e) x (T,©))
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Bisemigroup properties (so far)

AAS(S, @, ® = AS(S, @)
AID(S, @, ®) = ID(S, @)
ACM(S, ®, ®) = CM(S, @)
MAS(S, ®, ®) = AS(S, ®)
MID(S, &, @) = ID(S, Q)
LD(S, @, ® = Vab,ceS, a(bdc)=(a®b)®(a®c)
RD(S, ®, ® = Vab,ceS, (adb)®c=(a®c)@ (b®c)
ZA(S, ®, ®) = 30€e S, IID(S, @, 0) A IAN(S, ® 0)
OA(S, ®, ® = 3I1eS DS, ®, 1) AIAN(S, @, 1)
ASL(S, @, ®) = SL(S, @)
AIP(S, ®, @) = IP(S, @)

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2017

59/107



A Minimax Semiring

minimax = (N* min, max, oo, 0) J

17minec = 17
17maxoo = o

How can we interpret this?

A*(i, j) = min max A(u, v),
pen (i, j) (u,v)ep

u]
]
I
ul
it
<
¢
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One possible interpretation of Minimax

@ Given an adjacency matrix A over minimax,

@ suppose that A(i, j)) =0 < i =,

@ suppose that A is symmetric (A(i, j) = A(j, i),

@ interpret A(/, j) as measured dissimilarity of / and j,
@ interpret A*(i, j) as inferred dissimilarity of / and j,

Many uses
@ Hierarchical clustering of large data sets
@ Classification in Machine Learning
@ Computational phylogenetics
° ..
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Dendrograms

Dendrogram

O wom < O

from Hierarchical Clustering With Prototypes via Minimax Linkage, Bien

and Tibshirani, 2011.
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A minimax graph
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The solution A* drawn as a dendrogram
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Hierarchical clustering? Why?
Suppose (Y, <, +) is a totally ordered with least element 0.

Metric

A metric for set X over (Y, <, +) is afunctionde X x X — Y such
that

o Vx,yeX, d(x,y)=0ex=y
° Vx,ye X, d(x, y) =d(y, x)
o Vx,y,ze X, d(x, y)<d(x, z)+d(z, y)

Ultrametric

An ultrametric for set X over (Y, <) is a function d € X x X — Y such
that

@ Vxe X, dx, x)=0
o Vx,ye X, d(x, y) =d(y, x)
@ Vx,y,ze X, d(x, y) <d(x, zymaxd(z, y)

v
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Fun Facts

Fact 5

If Ais an n x n symmetric minimax adjacency matrix, then A* is a finite
ultrametric for {0, 1, ..., n—1} over (N*, <)).

Fact 6

Suppose each arc weight is unique. Then the set of arcs
{(i, j) e E|A(, j) = A*(i, j)}

is @ minimum spanning tree.
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A spanning tree derived from A and A*
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