

Lecture 15

Presheaf categories

Let \mathbf{C} be a small category. The functor category $\mathbf{Set}^{\mathbf{C}^{\text{op}}}$ is called the category of presheaves on \mathbf{C} .

- ▶ objects are contravariant functors from \mathbf{C} to \mathbf{Set}
- ▶ morphisms are natural transformations

Much used in the semantics of various dependently-typed languages and logics.

Yoneda functor

$$y : \mathbf{C} \rightarrow \mathbf{Set}^{\mathbf{C}^{\text{op}}}$$

(where \mathbf{C} is a small category)

is the Curried version of the hom functor

$$\mathbf{C} \times \mathbf{C}^{\text{op}} \cong \mathbf{C}^{\text{op}} \times \mathbf{C} \xrightarrow{\text{Hom}_{\mathbf{C}}} \mathbf{Set}$$

Yoneda functor

$$y : \mathbf{C} \rightarrow \mathbf{Set}^{\mathbf{C}^{\text{op}}}$$

(where \mathbf{C} is a small category)

is the Curried version of the hom functor

$$\mathbf{C} \times \mathbf{C}^{\text{op}} \cong \mathbf{C}^{\text{op}} \times \mathbf{C} \xrightarrow{\text{Hom}_{\mathbf{C}}} \mathbf{Set}$$

- ▶ For each \mathbf{C} -object X , the object $yX \in \mathbf{Set}^{\mathbf{C}^{\text{op}}}$ is the functor $\mathbf{C}(_, X) : \mathbf{C}^{\text{op}} \rightarrow \mathbf{Set}$ given by

$$\begin{array}{ccc} Z & \mapsto & \mathbf{C}(Z, X) \\ \downarrow f & \mapsto & \uparrow \\ Y & \mapsto & \mathbf{C}(Y, X) \end{array} \quad \begin{array}{c} g \circ f \\ \uparrow \\ g \end{array}$$

Yoneda functor

$$y : \mathbf{C} \rightarrow \mathbf{Set}^{\mathbf{C}^{\text{op}}}$$

(where \mathbf{C} is a small category)

is the Curried version of the hom functor

$$\mathbf{C} \times \mathbf{C}^{\text{op}} \cong \mathbf{C}^{\text{op}} \times \mathbf{C} \xrightarrow{\text{Hom}_{\mathbf{C}}} \mathbf{Set}$$

- ▶ For each \mathbf{C} -object X , the object $yX \in \mathbf{Set}^{\mathbf{C}^{\text{op}}}$ is the functor $\mathbf{C}(_, X) : \mathbf{C}^{\text{op}} \rightarrow \mathbf{Set}$ given by

$$\begin{array}{ccc} Z & \mapsto & \mathbf{C}(Z, X) \\ \downarrow f & \mapsto & \uparrow \\ Y & \mapsto & \mathbf{C}(Y, X) \end{array} \quad g \circ f \quad \begin{array}{c} \uparrow f^* \\ \text{---} \\ \uparrow g \end{array}$$

this function is often written as f^*

Yoneda functor

$$y : \mathbf{C} \rightarrow \mathbf{Set}^{\mathbf{C}^{\text{op}}}$$

(where \mathbf{C} is a small category)

is the Curried version of the hom functor

$$\mathbf{C} \times \mathbf{C}^{\text{op}} \cong \mathbf{C}^{\text{op}} \times \mathbf{C} \xrightarrow{\text{Hom}_{\mathbf{C}}} \mathbf{Set}$$

- ▶ For each \mathbf{C} -morphism $Y \xrightarrow{f} X$, the morphism $yY \xrightarrow{yf} yX$ in $\mathbf{Set}^{\mathbf{C}^{\text{op}}}$ is the natural transformation whose component at any given $Z \in \mathbf{C}^{\text{op}}$ is the function

$$\begin{array}{ccc} yY(Z) & \xrightarrow{(yf)_Z} & yX(Z) \\ \parallel & & \parallel \\ \mathbf{C}(Z, Y) & & \mathbf{C}(Z, X) \end{array}$$

$$g \longmapsto f \circ g$$

Yoneda functor

$$y : \mathbf{C} \rightarrow \mathbf{Set}^{\mathbf{C}^{\text{op}}}$$

(where \mathbf{C} is a small category)

is the Curried version of the hom functor

$$\mathbf{C} \times \mathbf{C}^{\text{op}} \cong \mathbf{C}^{\text{op}} \times \mathbf{C} \xrightarrow{\text{Hom}_{\mathbf{C}}} \mathbf{Set}$$

- ▶ For each \mathbf{C} -morphism $Y \xrightarrow{f} X$, the morphism $yY \xrightarrow{yf} yX$ in $\mathbf{Set}^{\mathbf{C}^{\text{op}}}$ is the natural transformation whose component at any given $Z \in \mathbf{C}^{\text{op}}$ is the function

$$\begin{array}{ccc} yY(Z) & \xrightarrow{(yf)_Z} & yX(Z) \\ \parallel & & \parallel \\ \mathbf{C}(Z, Y) & & \mathbf{C}(Z, X) \\ g & \xrightarrow{f_*} & f \circ g \end{array}$$

this function is often
written as f_*

The Yoneda Lemma

For each small category \mathbf{C} , each object $\mathbf{X} \in \mathbf{C}$ and each presheaf $\mathbf{F} \in \mathbf{Set}^{\mathbf{C}^{\text{op}}}$, there is a bijection of sets

$$\eta_{X,F} : \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X, \mathbf{F}) \cong \mathbf{F}(X)$$

which is natural in both \mathbf{X} and \mathbf{F} .

The Yoneda Lemma

For each small category \mathbf{C} , each object $\mathbf{X} \in \mathbf{C}$ and each presheaf $\mathbf{F} \in \mathbf{Set}^{\mathbf{C}^{\text{op}}}$, there is a bijection of sets

$$\eta_{X,F} : \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X, \mathbf{F}) \cong \mathbf{F}(X)$$

which is natural in both \mathbf{X} and \mathbf{F} .

the value of
 $\mathbf{F} : \mathbf{C}^{\text{op}} \rightarrow \mathbf{Set}$
at \mathbf{X}

the set of natural transformations from
the functor $\mathbf{y}X : \mathbf{C}^{\text{op}} \rightarrow \mathbf{Set}$
to the functor $\mathbf{F} : \mathbf{C}^{\text{op}} \rightarrow \mathbf{Set}$

The Yoneda Lemma

For each small category \mathbf{C} , each object $\mathbf{X} \in \mathbf{C}$ and each presheaf $\mathbf{F} \in \mathbf{Set}^{\mathbf{C}^{\text{op}}}$, there is a bijection of sets

$$\eta_{X,F} : \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X, \mathbf{F}) \cong \mathbf{F}(X)$$

which is natural in both \mathbf{X} and \mathbf{F} .

Definition of the function $\eta_{X,F} : \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X, \mathbf{F}) \rightarrow \mathbf{F}(X)$:

for each $\theta : \mathbf{y}X \rightarrow \mathbf{F}$ in $\mathbf{Set}^{\mathbf{C}^{\text{op}}}$ we have the function

$\mathbf{C}(X, X) = \mathbf{y}X(X) \xrightarrow{\theta_X} \mathbf{F}(X)$ and define

$$\boxed{\eta_{X,F}(\theta) \triangleq \theta_X(\text{id}_X)}$$

The Yoneda Lemma

For each small category \mathbf{C} , each object $X \in \mathbf{C}$ and each presheaf $F \in \mathbf{Set}^{\mathbf{C}^{\text{op}}}$, there is a bijection of sets

$$\eta_{X,F} : \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X, F) \cong F(X)$$

which is natural in both X and F .

Definition of the function $\eta_{X,F}^{-1} : F(X) \rightarrow \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X, F)$:

for each $x \in F(X)$, $Y \in \mathbf{C}$ and $f \in \mathbf{y}X(Y) = \mathbf{C}(Y, X)$,

we get a $F(X) \xrightarrow{F(f)} F(Y)$ in \mathbf{Set} and hence $F(f)(x) \in F(Y)$;

The Yoneda Lemma

For each small category \mathbf{C} , each object $X \in \mathbf{C}$ and each presheaf $F \in \mathbf{Set}^{\mathbf{C}^{\text{op}}}$, there is a bijection of sets

$$\eta_{X,F} : \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X, F) \cong F(X)$$

which is natural in both X and F .

Definition of the function $\eta_{X,F}^{-1} : F(X) \rightarrow \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X, F)$:

for each $x \in F(X)$, $Y \in \mathbf{C}$ and $f \in \mathbf{y}X(Y) = \mathbf{C}(Y, X)$,

we get a $F(X) \xrightarrow{F(f)} F(Y)$ in \mathbf{Set} and hence $F(f)(x) \in F(Y)$;

Define $(\eta_{X,F}^{-1}(x))_Y : \mathbf{y}X(Y) \rightarrow F(Y)$ by

$$(\eta_{X,F}^{-1}(x))_Y(f) \triangleq F(f)(x)$$

check this gives a natural transformation
 $\eta_{X,F}^{-1}(x) : \mathbf{y}X \rightarrow F$

Proof of $\eta_{X,F} \circ \eta_{X,F}^{-1} = \text{id}_{F(X)}$

For any $x \in F(X)$ we have

$$\begin{aligned}\eta_{X,F} \left(\eta_{X,F}^{-1}(x) \right) &\triangleq \left(\eta_{X,F}^{-1}(x) \right)_X (\text{id}_X) && \text{by definition of } \eta_{X,F} \\ &\triangleq F(\text{id}_X)(x) && \text{by definition of } \eta_{X,F}^{-1} \\ &= \text{id}_{F(X)}(x) && \text{since } F \text{ is a functor} \\ &= x\end{aligned}$$

Proof of

$$\eta_{X,F}^{-1} \circ \eta_{X,F} = \text{id}_{\mathbf{Set}^{\mathbf{C}^{\text{op}}}(yX, F)}$$

For any $yX \xrightarrow{\theta} F$ in $\mathbf{Set}^{\mathbf{C}^{\text{op}}}$ and $Y \xrightarrow{f} X$ in \mathbf{C} , we have

$$\begin{aligned}
 \left(\eta_{X,F}^{-1} (\eta_{X,F}(\theta)) \right)_Y f &\triangleq \left(\eta_{X,F}^{-1} (\theta_X(\text{id}_X)) \right)_Y f && \text{by definition of } \eta_{X,F} \\
 &\triangleq F(f)(\theta_X(\text{id}_X)) && \text{by definition of } \eta_{X,F}^{-1} \\
 &= \theta_Y(f^*(\text{id}_X)) && \text{by naturality of } \theta \\
 &\triangleq \theta_Y(\text{id}_X \circ f) && \text{by definition of } f^* \\
 &= \theta_Y(f)
 \end{aligned}$$

naturality of θ

$$\begin{array}{ccc}
 yX(Y) & \xrightarrow{\theta_Y} & F(Y) \\
 \uparrow f^* & & \uparrow F(f) \\
 yX(X) & \xrightarrow{\theta_X} & F(X)
 \end{array}$$

Proof of

$$\eta_{X,F}^{-1} \circ \eta_{X,F} = \text{id}_{\mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X,F)}$$

For any $\mathbf{y}X \xrightarrow{\theta} F$ in $\mathbf{Set}^{\mathbf{C}^{\text{op}}}$ and $Y \xrightarrow{f} X$ in \mathbf{C} , we have

$$\begin{aligned}
 \left(\eta_{X,F}^{-1} (\eta_{X,F}(\theta)) \right)_Y f &\triangleq \left(\eta_{X,F}^{-1} (\theta_X(\text{id}_X)) \right)_Y f && \text{by definition of } \eta_{X,F} \\
 &\triangleq F(f)(\theta_X(\text{id}_X)) && \text{by definition of } \eta_{X,F}^{-1} \\
 &= \theta_Y(f^*(\text{id}_X)) && \text{by naturality of } \theta \\
 &\triangleq \theta_Y(\text{id}_X \circ f) && \text{by definition of } f^* \\
 &= \theta_Y(f)
 \end{aligned}$$

$$\text{so } \forall \theta, Y, \left(\eta_{X,F}^{-1} (\eta_{X,F}(\theta)) \right)_Y = \theta_Y$$

$$\text{so } \forall \theta, \eta_{X,F}^{-1} (\eta_{X,F}(\theta)) = \theta$$

$$\text{so } \eta_{X,F}^{-1} \circ \eta_{X,F} = \text{id}.$$

The Yoneda Lemma

For each small category \mathbf{C} , each object $\mathbf{X} \in \mathbf{C}$ and each presheaf $\mathbf{F} \in \mathbf{Set}^{\mathbf{C}^{\text{op}}}$, there is a bijection of sets

$$\eta_{X,F} : \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X, \mathbf{F}) \cong \mathbf{F}(X)$$

which is natural in both \mathbf{X} and \mathbf{F} .

Proof that $\eta_{X,F}$ is natural in F :

Given $F \xrightarrow{\varphi} G$ in $\mathbf{Set}^{\mathbf{C}^{\text{op}}}$, have to show that

$$\begin{array}{ccc} \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X, F) & \xrightarrow{\eta_{X,F}} & F(X) \\ \varphi_* \downarrow & & \downarrow \varphi_X \\ \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X, G) & \xrightarrow{\eta_{X,G}} & G(X) \end{array}$$

commutes in \mathbf{Set} . For all $\mathbf{y}X \xrightarrow{\theta} F$ we have

$$\begin{aligned} \varphi_X(\eta_{X,F}(\theta)) &\triangleq \varphi_X(\theta_X(\text{id}_X)) \\ &\triangleq (\varphi \circ \theta)_X(\text{id}_X) \\ &\triangleq \eta_{X,G}(\varphi \circ \theta) \\ &\triangleq \eta_{X,G}(\varphi_*(\theta)) \end{aligned}$$

Proof that $\eta_{X,F}$ is natural in X :

Given $Y \xrightarrow{f} X$ in \mathbf{C} , have to show that

$$\begin{array}{ccc} \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}X, F) & \xrightarrow{\eta_{X,F}} & F(X) \\ (yf)^* \downarrow & & \downarrow F(f) \\ \mathbf{Set}^{\mathbf{C}^{\text{op}}}(\mathbf{y}Y, F) & \xrightarrow{\eta_{Y,F}} & F(Y) \end{array}$$

commutes in \mathbf{Set} . For all $\mathbf{y}X \xrightarrow{\theta} F$ we have

$$\begin{aligned} F(f)((\eta_{X,F}(\theta))) &\triangleq F(f)(\theta_X(\text{id}_X)) \\ &= \theta_Y(f^*(\text{id}_X)) && \text{by naturality of } \theta \\ &= \theta_Y(f) \\ &= \theta_Y(f_*(\text{id}_Y)) \\ &\triangleq (\theta \circ yf)_Y(\text{id}_Y) \\ &\triangleq \eta_{Y,F}(\theta \circ yf) \\ &\triangleq \eta_{Y,F}((yf)^*(\theta)) \end{aligned}$$

Corollary of the Yoneda Lemma:

the functor $\mathbf{y} : \mathbf{C} \rightarrow \mathbf{Set}^{\mathbf{C}^{\text{op}}}$ is **full** and **faithful**.

In general, a functor $\mathbf{F} : \mathbf{C} \rightarrow \mathbf{D}$ is

- ▶ **faithful** if for all $X, Y \in \mathbf{C}$ the function

$$\begin{array}{ccc} \mathbf{C}(X, Y) & \rightarrow & \mathbf{D}(F(X), F(Y)) \\ f & \mapsto & F(f) \end{array}$$

is injective:

$$\forall f, f' \in \mathbf{C}(X, Y), F(f) = F(f') \Rightarrow f = f'$$

- ▶ **full** if the above functions are all surjective:

$$\forall g \in \mathbf{D}(F(X), F(Y)), \exists f \in \mathbf{C}(X, Y), F(f) = g$$