TIMETABLE lecture #14 Thes 26 Nov No lecture Thurs 28 Nov lecture # 15 Thes 3 Dec lecture #16 Thurs 5 Dec 10 am Exercise Sheet 4 (graded) anonymous results highest = 40/40 (100%) lowest = 28/40 (70%) median = 35/40(88%)) sample size = 15

Lecture 13

Recall:

Given categories and functors C G an adjunction $|\mathbf{F} - |\mathbf{G}|$ is specified by functions $\stackrel{F X \xrightarrow{g} Y}{\xrightarrow{X \xrightarrow{\overline{g}}} G Y} \qquad \uparrow^{\theta_{X,Y}} \xrightarrow{F X \xrightarrow{\overline{f}} Y}$ (for each $X \in \mathbf{C}$ and $Y \in \mathbf{D}$) satisfying $\overline{\overline{f}} = f$, $\overline{\overline{g}} = g$ and $F X' \xrightarrow{F u} F X \xrightarrow{g} Y \qquad F X \xrightarrow{g} Y \xrightarrow{v} Y'$

Theorem. A functor $F : \mathbb{C} \to \mathbb{D}$ has a right adjoint iff for all \mathbb{D} -objects $Y \in \mathbb{D}$, there is a \mathbb{C} -object $G Y \in \mathbb{C}$ and a \mathbb{D} -morphism $\varepsilon_Y : F(G Y) \to Y$ with the following "universal property":

Theorem. A functor $F : \mathbb{C} \to \mathbb{D}$ has a right adjoint iff for all \mathbb{D} -objects $Y \in \mathbb{D}$, there is a \mathbb{C} -object $G Y \in \mathbb{C}$ and a \mathbb{D} -morphism $\varepsilon_Y : F(G Y) \to Y$ with the following "universal property":

Theorem. A functor $F : \mathbb{C} \to \mathbb{D}$ has a right adjoint iff for all \mathbb{D} -objects $Y \in \mathbb{D}$, there is a \mathbb{C} -object $G Y \in \mathbb{C}$ and a \mathbb{D} -morphism $\varepsilon_Y : F(G Y) \to Y$ with the following "universal property":

Theorem. A functor $F : \mathbb{C} \to \mathbb{D}$ has a right adjoint iff for all \mathbb{D} -objects $Y \in \mathbb{D}$, there is a \mathbb{C} -object $G Y \in \mathbb{C}$ and a \mathbb{D} -morphism $\varepsilon_Y : F(G Y) \to Y$ with the following "universal property":

Proof of the <u>Theorem</u>—"only if" part:

Given an adjunction (F, G, θ) , for each $Y \in D$ we produce $\varepsilon_Y : F(GY) \to Y$ in **D** satisfying (UP).

Proof of the Theorem—"only if" part:

Given an adjunction (F, G, θ) , for each $Y \in D$ we produce $\varepsilon_Y : F(GY) \to Y$ in D satisfying (UP).

We are given $\theta_{X,Y} : \mathsf{D}(FX,Y) \cong \mathsf{C}(X,GY)$, natural in X and Y. Define

$$\varepsilon_Y \triangleq heta_{GY,Y}^{-1}(\operatorname{id}_{GY}): F(GY) \to Y$$

In other words $\varepsilon_{\gamma} = \overline{id_{G\gamma}}$.

Proof of the <u>Theorem</u>—"only if" part:

Given an adjunction (F, G, θ) , for each $Y \in D$ we produce $\varepsilon_Y : F(GY) \to Y$ in D satisfying (UP).

We are given $\theta_{X,Y} : \mathsf{D}(FX,Y) \cong \mathsf{C}(X,GY)$, natural in X and Y. Define

$$\varepsilon_Y \triangleq \theta_{GY,Y}^{-1}(\operatorname{id}_{GY}): F(GY) \to Y$$

In other words $\varepsilon_{\gamma} = \overline{\mathrm{id}_{G\gamma}}$.

Given any
$$\begin{cases} g: FX \to Y & \text{in } \mathbf{D} \\ f: X \to GY & \text{in } \mathbf{C} \end{cases}$$
, by naturality of θ we have
$$\underbrace{FX \xrightarrow{g} Y}_{FX \xrightarrow{g}} f: FX \xrightarrow{Ff}_{F} F(GY) \xrightarrow{\operatorname{id}_{GY}}_{FY} \end{cases}$$

Hence $g = \varepsilon_Y \circ F \overline{g}$ and $g = \varepsilon_Y \circ F f \Rightarrow \overline{g} = f$.

Thus we do indeed have (UP).

Y

Proof of the Theorem—"if" part:

We are given $F : \mathbb{C} \to \mathbb{D}$ and for each $Y \in \mathbb{D}$ a \mathbb{C} -object GY and \mathbb{C} -morphism $\varepsilon_Y : F(GY) \to Y$ satisfying (UP). We have to

- 1. extend $Y \mapsto G Y$ to a functor $G : D \to C$
- 2. construct a natural isomorphism $\theta : \operatorname{Hom}_{D} \circ (F^{\operatorname{op}} \times \operatorname{id}_{D}) \cong \operatorname{Hom}_{C} \circ (\operatorname{id}_{C^{\operatorname{op}}} \times G)$

Proof of the <u>Theorem</u>—"if" part:

We are given $F : \mathbb{C} \to \mathbb{D}$ and for each $Y \in \mathbb{D}$ a \mathbb{C} -object GY and \mathbb{C} -morphism $\varepsilon_Y : F(GY) \to Y$ satisfying (UP). We have to

1. extend $Y \mapsto G Y$ to a functor $G : D \to C$

For each **D**-morphism $g: Y' \to Y$ we get $F(GY') \xrightarrow{\epsilon_{Y'}} Y' \xrightarrow{g} Y$ and can apply (UP) to get

$$Gg \triangleq \overline{g \circ \varepsilon_{Y'}} : GY' \to GY$$

The uniqueness part of (UP) implies

$$G$$
 id = id and $G(g' \circ g) = Gg' \circ Gg$

so that we get a functor $G : \mathbf{D} \to \mathbf{C}$. \Box

Proof of the Theorem—"if" part:

We are given $F : \mathbb{C} \to \mathbb{D}$ and for each $Y \in \mathbb{D}$ a \mathbb{C} -object GY and \mathbb{C} -morphism $\varepsilon_Y : F(GY) \to Y$ satisfying (UP). We have to

2. construct a natural isomorphism $\theta : \operatorname{Hom}_{D} \circ (F^{\circ p} \times \operatorname{id}_{D}) \cong \operatorname{Hom}_{C} \circ (\operatorname{id}_{C^{\circ p}} \times G)$

Since for all $g: F X \to Y$ there is a unique $f: X \to G Y$ with $g = \varepsilon_Y \circ F f$,

$$f\mapsto \overline{f} \triangleq \varepsilon_Y \circ F f$$

determines a bijection $C(X, GY) \cong C(FX, Y)$; and it is natural in X & Y because

$$\overline{G v \circ f \circ u} \triangleq \varepsilon_{Y'} \circ F(G v \circ f \circ u)$$

$$= (\varepsilon_{Y'} \circ F(G v)) \circ F f \circ F u \qquad \text{since } F \text{ is a functor}$$

$$= (v \circ \varepsilon_Y) \circ F f \circ F u \qquad \text{by definition of } G v$$

$$= v \circ \overline{f} \circ F u \qquad \text{by definition of } \overline{f}$$

So we can take θ to be the inverse of this natural isomorphism. \Box

Dual of the Theorem:

 $G: C \leftarrow D$ has a left adjoint iff for all $X \in C$ there are $F X \in D$ and $\eta_X \in C(X, G(F X))$ with the universal property:

for all
$$Y \in \mathbf{D}$$
 and $f \in \mathbf{C}(X, GY)$
there is a unique $\overline{f} \in \mathbf{D}(FX, Y)$
satisfying $G \overline{f} \circ \eta_X = f$

Dual of the <u>Theorem</u>:

 $G: C \leftarrow D$ has a left adjoint iff for all $X \in C$ there are $F X \in D$ and $\eta_X \in C(X, G(F X))$ with the universal property:

for all
$$Y \in \mathbf{D}$$
 and $f \in \mathbf{C}(X, GY)$
there is a unique $\overline{f} \in \mathbf{D}(FX, Y)$
satisfying $G \overline{f} \circ \eta_X = f$

E.g. we can conclude that the forgetful functor $U : Mon \rightarrow Set$ has a left adjoint $F : Set \rightarrow Mon$, because of the universal property of

 $F\Sigma \triangleq (\text{List}\Sigma, @, \text{nil}) \text{ and } \eta_{\Sigma}: \Sigma \rightarrow \text{List}\Sigma$

noted in Lecture 3.

Why are adjoint functors important/useful?

Their universal property (UP) usually embodies some useful mathematical construction

(e.g. "freely generated structures are left adjoints for forgetting-stucture") and pins it down uniquely up to isomorphism.