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Adjoint functors

The concepts of “category”, “functor” and “natural
transformation” were invented by Eilenberg and
MacLane in order to formalise “adjoint situations”.

They appear everywhere in mathematics, logic and
(hence) computer science.

Examples of adjoint situations that we have already
seen. . .
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Free monoids

Σ→ U(M, ·, e) morphisms in Set

F Σ→ (M, ·, e) morphisms in Mon
====================

bijection
Set(Σ, U(M, ·, e)) ∼= Mon(F Σ, (M, ·, e))

f #→ f̂

g ◦ ηΣ ← ! g
(where ηΣ : Σ→ F Σ = List Σ is a #→ [a])

The bijection is “natural in Σ and (M, ·, e)” (to be explained)
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Binary product in a category C

(Z, Z)→ (X, Y) morphisms in C× C

Z→ X × Y morphisms in C
=====================

bijection
(C× C)((Z, Z), (X, Y)) ∼= C(Z, X× Y)

( f , g) $→ 〈 f , g〉

(π1 ◦ h, π2 ◦ h)← ! h
This bijection is “natural in X, Y , Z” (to be explained)
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Exponentials in a category C with binary products

Z× X → Y morphisms in C

Z→ YX
morphisms in C

================

bijection
C(Z× X, Y) ∼= C(Z, Y X)

f $→ cur f

app ◦(g× idX)← ! g

The bijection is “natural in X, Y , Z” (to be explained)
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Adjunction
Definition. An adjunction between two categories C
and D is specified by:

! functors C
F

D
G

! for each X ∈ C and Y ∈ D a bijection
θX,Y : D(F X, Y) ∼= C(X, G Y)
which is natural in X and Y .

for all

{

u : X ′ → X in C

v : Y → Y ′ in D
and all g : F X → Y in D

X ′
u
−→ X

θX ,Y(g)
−−−→ G Y

G v
−→ G Y ′ = θX ′,Y ′

(

F X ′
F u
−→ F X

g
−→ Y

v
−→ Y ′

)
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Adjunction
Definition. An adjunction between two categories C
and D is specified by:

! functors C
F

D
G

! for each X ∈ C and Y ∈ D a bijection
θX,Y : D(F X, Y) ∼= C(X, G Y)
which is natural in X and Y .

what has this to do with the concept of natural
transformation between functors?
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Hom functors
If C is a locally small category, then we get a functor

HomC : Cop× C→ Set

with HomC(X, Y) " C(X, Y) and

HomC

(

(X, Y)
( f , g)
−−−→ (X ′, Y ′)

)

" C(X, Y)
HomC( f ,g)
−−−−→ C(X ′, Y ′)

HomC( f , g) h " g ◦ h ◦ f
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Hom functors
If C is a locally small category, then we get a functor

HomC : Cop× C→ Set

with HomC(X, Y) " C(X, Y) and

HomC

(

(X, Y)
( f , g)
−−−→ (X ′, Y ′)

)

" C(X, Y)
HomC( f ,g)
−−−−→ C(X ′, Y ′)

HomC( f , g) h " g ◦ h ◦ f

If ( f , g) : (X, Y)→ (X ′, Y ′) in Cop×C and h : X → Y in C,
then in C we have f : X ′ → X, g : Y → Y ′ and so g ◦ h ◦ f : X ′ → Y ′
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Natural isomorphisms

Given functors F, G : C→ D, a natural isomorphism
θ : F ∼= G is simply an isomorphism between F and G in
the functor category DC.
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Natural isomorphisms

Given functors F, G : C→ D, a natural isomorphism
θ : F ∼= G is simply an isomorphism between F and G in
the functor category DC.
Lemma. If θ : F→ G is a natural transformation and for each X ∈ C,
θX : F X → G X is an isomorphism in D, then the family of morphisms
(θ−1

X : G X → F X | X ∈ C) gives a natural transformation θ−1 : G→ F
which is inverse to θ in DC and hence θ is a natural isomorphism. #

L12 141



An adjunction between locally small categories C and D
is simply a triple (F, G, θ) where

! C
F

D
G

! θ is a natural isomorphism between the functors

Dop×D
HomD

Cop×D

Fop×idD

idCop×G

and Set

Cop×C
HomC
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Terminology:

Given C
F

D
G

is there is some natural isomorphism
θ : HomD ◦ (Fop× idD) ∼= HomC ◦ (idCop×G)

one says

F is a left adjoint for G

G is a right adjoint for F

and writes
F , G

L12 143



Notation associated with an adjunction(F, G, θ)

Given

{

g : F X→ Y

f : X → G Y

we write

{

g " θX,Y(g) : X→ G Y

f " θ−1
X,Y( f) : F X → Y

Thus g = g, f = f and naturality of θX,Y in X and Y
means that

v ◦ g ◦ F u = G v ◦ g ◦ u
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Notation associated with an adjunction(F, G, θ)

The existence of θ is sometimes indicated by writing

F X
g
−→ Y

X
g
−→ G Y

Using this notation, one can split the naturality condition
for θ into two:

F X′
F u
−→ F X

g
−→ Y

X′
u
−→ X

g
−→ G Y

F X
g
−→ Y

v
−→ Y ′

X
g
−→ G Y

G v
−→ G Y ′
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Theorem. A category C has binary products iff the
diagonal functor ∆ = 〈idC , idC〉 : C→ C× C has a
right adjoint.

Theorem. A category C with binary products also has
all exponentials of pairs of objects iff for all X ∈ C, the
functor (_)× X : C→ C has a right adjoint.

Both these theorems are instances of the following theorem, a very useful
characterisation of when a functor has a right adjoint (or dually, a left adjoint).
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Characterisation of right adjoints
Theorem. A functor F : C→ D has a right adjoint iff
for all D-objects Y ∈ D, there is a C-object G Y ∈ C
and a D-morphism εY : F(G Y)→ Y with the following
“universal property”:

(UP)
for all X ∈ C and g ∈ D(F X, Y)
there is a unique g ∈ C(X, G Y)
satisfying εY ◦ F(g) = g
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