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The concepts of “category”, “functor” and “natural
transformation” were invented by Eilenberg and
MaclLane in order to formalise “adjoint situations”.

They appear everywhere in mathematics, logic and
(hence) computer science.

Examples of adjoint situations that we have already
seen. . .
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Free monoids

2 — U(M, °, B) morphisms in Set
FY — (M, °, 8) morphisms in Mon

bijection
Set(X,U(M,:,e)) = Mon(FX,(M,-,e))
For g

goNz < &
(where 7y : L — FX = List X is a — [a])

| The bijection is "natural in Z and (M, -, e)" (to be explained) )
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Binary product in a category C

(Z, Z) — (X, Y) morphisms in C X C
Z — X X Y morphisms in C

bijection
(CxC)((Z,2), (JX,tY)) = C(Z,XXY)
(f.8) —(f, 8

(71'10’1,7'(20]1) < h
This bijection is “natural in X,Y,Z" (to be explained)
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Exponentials in a category C with binary products

Z X X — Y morphisms in C

/ — YX morphisms in C

bijection
C(Zx X,Y)=C(Z,YY)
fr—curf

appo(g X idx) < g

The bijection is “natural in X,Y,Z" (to be explained)
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Adjunction

Definition. An adjunction between two categories C
and D is specified by:
F

» functors C D

G
» for each X € C and Y € D a bijection
HX,Y . D(FX, Y) = C(X,GY)
which is natural in X and Y.

\

: X" > XinC
for all {u " andallg: FX —Y inD

v: Y=Y inD

0
x/ Ay x X8 oy GO Gy Oy (PX' xSy y')
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Adjunction

Definition. An adjunction between two categories C
and D is specified by:
F

» functors C D

G
» for each X € C and Y € D a bijection
HX,Y . D(FX, Y) = C(X,GY)
which is natural in X and Y.

~

what has this to do with the concept of natural
transformation between functors?

139



Hom functors

If C is a locally small category, then we get a functor

Homc : C°? X C — Set

with Home (X, Y) = C(X,Y) and
(f,8)

Homc ((X,Y) NILING'S y')> 2 c(x,y) 28 cox vy

Homc(f,g)hégohof
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Hom functors

If C is a locally small category, then we get a functor

Homc : C°? X C — Set

with Home (X, Y) = C(X,Y) and
(f/8)

Homc ((X, Y) (X, y')> 2 c(x,y) 2relU8) e xt vy

ek -k Hns
GVWﬂﬂm/\ P%S AAVD)
(M PO ToN K, | domd ty

Homc(f,g)hégohof P

If (f,¢): (X,Y) — (X, Y) inC® x Cand h: X — Y in C,
then in C we have f: X’ - X, ¢g:Y > Y andsogoho f: X' — Y’
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Natural isomorphisms

Given functors F, G : C — D, a natural isomorphism
0:F = G is simply an isomorphism between F and G in
the functor category D®.
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Natural isomorphisms

Given functors F, G : C — D, a natural isomorphism
0:F = G is simply an isomorphism between F and G in

the functor category D®.

Lemma. If 0 : F — G is a natural transformation and for each X € C,
Ox : F X — G X is an isomorphism in D, then the family of morphisms
(0x': GX — FX | X € C) gives a natural transformation 8~1: G — F

which is inverse to 6 in D€ and hence 6 is a natural isomorphism. [J
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An adjunction between locally small categories C and D
is simply a triple (F, G, 0) where

F

> C D

G
» 0 is a natural isomorphism between the functors

D’ x D

and Set

CPrxD

CP x C
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Terminology:
F

Given C D

G

is there is some natural isomorphism
0 : Homp o (F°? X idp) = Homc o (idcer X G)

one says

F is a left adjoint for G
G is a right adjoint for F

and writes

FAG
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Notation associated with an adjunction(F, G, 6)

(¢:FX — Y
\f:X—)GY

(

Given <

g 20xy(g): X—GY
f é9>?,1y(f) :FX —Y

we write <

\

Thus ¢ = g, ?: f and naturality of Oxy in X and Y
means that

vogoFu: Gvogou
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Notation associated with an adjunction(F, G, 6)

The existence of 0 is sometimes indicated by writing

FX 3y
X35 GY

Using this notation, one can split the naturality condition
for 0 into two:

rx’ 2 rx Sy x5y Sy

u

X' x5 Gy X356y &gy
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Theorem. A category C has binary products iff the
diagonal functor A = (idc,idc) : C — C X C has a
right adjoint.

Theorem. A category C with binary products also has
all exponentials of pairs of objects iff for all X &€ C, the
functor (_) X X : C — C has a right adjoint.

Both these theorems are instances of the following theorem, a very useful
characterisation of when a functor has a right adjoint (or dually, a left adjoint).
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Characterisation of right adjoints

Theorem. A functor F : C — D has a right adjoint iff
for all D-objects Y € D, there is a C-object GY € C
and a D-morphism ey : F(GY) — Y with the following
“universal property":

forall X € Cand g € D(FX,Y)
(UP) |there is a unique g € C(X,GY)
satisfying ey o F(g) = ¢
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