Lecture 10

Exercise Sheet 4
(graded, 25% of final course mark)

RETURN SOLUTIONS TO
THE GRADUATE EDUCATION OFFICE
BY 16:00 ON TUESDAY 19 November
GENERAL THEORY OF NATURAL EQUIVALENCES

SAMUEL EILENBERG AND SAUNDERS MACLANE

CONTENTS

I. Categories and functors
 1. Definition of category
 2. Examples of categories
 3. Functions in two categories
 4. Example of function
 5. Sketch of function
 6. Foundation

II. Categories and functors
 7. Transformations of functors
 8. Categories of functors
 9. Composition of functors
 10. Examples of transformations
 11. Classes of categories
 12. Construction of functors by transformations
 13. Combination of the arguments of functors

III. Functors and groups
 14. Subfunctors
 15. Quotient functors
 16. Examples of subfunctors
 17. The isomorphism theorems
 18. Dense functors of functors
 19. Characters

IV. Homologically defined sets and projective limits
 20. Quasi-direct sets
 21. Direct systems as functors
 22. Inverse systems as functors
 23. Categories 32 and 33
 24. The lifting principle
 25. Functions which commute with limits

V. Applications to topology
 26. General
 27. Homology
 28. Homology and homotopy groups
 29. Duality
 30. Universal coefficient theorem
 31. Cohomology groups
 32. Miscellaneous remarks

Appendix. Representations of categories

Introduction. The subject matter of this paper is best explained by an example, such as that of the relation between a vector space L and its "dual".

Presented to the Society, September 8, 1942; received by the editors May 15, 1943

231
Functors
are the appropriate notion of morphism between categories

Given categories \mathbf{C} and \mathbf{D}, a functor $F : \mathbf{C} \to \mathbf{D}$ is specified by:

1. a function $\text{obj } \mathbf{C} \to \text{obj } \mathbf{D}$ whose value at X is written FX

2. for all $X, Y \in \mathbf{C}$, a function $\mathbf{C}(X, Y) \to \mathbf{D}(FX, FY)$ whose value at $f : X \to Y$ is written $Ff : FX \to FY$

and which is required to preserve composition and identity morphisms:

$$F(g \circ f) = Fg \circ Ff$$
$$F(\text{id}_X) = \text{id}_{FX}$$
Examples of functors

“Forgetful” functors from categories of set-with-structure back to Set.

E.g. \(U : \text{Mon} \to \text{Set} \)

\[
\begin{align*}
U(M, \cdot, e) & = M \\
U((M_1, \cdot_1, e_1) \xrightarrow{f} (M_2, \cdot_2, e_2)) & = M_1 \xrightarrow{f} M_2
\end{align*}
\]
Examples of functors

“Forgetful” functors from categories of set-with-structure back to \textbf{Set}.

E.g. $U : \text{Mon} \to \text{Set}$

\[
\begin{align*}
U(M, \cdot, e) &= M \\
U((M_1, \cdot_1, e_1) \xrightarrow{f} (M_2, \cdot_2, e_2)) &= M_1 \xrightarrow{f} M_2
\end{align*}
\]

Similarly $U : \text{Preord} \to \text{Set}$.
Examples of functors

Free monoid functor \(F : \text{Set} \to \text{Mon} \)

Given \(\Sigma \in \text{Set} \),

\[
F \Sigma = (\text{List} \Sigma, @, \text{nil}), \text{ the free monoid on } \Sigma
\]
Examples of functors

Free monoid functor \(F : \text{Set} \rightarrow \text{Mon} \)

Given \(\Sigma \in \text{Set} \),

\[
F \Sigma = (\text{List } \Sigma, @, \text{nil}), \text{ the free monoid on } \Sigma
\]

Given a function \(f : \Sigma_1 \rightarrow \Sigma_2 \), we get a function

\(Ff : \text{List } \Sigma_1 \rightarrow \text{List } \Sigma_2 \) by mapping \(f \) over finite lists:

\[
Ff [a_1, \ldots, a_n] = [f a_1, \ldots, f a_n]
\]

This gives a monoid morphism \(F \Sigma_1 \rightarrow F \Sigma_2 \); and mapping over lists preserves composition \((F(g \circ f) = Fg \circ Ff) \) and identities \((F \text{id}_\Sigma = \text{id}_{F \Sigma}) \). So we do get a functor from \(\text{Set} \) to \(\text{Mon} \).
Examples of functors

If C is a category with binary products and $X \in C$, then the function $(_ \times X) : \text{obj } C \rightarrow \text{obj } C$ extends to a functor $(_ \times X) : C \rightarrow C$ mapping morphisms $f : Y \rightarrow Y'$ to

$$f \times \text{id}_X : Y \times X \rightarrow Y' \times X$$

(recall that $f \times g$ is the unique morphism with

$$\begin{align*}
\text{fst} \circ (f \times g) &= f \circ \text{fst} \\
\text{snd} \circ (f \times g) &= g \circ \text{snd}
\end{align*}$$

since it is the case that

$$\begin{align*}
\text{id}_X \times \text{id}_Y &= \text{id}_{X \times Y} \\
(f' \circ f) \times \text{id}_X &= (f' \times \text{id}_X) \circ (f \times \text{id}_X)
\end{align*}$$

(see Exercise Sheet 2, question 1c).
Examples of functors

If \mathbf{C} is a cartesian closed category and $X \in \mathbf{C}$, then the function $(_)^X : \text{obj } \mathbf{C} \to \text{obj } \mathbf{C}$ extends to a functor $(_)^X : \mathbf{C} \to \mathbf{C}$ mapping morphisms $f : Y \to Y'$ to

$$f^X \triangleq \text{cur}(f \circ \text{app}) : Y^X \to Y'^X$$

since it is the case that

$$\begin{cases} (\text{id}_Y)^X = \text{id}_{Y^X} \\ (g \circ f)^X = g^X \circ f^X \end{cases}$$

(see Exercise Sheet 3, question 4).
Contravariance

Given categories \mathbf{C} and \mathbf{D}, a functor $F : \mathbf{C}^{\text{op}} \to \mathbf{D}$ is called a \textit{contravariant functor} from \mathbf{C} to \mathbf{D}.

Note that if $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathbf{C}, then $X \xleftarrow{f} Y \xleftarrow{g} Z$ in \mathbf{C}^{op}

so $FX \xleftarrow{Ff} FY \xleftarrow{Fg} FZ$ in \mathbf{D} and hence

\[F(g \circ_{\mathbf{C}} f) = Ff \circ_{\mathbf{D}} Fg \]

(contravariant functors reverse the order of composition)

A functor $\mathbf{C} \to \mathbf{D}$ is sometimes called a \textit{covariant functor} from \mathbf{C} to \mathbf{D}.
Example of a contravariant functor

If \mathbf{C} is a cartesian closed category and $X \in \mathbf{C}$, then the function $X(-) : \text{obj} \mathbf{C} \to \text{obj} \mathbf{C}$ extends to a functor $X(-) : \mathbf{C}^{\text{op}} \to \mathbf{C}$ mapping morphisms $f : Y \to Y'$ to

$$X^f \triangleq \text{cur(app} \circ (\text{id}_{X^{Y'}} \times f)) : X^{Y'} \to X^Y$$

since it is the case that

$$\begin{align*}
X^{\text{id}_Y} &= \text{id}_{X^Y} \\
X^{g \circ f} &= X^f \circ X^g
\end{align*}$$

(see Exercise Sheet 3, question 5).
Example of a contravariant functor

If \(C \) is a cartesian closed category and \(X \in C \), then the function \(X(-) : \text{obj } C \to \text{obj } C \) extends to a functor \(X(-) : C^{\text{op}} \to C \) mapping morphisms \(f : Y \to Y' \) to

\[
Xf \triangleq \text{cur}(\text{app} \circ (\text{id}_{XY'} \times f)) : X^{Y'} \to X^Y
\]

since it is the case that

\[
\begin{cases}
X^{\text{id}_Y} = \text{id}_{XY} \\
X^{g \circ f} = X^f \circ X^g
\end{cases}
\]

(see Exercise Sheet 3, question 5).

[Non-example of a functor \(\text{Set} \to \text{Set} \)]

\[
X \in \text{Set} \mapsto X \times X \in \text{Set}
\]
Note that since a functor $F : \mathcal{C} \to \mathcal{D}$ preserves domains, codomains, composition and identity morphisms it sends commutative diagrams in \mathcal{C} to commutative diagrams in \mathcal{D}

E.g.

\[
\begin{array}{ccc}
\begin{array}{ccc}
Y & \rightarrow & X \\
\downarrow g & & \downarrow h \\
Z & \leftarrow & \\
\end{array} & \rightarrow & \\
\begin{array}{ccc}
F \rightarrow & FX \\
\downarrow Fg \\
FZ \\
\end{array}
\end{array}
\]

$Fh = F(g \circ f) = Fg \circ Ff$
Note that since a functor $F : \mathbf{C} \to \mathbf{D}$ preserves domains, codomains, composition and identity morphisms
it sends isomorphisms in \mathbf{C} to isomorphisms in \mathbf{D}, because

$$F(f^{-1}) = (Ff)^{-1}$$
Composing functors

Given functors $F : C \rightarrow D$ and $G : D \rightarrow E$, we get a functor $G \circ F : C \rightarrow E$ with

$$G \circ F \left(\begin{array}{c} X \\ f \\ Y \end{array} \right) = \begin{array}{c} G(FX) \\ G(Ff) \\ G(FY) \end{array}$$

(this preserves composition and identity morphisms, because F and G do)
Identity functor

on a category \(\mathcal{C} \) is \(\text{id}_\mathcal{C} : \mathcal{C} \to \mathcal{C} \) where

\[
\text{id}_\mathcal{C} \begin{pmatrix} X \\ f \\ Y \end{pmatrix} = \begin{pmatrix} X \\ f \\ Y \end{pmatrix}
\]
Functor composition and identity functors satisfy

associativity \[H \circ (G \circ F) = (H \circ G) \circ F \]
unity \[\text{id}_D \circ F = F = F \circ \text{id}_C \]

So we can get categories whose objects are categories and whose morphisms are functors
but we have to be a bit careful about size...
One of the axioms of set theory is that set membership is a well-founded relation, that is, there is no infinite sequence of sets X_0, X_1, X_2, \ldots with

$$\cdots \in X_{n+1} \in X_n \in \cdots \in X_2 \in X_1 \in X_0$$

So in particular there is no set X with $X \in X$.

So we cannot form the “set of all sets” or the “category of all categories”.
One of the axioms of set theory is

set membership is a well-founded relation, that is, there is no infinite sequence of sets X_0, X_1, X_2, \ldots with

$$\cdots \in X_{n+1} \in X_n \in \cdots \in X_2 \in X_1 \in X_0$$

So in particular there is no set X with $X \in X$.

So we cannot form the “set of all sets” or the “category of all categories”.

But we do assume there are (lots of) big sets

$$\mathcal{U}_0 \in \mathcal{U}_1 \in \mathcal{U}_2 \in \cdots$$

where “big” means each \mathcal{U}_n is a Grothendieck universe…
Grothendieck universes

A Grothendieck universe \mathcal{U} is a set of sets satisfying

- $X \in Y \in \mathcal{U} \Rightarrow X \in \mathcal{U}$
- $X, Y \in \mathcal{U} \Rightarrow \{X, Y\} \in \mathcal{U}$
- $X \in \mathcal{U} \Rightarrow \mathcal{P}X \triangleq \{Y \mid Y \subseteq X\} \in \mathcal{U}$
- $X \in \mathcal{U} \land F \in \mathcal{U}^X \Rightarrow$
 \[
 \{y \mid \exists x \in X, \ y \in Fx\} \in \mathcal{U}
 \]
 (hence also $X, Y \in \mathcal{U} \Rightarrow X \times Y \in \mathcal{U} \land Y^X \in \mathcal{U}$)

The above properties are satisfied by $\mathcal{U} = \emptyset$, but we will always assume

- $\mathbb{N} \in \mathcal{U}$
We assume there is an infinite sequence \(U_0 \in U_1 \in U_2 \in \cdots \) of bigger and bigger Grothendieck universes

and revise the previous definition of “the” category of sets and functions:

\[
\text{Set}_n = \text{category whose objects are all the sets in } U_n \text{ and with } \text{Set}_n(X, Y) = Y^X = \text{all functions from } X \text{ to } Y.
\]

Notation: \(\text{Set} \triangleq \text{Set}_0 \) — its objects are called small sets (and other sets we call large).
Size

Set is the category of small sets.

Definition. A category \mathbf{C} is **locally small** if for all $X, Y \in \mathbf{C}$, the set of \mathbf{C}-morphisms $X \to Y$ is small, that is, $\mathbf{C}(X, Y) \in \mathbf{Set}$.

\mathbf{C} is a **small category** if it is both locally small and $\text{obj } \mathbf{C} \in \mathbf{Set}$.

E.g. **Set**, **Preord** and **Mon** are all locally small (but not small).

Given $P \in \text{Preord}$, the category \mathbf{C}_P it determines is small; similarly, the category \mathbf{C}_M determined by $M \in \text{Mon}$ is small.
The category of small categories, \textbf{Cat}

- objects are all small categories
- morphisms in $\textbf{Cat}(C, D)$ are all functors $C \rightarrow D$
- composition and identity morphisms as for functors

\textbf{Cat} is a locally small category