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Functors
are the appropriate notion of morphism between categories

Given categories C and D, a functor F : C→ D is
specified by:
! a function obj C→ obj D whose value at X is

written F X
! for all X, Y ∈ C, a function

C(X, Y)→ D(F X, F Y) whose value at
f : X→ Y is written F f : F X→ F Y
and which is required to preserve composition and
identity morphisms:

F(g ◦ f) = F g ◦ F f
F(idX) = idF X
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Examples of functors

“Forgetful” functors from categories of set-with-structure
back to Set.

E.g. U : Mon→ Set

{

U(M, ·, e) = M

U((M1, ·1, e1)
f
−→ (M2, ·2, e2)) = M1

f
−→ M2
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Examples of functors

“Forgetful” functors from categories of set-with-structure
back to Set.

E.g. U : Mon→ Set

{

U(M, ·, e) = M

U((M1, ·1, e1)
f
−→ (M2, ·2, e2)) = M1

f
−→ M2

Similarly U : Preord→ Set.
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Examples of functors

Free monoid functor F : Set→Mon

Given Σ ∈ Set,

F Σ = (List Σ, @, nil), the free monoid on Σ
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Examples of functors

Free monoid functor F : Set→Mon

Given Σ ∈ Set,

F Σ = (List Σ, @, nil), the free monoid on Σ

Given a function f : Σ1→ Σ2, we get a function
F f : List Σ1→ List Σ2 by mapping f over finite lists:

F f [a1, . . . , an] = [ f a1, . . . , f an]

This gives a monoid morphism F Σ1 → F Σ2; and mapping over lists preserves
composition (F(g ◦ f) = F g ◦ F f ) and identities (F idΣ = idF Σ). So we do
get a functor from Set to Mon.
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Examples of functors

If C is a category with binary products and X ∈ C, then
the function (_)× X : obj C→ obj C extends to a

functor (_)× X : C→ C mapping morphisms

f : Y → Y ′ to

f × idX : Y × X → Y ′ × X
(

recall that f × g is the unique morphism with

{

fst ◦( f × g) = f ◦ fst

snd ◦( f × g) = g ◦ snd

)

since it is the case that
{

idX × idY = idX×Y

( f ′ ◦ f)× idX = ( f ′ × idX) ◦ ( f × idX)

(see Exercise Sheet 2, question 1c).
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Examples of functors

If C is a cartesian closed category and X ∈ C, then the
function (_)X : obj C→ obj C extends to a functor

(_)X : C→ C mapping morphisms f : Y → Y ′ to

f X " cur( f ◦ app) : YX → Y ′
X

since it is the case that

{

(idY)X = idYX

(g ◦ f)X = gX ◦ f X

(see Exercise Sheet 3, question 4).
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Contravariance
Given categories C and D, a functor F : Cop→ D is
called a contravariant functor from C to D.

Note that if X
f
−→ Y

g
−→ Z in C, then X

f
←− Y

g
←− Z in Cop

so F X
F f
←− F Y

F g
←− F Z in D and hence

F(g ◦C f) = F f ◦D F g

(contravariant functors reverse the order of composition)

A functor C→ D is sometimes called a covariant functor from C to D.
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Example of a contravariant functor

If C is a cartesian closed category and X ∈ C, then the
function X(_) : obj C→ obj C extends to a functor

X(_) : Cop→ C mapping morphisms f : Y → Y ′ to

X f " cur(app ◦(idXY ′ × f)) : XY ′ → XY

since it is the case that

{

XidY = idXY

Xg◦ f = X f ◦ Xg

(see Exercise Sheet 3, question 5).
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Example of a contravariant functor

If C is a cartesian closed category and X ∈ C, then the
function X(_) : obj C→ obj C extends to a functor

X(_) : Cop→ C mapping morphisms f : Y → Y ′ to

X f " cur(app ◦(idXY ′ × f)) : XY ′ → XY

since it is the case that

{

XidY = idXY

Xg◦ f = X f ◦ Xg

(see Exercise Sheet 3, question 5).
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Note that since a functor F : C→ D preserves domains,
codomains, composition and identity morphisms

it sends commutative diagrams in C to commutative
diagrams in D

E.g.

X
f

hY

g

Z

F
(→

F X
F f

F h=F(g◦ f)=F g◦F fF Y

F g

F Z
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Note that since a functor F : C→ D preserves domains,
codomains, composition and identity morphisms

it sends isomorphisms in C to isomorphisms in D,
because

X
f

idX

Y
g

idY

X
f

Y

F
(→

F X
F f

idF X

F Y
F g

idF Y

F X
F f

F Y

so F( f−1) = (F f)−1
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Composing functors

Given functors F : C→ D and G : D→ E, we get a
functor G ◦ F : C→ E with

G ◦ F

⎛

⎝

X
f

Y

⎞

⎠ =

G(F X)

G(F f)

G(F Y)

(this preserves composition and identity morphisms, because F and G do)
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Identity functor

on a category C is idC : C→ C where

idC

⎛

⎝

X
f

Y

⎞

⎠ =
X

f

Y
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Functor composition and identity functors satisfy

associativity H ◦ (G ◦ F) = (H ◦G) ◦ F

unity idD ◦ F = F = F ◦ idC

So we can get categories whose objects are categories
and whose morphisms are functors

but we have to be a bit careful about size. . .
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Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets X0, X1, X2, . . . with

· · · ∈ Xn+1 ∈ Xn ∈ · · · ∈ X2 ∈ X1 ∈ X0

So in particular there is no set X with X ∈ X.

So we cannot form the “set of all sets” or the “category of all categories”.
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Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets X0, X1, X2, . . . with

· · · ∈ Xn+1 ∈ Xn ∈ · · · ∈ X2 ∈ X1 ∈ X0

So in particular there is no set X with X ∈ X.

So we cannot form the “set of all sets” or the “category of all categories”.

But we do assume there are (lots of) big sets

U0 ∈ U1 ∈ U2 ∈ · · ·

where “big” means each Un is a Grothendieck universe. . .
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Grothendieck universes
A Grothendieck universe U is a set of sets satisfying

! X ∈ Y ∈ U⇒ X ∈ U

! X, Y ∈ U⇒ {X, Y} ∈ U

! X ∈ U⇒ P X " {Y | Y ⊆ X} ∈ U

! X ∈ U ∧ F ∈ UX ⇒
{y | ∃x ∈ X, y ∈ F x} ∈ U

(hence also X, Y ∈ U ⇒ X× Y ∈ U ∧ Y X ∈ U)

The above properties are satisfied by U = ∅, but we will always assume

! N ∈ U
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Size
We assume

there is an infinite sequence U0 ∈ U1 ∈ U2 ∈ · · · of
bigger and bigger Grothendieck universes

and revise the previous definition of “the” category of sets and functions:

Setn = category whose objects are all the sets in Un and
with Setn(X, Y) = YX = all functions from X to Y .

Notation: Set " Set0 — its objects are called small
sets (and other sets we call large).
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Size
Set is the category of small sets.

Definition. A category C is locally small if for all
X, Y ∈ C, the set of C-morphisms X→ Y is small, that
is, C(X, Y) ∈ Set.

C is a small category if it is both locally small and
obj C ∈ Set.

E.g. Set, Preord and Mon are all locally small (but not small).

Given P ∈ Preord, the cateogry CP it determines is small; similarly, the
category CM determined by M ∈Mon is small.
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The category of small categories,
Cat

! objects are all small categories
! morphisms in Cat(C, D) are all functors C→ D

! composition and identity morphisms as for functors

Cat is a locally small category
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