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Course web page

Go to
http://www.cl.cam.ac.uk/teaching/1920/L108

for

! these slides
! exercise sheets
! office hours : Mondays 2-3pm (FC08)
! pointers to some additional material

Recommended text for the course is:

[Awodey] Steve Awodey, Category theory,
Oxford University Press (2nd ed.), 2010.
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Assessment

! A graded exercise sheet (25% of the final mark).
Exercise Sheet 4, issued in lecture 10 on Tuesday 10 November

2019, with solutions due in at the Graduate Office Graduate

Office (FS03) by 16:00 on Tuesday 19 November 2019.

! A take-home test (75% of the final mark).
The take-home test will be issued on Thursday 16 January

2020 at 16:00. Solutions are due in at the Graduate Office

(FS03) by 16:00 on Monday 20 January 2020.
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Lecture 1
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What is category theory?
What we are probably seeking is a “purer” view of
functions: a theory of functions in themselves, not a
theory of functions derived from sets. What, then, is a
pure theory of functions? Answer: category theory.

Dana Scott, Relating theories of the λ-calculus, p406

set theory gives an “element-oriented” account of
mathematical structure, whereas

category theory takes a ‘function-oriented” view –
understand structures not via their elements, but by how
they transform, i.e. via morphisms.
(Both theories are part of Logic, broadly construed.)
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Category Theory emerges

1945 Eilenberg† and MacLane†

General Theory of Natural Equivalences,
Trans AMS 58, 231–294
(algebraic topology, abstract algebra)

1950s Grothendieck† (algebraic geometry)

1960s Lawvere (logic and foundations)

1970s Joyal and Tierney† (elementary topos theory)

1980s Dana Scott, Plotkin
(semantics of programming languages)

Lambek† (linguistics)
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Category Theory and
Computer Science

“Category theory has. . . become part of the standard
“tool-box” in many areas of theoretical informatics, from
programming languages to automata, from process
calculi to Type Theory.”

Dagstuhl Perpectives Workshop on Categorical Methods at the Crossroads
April 2014
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This course

basic concepts of category theory

adjunction natural transformation

category functor

applied to

⎧

⎨

⎩

propositional logic
typed lambda-calculus
functional programming
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Definition
A category C is specified by

! a set obj C whose elements are called C-objects

! for each X, Y ∈ obj C, a set C(X, Y) whose
elements are called C-morphisms from X to Y

(so far, that is just what some people call a directed graph)
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Definition
A category C is specified by

! a set obj C whose elements are called C-objects

! for each X, Y ∈ obj C, a set C(X, Y) whose
elements are called C-morphisms from X to Y

! a function assigning to each X ∈ obj C an element
idX ∈ C(X, X) called the identity morphism for
the C-object X

! a function assigning to each f ∈ C(X, Y) and
g ∈ C(Y , Z) (where X, Y , Z ∈ obj C) an element

g ◦ f ∈ C(X, Z) called the composition of
C-morphisms f and g and satisfying. . .
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Definition, continued

satisfying. . .

! associativity: for all X, Y , Z, W ∈ obj C,
f ∈ C(X, Y), g ∈ C(Y , Z) and h ∈ C(Z, W)

h ◦ (g ◦ f) = (h ◦ g) ◦ f

! unity: for all X, Y ∈ obj C and f ∈ C(X, Y)

idY ◦ f = f = f ◦ idX
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Example: category of sets, Set

! obj Set = some fixed universe of sets
(more on universes later)

! Set(X, Y) =
{ f ⊆ X× Y | f is single-valued and total}

Cartesian product of sets X and Y is the
set of all ordered pairs (x, y) with x ∈ X
and y ∈ Y .
Equality of ordered pairs:
(x, y) = (x′, y′)⇔ x = x′ ∧ y = y′
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Example: category of sets, Set

! obj Set = some fixed universe of sets
(more on universes later)

! Set(X, Y) =
{ f ⊆ X× Y | f is single-valued and total}

∀x ∈ X,∀y, y′ ∈ Y ,
(x, y) ∈ f ∧ (x, y′) ∈ f ⇒ y = y′

∀x ∈ X,∃y ∈ Y ,
(x, y) ∈ f
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Example: category of sets, Set

! obj Set = some fixed universe of sets
(more on universes later)

! Set(X, Y) =
{ f ⊆ X× Y | f is single-valued and total}

! idX = {(x, x) | x ∈ X}
! composition of f ∈ Set(X, Y) and g ∈ Set(Y , Z)

is

g ◦ f = {(x, z) |
∃y ∈ Y , (x, y) ∈ f ∧ (y, z) ∈ g}

(check that associativity and unity properties hold)
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Example: category of sets, Set

Notation. Given f ∈ Set(X, Y) and x ∈ X, it is usual
to write f x (or f(x)) for the unique y ∈ Y with

(x, y) ∈ f .

Thus

idX x = x

(g ◦ f) x = g( f x)
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Domain and codomain
Given a category C,

write f : X → Y or X
f
−→ Y

to mean that f ∈ C(X, Y),

in which case one says

object X is the domain of the morphism f
object Y is the codomain of the morphism f

and writes

X = dom f Y = cod f

(Which category C we are referring to is left implicit with this notation.)
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Commutative diagrams

in a category C:

a diagram is

a directed graph whose vertices are C-objects
and whose edges are C-morphisms

and the diagram is commutative (or commutes) if

any two finite paths in the graph between any
two vertices determine equal morphisms in the
category under composition
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Commutative diagrams

Examples:

X
f

f

Y
idY

g

Y g Z

X
f

h◦(g◦ f)
W

Y g

h◦g

Z

h
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Alternative notations
I will often just write

C for obj C
id for idX

Some people write

HomC(X, Y) for C(X, Y)
1X for idX

g f for g ◦ f

I use “applicative order” for morphism composition;
other people use “diagrammatic order” and write

f ; g (or f g) for g ◦ f
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Alternative definition of category

The definition given here is “dependent-type friendly”.

See [Awodey, Definition 1.1] for an equivalent
formulation:

One gives the whole set of morphisms mor C
(in bijection with ∑X ,Y∈objC C(X, Y) in my definition)

plus functions
dom , cod : mor C→ obj C
id : obj C→ mor C

and a partial function for composition
_ ◦ _ : mor C× mor C ⇀ mor C

defined at ( f , g) iff cod f = dom g
and satisfying the associativity and unity equations.
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