Category Theory

Andrew Pitts

Module L108, Part III and MPhil. ACS 2020 Computer Science Tripos University of Cambridge

1

Course web page

Go to
http://www.cl.cam.ac.uk/teaching/1920/L108
for

- these slides
- exercise sheets
- office hours : Mondays 2-3pm (FC08)
- pointers to some additional material

Recommended text for the course is:

[Awodey] Steve Awodey, *Category theory*, Oxford University Press (2nd ed.), 2010.

Assessment

- A graded exercise sheet (25% of the final mark). Exercise Sheet 4, issued in lecture 10 on Tuesday 10 November 2019, with solutions due in at the Graduate Office Graduate Office (FS03) by 16:00 on Tuesday 19 November 2019.
- A take-home test (75% of the final mark). The take-home test will be issued on Thursday 16 January 2020 at 16:00. Solutions are due in at the Graduate Office (FS03) by 16:00 on Monday 20 January 2020.

Lecture 1

What is category theory?

What we are probably seeking is a "purer" view of **functions**: a theory of functions in themselves, not a theory of functions derived from sets. What, then, is a pure theory of functions? Answer: category theory.

Dana Scott, Relating theories of the λ -calculus, p406

set theory gives an "element-oriented" account of mathematical structure, whereas

category theory takes a 'function-oriented" view – understand structures not via their elements, but by how they transform, i.e. via morphisms.

(Both theories are part of Logic, broadly construed.)

GENERAL THEORY OF NATURAL EQUIVALENCES

BA

SAMUEL EILENBERG AND SAUNDERS MACLANE

CONTENTS

	Page
Introduction	231
I. Categories and functors	237
1. Definition of ratesories.	237
2. Examples of categories	339
3. Functors in two areamones	241
4. Examples of functors	242
5. Slicing of functors	245
6 Foundations	746
II. Natural emisalence of functors	248
5 Transformations of functory	248
8 Ceterories of functors	250
9. Composition of functors	250
10 Examples of transformations	251
11 Croters as categories	255
12. Construction of functors by transformations	257
12. Combination of the accuments of functions	259
UI Experience and oppose	2.03
14. Subjunctore	160
15. Operations formations	263
16. Kushanala af utkfunden	202
15. The immediate the second	20.3
10. Division of functions	203
10. Characteristics of functors	201
IV. Characters	270
IV, Partially inferent sets and projective limits	272
20. Quaai-ordered sets.	272
21. Direct systems as lunctors	273
22. Inverse systems as junctors	276
23. The categories fold and gub.	277
24. The lifting principle	280
25. Functors which compute with limits	281
V. Applications to topology.	283
26. Complexes	285
27. Homology and cohomology groups	284
28, Duality	287
29. Universal coefficient theorems	288
30. Cech homology groups	290
31. Miscellaneous remarks	292
Appendix. Representations of categories	292

Introduction. The subject matter of this paper is best explained by an example, such as that of the relation between a vector space L and its "dual"

Presented to the Society, September 8, 1942; received by the editors May 15, 1945.

²³¹ License or copyright netrictions may apply to redistribution; see http://www.ams.org.jou.mail-terms-of-see

Category Theory emerges

1945 Eilenberg[†] and MacLane[†] *General Theory of Natural Equivalences*, Trans AMS 58, 231–294

(algebraic topology, abstract algebra)

- 1950s Grothendieck[†] (algebraic geometry)
- 1960s Lawvere (logic and foundations)
- 1970s Joyal and Tierney[†] (elementary topos theory)

1980s Dana Scott, Plotkin

(semantics of programming languages)

Lambek[†] (linguistics)

Category Theory and Computer Science

"Category theory has... become part of the standard "tool-box" in many areas of theoretical informatics, from programming languages to automata, from process calculi to Type Theory."

Dagstuhl Perpectives Workshop on *Categorical Methods at the Crossroads* April 2014

This course

Definition

A category C is specified by

- ► a set obj C whose elements are called C-objects
- ► for each $X, Y \in obj C$, a set C(X, Y) whose elements are called C-morphisms from X to Y

(so far, that is just what some people call a **directed graph**)

Definition

A category C is specified by

- ► a set obj C whose elements are called C-objects
- ► for each $X, Y \in obj C$, a set C(X, Y) whose elements are called C-morphisms from X to Y
- ▶ a function assigning to each $X \in obj \mathbb{C}$ an element $id_X \in \mathbb{C}(X, X)$ called the identity morphism for the \mathbb{C} -object X
- ► a function assigning to each $f \in C(X, Y)$ and $g \in C(Y, Z)$ (where $X, Y, Z \in obj C$) an element $g \circ f \in C(X, Z)$ called the composition of C-morphisms f and g and satisfying...

Definition, continued

satisfying...

▶ associativity: for all $X, Y, Z, W \in obj C$, $f \in C(X, Y), g \in C(Y, Z)$ and $h \in C(Z, W)$

$$h\circ(g\circ f)=(h\circ g)\circ f$$

• unity: for all $X, Y \in \text{obj } \mathbb{C}$ and $f \in \mathbb{C}(X, Y)$

$$\operatorname{id}_Y \circ f = f = f \circ \operatorname{id}_X$$

 \blacktriangleright obj **Set** = some fixed universe of sets (more on universes later) \blacktriangleright Set(X, Y) = $\{ f \subseteq X \times Y \mid f \text{ is single-valued and total} \}$ **Cartesian product** of sets **X** and **Y** is the set of all ordered pairs (x, y) with $x \in X$ and $y \in Y$. Equality of ordered pairs: $(x,y) = (x',y') \Leftrightarrow x = x' \land y = y'$

▶ obj Set = some fixed universe of sets (more on universes later)
▶ Set(X,Y) = {f ⊆ X × Y | f is single-valued and total}
∀x ∈ X, ∀y, y' ∈ Y, (x,y) ∈ f ∧ (x,y') ∈ f ⇒ y = y'
∀x ∈ X, ∃y ∈ Y, (x,y) ∈ f

obj Set = some fixed universe of sets (more on universes later)
Set(X,Y) = {f ⊆ X × Y | f is single-valued and total}
id_X = {(x,x) | x ∈ X}
composition of f ∈ Set(X,Y) and g ∈ Set(Y,Z) is

$$g \circ f = \{(x, z) \mid \\ \exists y \in Y, (x, y) \in f \land (y, z) \in g\}$$

(check that associativity and unity properties hold)

Notation. Given $f \in Set(X, Y)$ and $x \in X$, it is usual to write f x (or f(x)) for the unique $y \in Y$ with $(x, y) \in f$. Thus

$$id_X x = x$$
$$(g \circ f) x = g(f x)$$

Domain and codomain

Given a category **C**,

write
$$f: X \to Y$$
 or $X \xrightarrow{f} Y$

to mean that $f \in C(X, Y)$,

in which case one says

object X is the domain of the morphism fobject Y is the codomain of the morphism f

and writes

$$X = \operatorname{dom} f \qquad Y = \operatorname{cod} f$$

(Which category **C** we are referring to is left implicit with this notation.)

Commutative diagrams

- in a category **C**:
- a diagram is
 - a directed graph whose vertices are **C**-objects and whose edges are **C**-morphisms

and the diagram is commutative (or commutes) if

any two finite paths in the graph between any two vertices determine equal morphisms in the category under composition

Commutative diagrams

Examples:

Alternative notations

I will often just write

C for obj **C** id for id_X

Some people write

 $\begin{array}{l} \operatorname{Hom}_{\mathbf{C}}(X,Y) \text{ for } \mathbf{C}(X,Y) \\ 1_X \text{ for } \operatorname{id}_X \\ g f \text{ for } g \circ f \end{array}$

I use "applicative order" for morphism composition; other people use "diagrammatic order" and write

f;g (or fg) for $g \circ f$

Alternative definition of category

The definition given here is "dependent-type friendly".

See [Awodey, Definition 1.1] for an equivalent formulation:

One gives the whole set of morphisms mor C (in bijection with $\sum_{X,Y \in obj C} C(X,Y)$ in my definition) plus functions

dom, cod : mor $\mathbb{C} \to \operatorname{obj} \mathbb{C}$ id : obj $\mathbb{C} \to \operatorname{mor} \mathbb{C}$ and a *partial* function for composition $_\circ_: \operatorname{mor} \mathbb{C} \times \operatorname{mor} \mathbb{C} \to \operatorname{mor} \mathbb{C}$ defined at (f,g) iff cod $f = \operatorname{dom} g$ and satisfying the associativity and unity equations.