
L101: Matrix Factorization

In a nutshell

Matrix factorization/completion you know?

In NLP?
● Word embeddings

● Topic models

● Information extraction

● FastText

Binary classification (transductive)

Why complete the matrix?

Label Features

1 f1, f2, f3, f4, f6

1 f3, f6

0 f1, f2, f5

0 f1, f2

? f1, f3, f4

? f2

Label f1 f2 f3 f4 f5 f6

1 1 1 1 1 1

1 1 1

0 1 1 1

0 1 1

? 1 1 1

? 1

Semi-supervised
Multi-task

Label Label f1 f2 f3 f4 f5 f6

1 1 1 1 1 1 1

1 1 1 1

0 0 1 1 1

0 0 1 1

? 1 1 1

? 1

1 0 0 1 0 0

0 1 0 0 1 0

Label f1 f2 f3 f4 f5 f6

1 1 1 1 1 1

1 1 1

0 1 1 1

0 1 1

? 1 1 1

? 1

1 0 0 1 0 0

0 1 0 0 1 0

The maximum number of linearly independent columns/rows

For matrix :
● if N=M=0 then rank(U) = 0
● else: max(rank(U))=min(N,M): full rank

Matrix rank

Given
Find , so that
Low rank assumption: rank(Y)=L<<M,N

Matrix completion via low rank factorization

Kind of odd:
● low-rank assumption usually does not hold
● reconstruction unlikely to be perfect
● if full-rank then perfect reconstruction is trivial: Y=YI

Why low rank?

Key insight: original matrix exhibits redundancy and noise, low-rank reconstruction
exploits the former to remove the latter

Singular Value Decomposition (SVD)

Given

We can find orthogonal

And diagonal such that

If we truncate D to its L largest values, then:

is the rank-L minimizer of the squared Frobenius norm:

Truncated Singular Value Decomposition

Truncated SVD
… finds the optimal solution for the chosen rank

Why look further?

● SVD for large matrices is slow
● SVD for matrices with missing data is undefined

○ Can impute, but this biases the data
○ For many applications, 99% is missing (think Netflix movie

recommendations)

We have an objective to minimize:

Stochastic gradient descent (surprise!)

Let’s focus on the values we know Ω:

The gradient steps for each known value:

Word embeddings

● SkipGram (Mikolov et al. 2013) MF implicitly
● GloVe (Socher et al. 2014), S-PPMI (Levy and Goldberg, 2014) MF explicitly

Jurafsky and Martin (2019)

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://nlp.stanford.edu/pubs/glove.pdf
https://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf
https://web.stanford.edu/~jurafsky/slp3/6.pdf

Non-negative matrix factorization

Given
Find , so that

● NMF is essentially an additive mixture/soft clustering model
● Common algorithms are based on (constrained) alternating least squares

Topic models

Blei (2011)

https://www.eecis.udel.edu/~shatkay/Course/papers/UIntrotoTopicModelsBlei2011-5.pdf

Knowledge base population

● Sigmoid function to
map reals to binary
probabilities

● Combined distant
supervision with
representation
learning

● No negative data, so
just sampled
negative instances
from the unknown
values

● Riedel et al. (2013)

https://www.aclweb.org/anthology/N13-1008/

Remember logistic regression:

Factorization of weight matrices

What if we wanted to learn weights for feature interactions?

Typically feature interaction observations will be sparse in the training data.
Instead of learning each weight in W, let’s learn its low rank factorization:

Each vector of V is a feature embedding
Can be extended to high-order interactions by factorizing the feature weight tensor

● Proposed by Rendle (2010)
● Can easily incorporate further features, meta-data
● Similar idea was employed for dependency parsing (Lei et al., 2014)

Factorization Machines

Paweł Łagodziński

https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
https://www.aclweb.org/anthology/P14-1130.pdf
https://www.slideshare.net/Evention/the-factorization-machines-algorithm-for-building-recommendation-system-pawe-agodziski-sas-institute

A different weight matrix factorization
Remember multiclass logistic regression:

For large number of labels with many sparse features, difficult to learn. Factorize!

A contains the feature embeddings and B maps them to labels

The feature embeddings can be initialized/fixed to word embeddings

FastText (Joulin et al., 2017) is the current go to baseline for text classification

https://www.aclweb.org/anthology/E17-2068/

The tutorial we gave at ACL 2015 from which a lot of the content was reused:
http://mirror.aclweb.org/acl2015/tutorials-t5.html
● Tensors
● Collaborative Matrix Factorization

Nice tutorial on MF with code: http://nicolas-hug.com/blog/matrix_facto_1

Topic modelling and NMF: https://www.aclweb.org/anthology/D12-1087.pdf

Matrix Factorization is commonly used for model compression

Bibliography

http://mirror.aclweb.org/acl2015/tutorials-t5.html
http://nicolas-hug.com/blog/matrix_facto_1
https://www.aclweb.org/anthology/D12-1087.pdf
https://arxiv.org/pdf/1710.09282.pdf

