L101: Matrix Factorization

In a nutshell

Matrix factorization/completion you know?

In NLP?

- Word embeddings
- Topic models
- Information extraction
- FastText

Why complete the matrix?

Label	Features		Label	Label	f1	f2	f3	f4	f5	f6
1	f1, f2, f3, f4, f6		1	1	1	1	1	1		1
1	f3, f6		1	1			1			1
0	f1, f2, f5		0	0	1	1			1	
0	f1, f2	-	0	0	1	1				
?	f1, f3, f4			?	1		1	1		
?	f2			?		1				

Binary classification (transductive) Semi-supervised Multi-task

Matrix rank

The maximum number of linearly independent columns/rows

For matrix : $\mathbf{Y} \in \mathfrak{R}^{\mathbf{N} \times \mathbf{M}}$

- if N=M=0 then rank(U) = 0
- else: max(rank(U))=min(N,M): full rank

$$rank egin{pmatrix} 1 & 2 & 3 \ 2 & 3 & 5 \ 3 & 4 & 7 \ 4 & 5 & 9 \end{pmatrix} = ?$$

Matrix completion via low rank factorization

Given $\mathbf{Y} \in \mathfrak{R}^{\mathbf{N} \times \mathbf{M}}$ Find $\mathbf{U} \in \mathfrak{R}^{\mathbf{N} \times \mathbf{L}} \mathbf{V} \in \mathfrak{R}^{\mathbf{M} \times \mathbf{L}}$, so that $\mathbf{Y} \approx \mathbf{U} \mathbf{V}^{\mathbf{T}}$ Low rank assumption: rank(\mathbf{Y})=L < < M, N

Why low rank?

Kind of odd:

- low-rank assumption usually does not hold
- reconstruction unlikely to be perfect
- if full-rank then perfect reconstruction is trivial: Y = YI

Key insight: original matrix exhibits redundancy and noise, low-rank reconstruction exploits the former to remove the latter

Singular Value Decomposition (SVD)

Given $\mathbf{Y} \in \mathfrak{R}^{\mathbf{N} \times \mathbf{M}}$ We can find orthogonal $\mathbf{U} \in \mathfrak{R}^{\mathbf{M} \times \mathbf{M}}, \mathbf{V}^{\mathbf{T}} \in \mathfrak{R}^{\mathbf{N} \times \mathbf{N}}, \mathbf{U}\mathbf{U}^{\mathbf{T}} = \mathbf{V}\mathbf{V}^{\mathbf{T}} = \mathbf{I}$ And diagonal $\mathbf{D} \in \mathfrak{R}^{\mathbf{M} \times \mathbf{N}} \ge \mathbf{0}$ such that $\mathbf{Y} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathbf{T}}$

Truncated Singular Value Decomposition Y U D_{trunc} V^{T} LxL LxN

If we truncate **D** to its **L** largest values, then:

$$\hat{\mathbf{Y}} = \mathbf{U}\mathbf{D}_{\mathbf{trunc}}\mathbf{V}^{\mathbf{T}} = (\mathbf{U}\sqrt{\mathbf{D}_{\mathbf{trunc}}})(\sqrt{\mathbf{D}_{\mathbf{trunc}}}\mathbf{V}^{\mathbf{T}})$$

is the **rank-L** minimizer of the squared Frobenius norm:

$$\sum\limits_{m=1}^{M} \sum\limits_{n=1}^{N} || {\hat y}_{m,n} - y_{m,n} ||^2$$

Truncated SVD

... finds the optimal solution for the chosen rank

Why look further?

- SVD for large matrices is slow
- SVD for matrices with missing data is undefined
 - \circ Can impute, but this biases the data
 - For many applications, 99% is missing (think Netflix movie recommendations)

Stochastic gradient descent (surprise!)

We have an objective to minimize:

$$\sum\limits_{m=1}^{M}\sum\limits_{n=1}^{N}||\hat{y}_{m,n}-y_{m,n}||^{2}$$

Let's focus on the values we know Ω :

$$\mathbf{U}^{\star}, \mathbf{V}^{\star} = rgmin_{\mathbf{U}, \mathbf{V}} \sum_{m, n \in \Omega} (y_{m, n} - \mathbf{u}_m \cdot \mathbf{v}_n)^2$$

The gradient steps for each known value:

$$egin{aligned} \mathbf{u}_m &= \mathbf{u}_m + lpha(y_{m,n} - \mathbf{u}_m \cdot \mathbf{v}_n)\mathbf{v}_n \ \mathbf{v}_n &= \mathbf{v}_n + lpha(y_{m,n} - \mathbf{u}_m \cdot \mathbf{v}_n)\mathbf{u}_m \end{aligned}$$

Word embeddings

sugar, a sliced lemon, a tablespoonful of **apricot** their enjoyment. Cautiously she sampled her first **pineapple** well suited to programming on the digital **computer**. for the purpose of gathering data and **information** necessary for the study authorized in the

preserve or jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from

	aardvark	computer	data	pinch	result	sugar	
apricot	0	0	0	1	0	1	
pineapple	0	0	0	1	0	1	
digital	0	2	1	0	1	0	
information	0	1	6	0	4	0	

Jurafsky and Martin (2019)

- <u>SkipGram</u> (Mikolov et al. 2013) MF implicitly
- <u>GloVe</u> (Socher et al. 2014), <u>S-PPMI</u> (Levy and Goldberg, 2014) MF explicitly

Non-negative matrix factorization

Given $\mathbf{Y} \in \mathfrak{R}^{\mathbf{N} \times \mathbf{M}}$ Find $\mathbf{U} \in \mathfrak{R}^{\mathbf{N} \times \mathbf{L}} \ge \mathbf{0}, \mathbf{V} \in \mathfrak{R}^{\mathbf{M} \times \mathbf{L}} \ge \mathbf{0}$, so that $\mathbf{Y} \approx \mathbf{U}\mathbf{V}^{\mathbf{T}}$

- NMF is essentially an additive mixture/soft clustering model
- Common algorithms are based on (constrained) alternating least squares

Topic models

Knowledge base population

• Sigmoid function to map reals to binary Petrie, UCL	0.06	0.97	0.93	0.07	0.96		$\mathbf{v}_{ ho_1}$
 probabilities Combined distant Ferguson, Harvard	0.93	0.94	0.03	0.06	0.88		v _{p2}
supervision with representation Andrew, Cambridge	0.00	0.95	0.10	0.95	0.76		v _{p3}
 learning No negative data, so Trevelyan, Cambridge 	0.96	0.03	0.00	0.06	0.96		\mathbf{v}_{p_4}
just sampled	Tex	tual	Patte	erns	Free	ba	se
negative instances from the unknown values	v _{r1}	v _{r2}	v _{r3}	v _{r4}	v _{r5}		$\in \mathbb{R}^k$
• Riedel et al. (2013)							

Factorization of weight matrices

Remember logistic regression:

$$P(y=1|x) = \sigma(\mathbf{w} \cdot \phi(\mathbf{x}))$$

What if we wanted to learn weights for feature interactions?

$$P(y = 1 | x) = \sigma(\mathbf{w} \cdot \phi(\mathbf{x}) + \mathbf{W}(\phi(\mathbf{x})\phi(\mathbf{x})^{\mathrm{T}}))$$

Typically feature interaction observations will be sparse in the training data. Instead of learning each weight in \mathbf{W} , let's learn its low rank factorization:

$$P(y=1|x) = \sigma(\mathbf{w} \cdot \phi(\mathbf{x}) + \mathbf{V} \cdot \mathbf{V}^{\mathrm{T}}(\phi(\mathbf{x})\phi(\mathbf{x})^{\mathrm{T}}))$$

Each vector of \mathbf{V} is a feature embedding

Can be extended to high-order interactions by factorizing the feature weight tensor

Factorization Machines

<u>Paweł Łagodziński</u>

- Proposed by <u>Rendle (2010)</u>
- Can easily incorporate further features, meta-data
- Similar idea was employed for dependency parsing (Lei et al., 2014)

A different weight matrix factorization

Remember multiclass logistic regression:

$$P(y|x) = softmax(\mathbf{W} \cdot \mathbf{\phi}(\mathbf{x})), \mathbf{W} \in \mathfrak{R}^{|\mathbf{Y}| imes |\mathbf{\phi}(\mathbf{x})|}$$

For large number of labels with many sparse features, difficult to learn. Factorize!

$$P(y|x) = softmax((\mathbf{B} \cdot \mathbf{A}) \cdot \phi(\mathbf{x})), \mathbf{B} \in \mathfrak{R}^{|\mathbf{Y}| imes \mathbf{k}}, \mathbf{A} \in \mathfrak{R}^{\mathbf{k} imes |\phi(\mathbf{x})|}$$

A contains the feature embeddings and B maps them to labels

The feature embeddings can be initialized/fixed to word embeddings

<u>FastText (Joulin et al., 2017)</u> is the current go to baseline for text classification

Bibliography

The tutorial we gave at ACL 2015 from which a lot of the content was reused: <u>http://mirror.aclweb.org/acl2015/tutorials-t5.html</u>

- Tensors
- Collaborative Matrix Factorization

Nice tutorial on MF with code: <u>http://nicolas-hug.com/blog/matrix_facto_1</u>

Topic modelling and NMF: <u>https://www.aclweb.org/anthology/D12-1087.pdf</u>

Matrix Factorization is commonly used for model compression