
L101: Incremental structured 
prediction



Given an input x (e.g. a sentence) predict y (e.g. a PoS tag sequence, cf lecture 6):

Where Y is rather large and often depends on the input (e.g. L|x| in PoS tagging)

Structured prediction reminder

Various approaches:
● Linear models (structured perceptron)
● Probabilistic linear models (conditional random fields)
● Non-linear models



Assuming we have a trained model, decode/predict/solve the argmax/inference:

Decoding

Isn’t finding θ meant to be the slow part (training)?

Decoding is often necessary for training; you need to predict to calculate losses

Do you know a model where training is faster than decoding?

Hidden Markov Models (especially if you don’t do Viterbi)



In many cases, yes! 

But we need to make assumptions on the structure:
● 1st order Markov assumption (linear chains), rarely more than 2nd
● The scoring function must decompose over the output structure

What if we need greater flexibility?

Dynamic programming to the rescue?



Incremental structured prediction



Examples:
● Predicting the PoS tags word-by-word
● Generating a sentence word-by-word

Incremental structured prediction
A classifier f predicting actions to construct the output:



Incremental structured prediction

Pros:
✓ No need to enumerate all possible outputs
✓ No modelling restrictions on features

Cons:
x Prone to error propagation 
x Classifier not trained w.r.t. task-level loss  



Ranzato et al. (ICLR2016)

We do not score complete 
outputs: 
● early predictions do not 

know what follows
● cannot be undone if purely 

incremental/monotonic
● we are training with gold 

standard predictions for 
previous predictions, but 
test with predicted ones 
(exposure bias)

Error propagation



Beam size 3

http://slideplayer.com/slide/8
593664/

Beam search intuition

http://slideplayer.com/slide/8593664/
http://slideplayer.com/slide/8593664/


Beam search algorithm



● Need to normalise for sentence length

Beam search in practice
● It works, but implementation matters

○ Feature decomposability is key to reuse 
previously computed scores

○ Sanity check: on small/toy instances 
large enough beam should find the 
exact argmax

● Take care of bias due to action types with 
different score ranges: picking among all 
English words is not comparable with 
picking among PoS tags

https://www.aclweb.org/anthology/W17-3204/
https://www.aclweb.org/anthology/P13-2111/
https://arxiv.org/abs/1909.11049
https://arxiv.org/abs/1909.11049


● Search errors save us from model errors!
● In Neural Machine Translation performance degrades with larger beams...

Being less exact helps?

● Part of the problem at least is that we train word-level models but the task is at 
the sentence-level...

https://arxiv.org/abs/1908.10090
https://www.aclweb.org/anthology/W17-3204/


Predict the action leading the correct output. Losses over structured outputs:

● Hamming loss: number of incorrect part of speech tags in a sentence
● False positive and false negatives: e.g. named entity recognition
● 1-BLEU score (n-gram overlap) in generation tasks, e.g. machine translation

Training losses for structured prediction
In supervised training we assume a loss function e.g. negative log likelihood against 
gold labels in classification with logistic regression/ feedforward NNs.

In structured prediction, what do we train our classifier to do?



Can we assess the goodness of each action?

● In PoS tagging, predicting a tag at a 
time with Hamming loss?
○ YES

● In machine translation predicting a 
word at a time with BLEU score?
○ NO

BLEU score doesn’t decompose over the 
actions defined by the transition system 

Loss and decomposability



● Incremental structured prediction can be viewed as (degenerate) RL:
○ No environment dynamics
○ No need to worry about physical costs (e.g. robots damaged)

Reinforcement learning

Sutton and Barto (2018) 

http://incompleteideas.net/book/the-book.html


We can now do our stochastic gradient (ascent) updates:

We want to optimize this objective (per instance):

● task level loss to min is the value υ to max
● θ are the parameters of the policy (classifier) 

Policy gradient

What could go wrong?



To obtain training signal we need complete trajectories
● Can sample (REINFORCE) but inefficient in large search spaces
● High variance when many actions are needed to reach the end (credit 

assignment problem)
● Can learn a function to evaluate at the action level (actor-critic)

In NLP, often the models are trained initially in the standard supervised way and 
then fine-tuned with RL
● Hard to tune the balance between the two
● Takes away some of the benefits of RL

Reinforcement learning is hard...



Imitation learning

● Both reinforcement and imitation learning learn a 
classifier/policy to maximize reward

● Learning in imitation learning is facilitated by an expert



Only available for the training data: an expert 
demonstrating how to perform the task

Returns the best action at the current state by looking at the gold standard assuming 
future actions are also optimal:

Expert policy



Imitation learning in a nutshell

● First iteration trained on expert, later ones increasingly use the trained model
● Exploring one-step deviations from the rollin of the classifier

Chang et al. (2015)

https://arxiv.org/abs/1502.02206


Imitation learning is hard too!

● Defining a good expert is difficult
○ How to know all possible correct next words to add given a partial 

translation and a gold standard? 
○ Without a better than random expert, we are back to RL
○ ACL 2019 best paper award was about a decent expert for MT

● While expert demonstrations make learning more efficient, it is still difficult 
to handle large numbers of actions

● Iterative training can be computationally expensive with large dataset
● The interaction between learning the feature extraction and learning the 

policy/classifier is not well understood in the context of RNNs



● Kai Zhao’s survey
● Noah Smith’s book
● Sutton and Barton Reinforcement learning book
● Imitation learning tutorial

Bibliography

https://www.gc.cuny.edu/CUNY_GC/media/Computer-Science/Student%20Presentations/Kai%20Zhao/Second_Exam_Survey_Kai_Zhao_12_11_2014.pdf
http://www.cs.cmu.edu/~nasmith/LSP/
http://incompleteideas.net/book/the-book.html
https://sheffieldnlp.github.io/ImitationLearningTutorialEACL2017/

