
L101: Optimization fundamentals

Previous lecture

Supervised machine learning algorithms typically involve optimizing a loss over the
training data:

Logistic regression parameter learning:

This is an instance of numerical optimization, i.e. optimize the value of a function
with respect to some parameters.

A scientific field of its own; this lecture just gives some useful pointers

Types of optimization problems

Constraints:

Continuous:

Discrete:

Sounds rare in NLP?
Inference in classification/structured prediction: a label is either applied or not

Examples: SVM parameter training, enforcing constraints on the output graph

Convexity

http://en.wikipedia.org/wiki/Convex_set,
http://en.wikipedia.org/wiki/Convex_function

For sets:

For functions:
If f concave, -f is
convex
For sets the
relation is more
complicated

https://en.wikipedia.org/wiki/Convex_set
https://en.wikipedia.org/wiki/Convex_function

Taylor’s theorem
For a function f that is continuously differentiable, there is t such that:

If twice differentiable:

● Given value and gradients, can approximate function elsewhere
● Higher degree gradient, better approximation

Types of optimization algorithms

● Line search

● Trust region

● Gradient free

● Constrained optimization

Line search
At the current solution xk, pick a descent direction first pk, then find a stepsize α:

General definition of direction:

and calculate the next solution:

Gradient descent:

Newton method (assuming f twice
differentiable and Bk invertible):

Gradient descent (for supervised MLE training)

To make it stochastic, just look at one training example in each iteration and go over
each of them. Why is this a good idea?

What can go wrong?

Gradient descent
Wrong step size:

Line search converges to the minimizer when the iterates follow the Wolfe
conditions on sufficient decrease and curvature (Zoutendijk’s theorem)

https://srdas.github.io/DLBook/GradientDescentTechniques.html

Back tracking: start with a large stepsize and reduce it to get sufficient decrease
Stochastic: noisy gradients (a single datapoint might be misleading)

https://srdas.github.io/DLBook/GradientDescentTechniques.html

Second order methods
Using the Hessian (line search Newton’s method):

Expensive to compute. Can we approximate?

Yes, based on the first order gradients:

BFGS calculates Bk+1
-1 directly without moving too far from Bk

-1

What is a good optimization algorithm?
Fast convergence:
● Few iterations

○ Stochastic gradient descent will have more than standard gradient descent
● Cheap iterations; what makes them expensive?

○ Function evaluations for backtracking with line search (this is the reason
for researching adaptive learning rates)

○ (approximate) second order gradients

Memory requirements? Storing second order gradients requires |w|2. One of the key
variants of BFGS is L(imited memory)-BFGS.

One can learn the updates: Learning to learn gradient descent by gradient descent

https://arxiv.org/abs/1606.04474

Trust region

Assuming an approximation m to the function f we are minimizing:

Given a radius Δ (max stepsize, trust region), choose a direction p such that:

Taylor’s theorem:

Measuring trust:

Trust region

Worth considering
with relatively few
dimensions.

Recent success in
reinforcement
learning

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477

Gradient free
What if we don’t have/want gradients?
● Function is a black box to us, can only test values
● Gradients too expensive/complicated to calculate, e.g.: hyperparameter

optimization

Two large families:
● Model-based (similar to trust region but without gradients for the

approximation model)
● Sampling solutions according to some heuristic

○ Nelder-Mead
○ Evolutionary/genetic algorithms, particle swarm optimization

Bayesian Optimization

● Model approximation
based on Gaussian
Process regression

● Acquisition function
tells us where to
sample next

Frazier (2018)

https://arxiv.org/pdf/1807.02811.pdf

Constraints

Minimizing the Lagrangian function converts it to unconstrained optimization (for
equality constraints, for inequalities it is slightly more involved):

Reminder:

Example:

Overfitting
A function (separating hyperplane) The training data

https://en.wikipedia.org/wiki/Overfitting#Machine_learning

https://en.wikipedia.org/wiki/Overfitting#Machine_learning

Regularization
We want to optimize the function/fit the data but not too much:

Some options for the regularizer:
● L2: Σw2

● L1 (Lasso): Σ|w|
● Ridge: L1+L2
● L-infinity: max(w)

Words of caution
Sometimes we are saved from overfitting by not optimizing well enough

There is often a discrepancy between loss and evaluation objective; often the latter
are not differentiable (e.g. BLEU scores)

Check your objectives if it tells you the right thing: optimizing less aggressively and
getting better generalization is OK, having to optimize badly to get results is not.

Construct toy problems: if you have a good initial set of weights, does your
optimizing the objective leave them unchanged?

Harder cases
● Non-convex
● Non-smooth

Saddle points: zero gradient is a first
order necessary condition, not sufficient

https://en.wikipedia.org/wiki/Saddle_point

https://en.wikipedia.org/wiki/Saddle_point

● Numerical Optimization, Nocedal and Wright, 2002. (uncited images from
there) https://www.springer.com/gb/book/9780387303031

● On integer (linear) programming in NLP:
https://ilpinference.github.io/eacl2017/

● Francisco Orabona’s blog: https://parameterfree.com
● Dan Klein’s Lagrange Multipliers without Permanent Scarring

Bibliography

https://www.springer.com/gb/book/9780387303031
https://ilpinference.github.io/eacl2017/
https://parameterfree.com
https://people.eecs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf

