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Lecture 7 (Joint and Marginal Distributions)

1. Let X and Y be a pair of random variables with joint distribution function FX,Y = F . Prove
that for any a, b, c, d ∈ R such that a < b and c < d,

P [ a 6 X 6 b, c 6 Y 6 d ] = F (b, d) + F (a, c)− F (a, d)− F (b, c).

2. Let X and Y be two random variables with joint distribution function

FX,Y (x, y) =

{
1− e−x − e−y + e−x−y if x, y > 0,

0 otherwise.

Compute the marginal distribution function of X and Y , FX(x) and FY (y), and their density.
What can you conclude about the random variables X and Y ?

3. Related to the example about an urn containing balls numbered 1, 2, . . . , N (Slide 7), consider
instead the process of drawing n 6 N balls without replacement from an urn that contains m
red balls and N −m blue balls. Compute the marginal distribution of Xi, where Xi ∈ {0, 1}
indicates whether the i-th drawn ball is red. What does the result imply for the expected
number of red balls drawn?

4. Prove the alternative formula for the covariance, i.e., Cov [X,Y ] = E [X · Y ]−E [X ] ·E [Y ]
(Slide 16).

5. Prove the general form of the Variance of Sum Formula (Slide 19): For any random variables
X1, X2, . . . , Xn:

V

[
n∑

i=1

Xi

]
=

n∑
i=1

V [Xi ] + 2 ·
n∑

i=1

n∑
j=i+1

Cov [Xi, Xj ] .

6. Let X and Y be two random variables with covariance Cov [X,Y ]. How does the covariance
change if we instead take X ′ := α ·X and Y ′ := β · Y , and consider Cov [X ′, Y ′ ]? (cf. Slide
21)

7. Proof that the correlation coefficient is scaling-invariant (dimension-less) (Slide 22).

8. Complete the proof that the range of the correlation coefficient is in [−1, 1] (Slide 23).
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9. Look up the definition of pairwise independence, and construct three random variables X,Y
and Z so that any pair of them is pairwise independent, but the three variables are not
independent. (Remark: to emphasise the difference between independence and pairwise in-
dependence, some sources use the term “mutual independence”.)

Lecture 8–9 (Markov, Chebyshev, Weak Law of Large Numbers,
Central Limit Theorem

1. Compute the density function of X1 + X2 + X3, where the Xi’s are independent random
variables with a continuous uniform distribution over [0, 1]. (Extension: Can you generalise
your result to the sum of n > 3 random variables?)

2. Prove Markov’s inequality. (Hint: This follows the lines of the proof of Chebyshev’s inequality
in the lecture notes.)

3. Give a proof of Chebyshev’s inequality that employs Markov’s inequality.

4. What are the differences between the Weak Law of Large Numbers and the Central Limit
Theorem? (a bit tricky and open-ended:) Can you use the CLT (directly) to deduce the Weak
Law of Large Numbers?

5. Let X1, X2, . . . , Xn be a sequence of i.i.d. random variables with mean µ and finite variance σ2.

Applying the CLT to
∑n/2

i=1Xi,
∑n

i=n/2+1Xi and
∑n

i=1Xi (after proper scaling and shifting),
which property of the standard normal distribution N(0, 1) can you deduce?

6. Consider throwing a fair, six-sided die 1000 times, and let Y ∈ {1, . . . , 1000} be the number
of times a six occurs. Use the central limit theorem to find values a and b such that

P [ 100 6 Y 6 200 ] ≈
∫ b

a

1√
2π
e−

1
2
x2
dx.

7. For the example on multiple-choice exam questions (Slide 25), apply the Central Limit The-
orem to P [

∑n
i=1Ri > 5.5 ].

8. This question is related to the example loading a container with packets (Slide 26). Also here,
we assume that the packets have weights drawn independently from a Exp(1/2) distribution.

• How large must the capacity of the container be so that we can at least store 40 packets
with .99 probability?

• Optional: Try to explain how this type of application of the CLT differs from the one
on Slide 25 and on Slide 26.

9. Argue why the distribution Cau(2, 1) has no expectation and no variance.

10. Let X1, X2, . . . , Xn be independent samples from the Cau(2, 1) distribution. Give a justi-
fication why the average Xn does not converge. Hint: Exploit the fact that the sum of
independent Cauchy distributions is again a Cauchy distribution.

Lecture 10 (Statistics and Estimators)

1. (updated.) You model the time that you are spending each week on this course as independent
samples from an exponential distribution with unknown parameter λ. After 4 weeks, you

2



record 2, 5, 4, 4 hours. Estimate (λ) 1/λ by using an unbiased estimator applied to this data
set.

2. Compute the Mean-Squared-Error for the sample meanXn = 1
n ·
∑n

i=1Xi, whereX1, X2, . . . , Xn

are i.i.d. samples from some distribution.

3. Let X be a single sample from a Binomial distribution Bin(n, p). In each of the following
four cases, decide whether there exists an unbiased estimator and justify your answer.

a) Assume n is known, but p is unknown and we would like to estimate p.

b) Assume p is known, but n is unknown and we would like to estimate n.

c) Assume n and p ∈ (0, 1) are both unknown, and we would like to estimate n+ p.

d) Assume n and p are both unknown, and we would like to estimate n · p.

4. Let X be a single sample from a Bernoulli distribution Ber(p), where p is unknown. Can you
find an unbiased estimator for p2? Justify your answer.

5. Let X1, X2, . . . , be a sequence of independent and identically distributed samples from the
discrete uniform distribution over {1, 2, . . . , N}. Let Z := min {i > 1: Xi = Xi+1}. Compute
E [Z ] and E

[
(Z −N)2

]
. How can you obtain an unbiased estimator for N?

6. Prove the Mean Squared Error decomposition formula (Slide 27).

7. Let X1, X2, . . . , Xn be n i.i.d. samples from a normal distribution N(µ, σ2), where µ is un-
known but σ is known.

a) Prove that Z1 = X1, Z2 = Xn and Z3 = (Z1 + Z2)/2 are all unbiased estimators.

b) Which of the three estimators would you choose?

8. Consider the following modification of the problem of estimating the population size (Slide
21). Instead of sampling without replacement, we sample with replacement. What is the
expected number of items we need to sample until we have seen k different IDs ((so that we
can to then apply the estimators from the lectures)?

9. Prove the Cauchy-Schwartz Inequality for random variables X and Y :

|E [X · Y ] | 6
√

E [X2 ]E [Y 2 ].

10. Let X be a random variable such that µ = E [X ] = 1/2 and V [X ] = 1. What can you
deduce about E [ ln(2X) ]?

11. (a bit tricky). Let X be a random variable with expectation µ, variance σ2 and median m.
Prove that |µ−m| 6 σ.

Lecture 11-12 (Algorithms and Applications)

1. (Birthday problem) Let X count the number of collisions among k independent samples from
a discrete uniform distribution over {1, 2, . . . , n}.

a) What is E [X ]?

b) Prove that P [X > 0 ] ≈ 1− exp
(
−
(
k
2

)
· 1n
)

.

3



c) Describe how this could be used to obtain an estimator for the population size? (Your
estimator does not need to be unbiased) (see Slide 9 of Lecture 11)

2. Prove that E [Y ] = ‖p‖22 (see Slide 9 or 11).

3. Prove that the set of random variables σi,j are not pairwise independent (Slide 10/11 of
Lecture 11).

4. Prove formally that any testing algorithm in this model must have a two-sided error (Slide
13 of Lecture 11).

5. What is the expected number of local maxima in the secretary problem for n candidates
(see Slide 6 of Lecture 12)? (a bit trickier:) Based on this result, suggest an algorithm that
outperforms the primitive approach on Slide 7.

6. Prove that if X1, X2, . . . , Xn are n independent samples from the continuous uniform distri-
bution Uni[0, 1], then for Z := max{X1, X2, . . . , Xn} it holds that E [Z ] = n

n+1 .

7. Assume n = 4 in the secretary problem, and for any 1 6 k 6 4 consider the strategy that
accepts the first candidate that is better than the previous k−1 candidates. For each possible
value of k, compute the probability of hiring the best candidate.

8. (a bit tricky). Consider the secretary problem and let I1, I2, . . . , In be the n random variables
where Ij = 1 if and only the j-th candidate is the best among the first j candidates. Prove
that these n random variables are independent.

9. (challenging.) The Parking Problem. You are driving along an infinite street toward your
destination, the theatre. There are parking places along the street but most of them are
taken. You want to park as close to the theatre as possible but you are not allowed to turn
around. If you see an empty parking place at a distance d before the theatre, should you take
it or not?

More specifically, assume you start at point 0 and we have a sequenceX0, X1, X2, . . . indicating
whether each parking place j = 0, 1, 2, . . . is filled or not. Each Xj is an independent Bernoulli
random variable with parameter p. By T we denote the (known) place of the theatre. The
goal is to minimise |T − τ |, where τ is place where you have parked your car.
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