
Exercise Problems 5–8: Information Theory

Exercise 5

(a) An error-correcting (7/4) Hamming code combines four data bits b3, b5, b6, b7 with three
error-correcting bits: b1 = b3 ⊕ b5 ⊕ b7, b2 = b3 ⊕ b6 ⊕ b7, and b4 = b5 ⊕ b6 ⊕ b7. The 7-bit
block is then sent through a noisy channel, which corrupts one of the seven bits. The following
incorrect bit pattern is received:

b1 b2 b3 b4 b5 b6 b7

1 1 0 1 0 0 0

Evaluate three syndromes that can be derived upon reception of this corrupted 7-bit block:
s1 = b1⊕ b3⊕ b5⊕ b7, s2 = b2⊕ b3⊕ b6⊕ b7, s4 = b4⊕ b5⊕ b6⊕ b7, and provide the corrected
7-bit block that was the original input to this noisy channel.

(b) Consider a binary symmetric channel with error probability p that any bit may be flipped.
Two possible error-correcting coding schemes are available: Hamming, or simple repetition.

(i) Without any error-correcting coding scheme in place, state all the conditions that
would maximise the channel capacity. Include conditions on the error probability p and
also on the probability distribution of the binary source input symbols.

(ii) If a (7/4) Hamming code is used to deliver error correction for up to one flipped bit
in any block of seven bits, provide an expression for the residual error probability Pe that
such a scheme would fail.

(iii) If repetition were used to try to achieve error correction by repeating every message an
odd number of times N = 2m+1, for some integer m followed by majority voting, provide
an expression for the residual error probability Pe that the repetition scheme would fail.

1



Exercise 6

(a) What class of continuous signals has the greatest possible entropy for a given variance (i.e.
power level)? What probability density function describes the excursions taken by such signals
from their mean value?

(b) What does the Fourier power spectrum of this class of signals look like?

(c) Consider a noisy continuous communication channel of bandwidth W = 1 MHz, which is
perturbed by additive white Gaussian noise whose total spectral power is N0W = 1. Continuous
signals are transmitted across such a channel, with average transmitted power P = 1,000. Give
a numerical estimate for the channel capacity, in bits per second, of this noisy channel. Then,
for a channel having the same bandwidth W but whose signal-to-noise ratio P

N0W
is four times

better, repeat your numerical estimate of capacity in bits per second.

(d) Suppose that for such a continuous channel with added white Gaussian noise, the ratio of
signal power to noise power is given as 30 decibels, and the frequency bandwidth W of this
channel is 10 MHz. Roughly what is the information capacity C of this channel, in bits/second?

(e) With no constraints on the parameters of such a channel, is there any limit to its capacity

if you increase its signal-to-noise ratio
P

N0W
without limit? If so, what is that limit?

(f ) Is there any limit to the capacity of such a channel if you can increase its spectral bandwidth
W (in Hertz) without limit, while not changing N0 or P? If so, what is that limit?

Exercise 7

Shannon’s Noisy Channel Coding Theorem showed how the capacity C of a continuous commu-
nication channel is limited by added white Gaussian noise; but other colours of noise are available.
Among the “power-law” noise profiles shown in the figure as a function of frequency ω, Brownian
noise has power that attenuates as ( ω

ω0
)−2, and pink noise as ( ω

ω0
)−1, above some minimum ω0.
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Consider three channels suffering from either white, pink, or Brownian noise. At frequency ω = ω0

all three channels have the same signal-to-noise ratio SNR(ω0) and it remains at this level for the
white channel, but at higher frequencies ω it improves as ( ω

ω0
) for the pink channel and as ( ω

ω0
)2 for

the Brownian channel. Show that across any frequency band [ω1, ω2] (ω0 < ω1 < ω2) the Brownian
and the pink noise channels have higher capacity than the white noise channel, and show that as
frequency grows large the Brownian channel capacity approaches twice that of the pink channel.

Exercise 8

(a) An inner product space V is spanned by an orthonormal system of vectors {e1, e2, . . . , en}
so that ∀i 6= j the inner product 〈ei, ej〉 = 0, but every ei is a unit vector so that 〈ei, ei〉 = 1.
We wish to represent a data set consisting of vectors u ∈ span{e1, e2, . . . , en} in this space as a

linear combination of the orthonormal vectors: u =
n∑

i=1

aiei. Derive how the coefficients ai can

be determined for any vector u, and comment on the computational advantage of representing
the data in an orthonormal system.

(b) An inner product space containing complex functions f(x) and g(x) is spanned by a set of
orthonormal basis functions {ei}. Complex coefficients {αi} and {βi} therefore exist such that
f(x) =

∑
i

αiei(x) and g(x) =
∑
i

βiei(x).

Show that the inner product 〈f, g〉 =
∑
i

αiβi .

(c) Consider a noiseless analog communication channel whose bandwidth is 10,000 Hertz. A
signal of duration 1 second is received over such a channel. We wish to represent this continuous
signal exactly, at all points in its one-second duration, using just a finite list of real numbers
obtained by sampling the values of the signal at discrete, periodic points in time. What is
the length of the shortest list of such discrete samples required in order to guarantee that we
capture all of the information in the signal and can recover it exactly from this list of samples?

(d) Name, define algebraically, and sketch a plot of the function you would need to use in order
to recover completely the continuous signal transmitted, using just such a finite list of discrete
periodic samples of it.

(e) Explain why smoothing a signal, by low-pass filtering it before sampling it, can prevent
aliasing. Explain aliasing by a picture in the Fourier domain, and also show in the picture how
smoothing solves the problem. What would be the most effective low-pass filter to use for this
purpose? Draw its spectral sensitivity.

(f ) If a continuous signal f(t) is modulated by multiplying it with a complex exponential wave
exp(iωt) whose frequency is ω, what happens to the Fourier spectrum of the signal?

Name a very important practical application of this principle, and explain why modulation
is a useful operation. How can the original Fourier spectrum later be recovered?
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