Acknowledgements

Hoare Logic and Model Checking

These slides are heavily based on previous versions by Mike
Gordon, Alan Mycroft, and Kasper Svendsen.

. _ Thanks to Julia Bibik, Mistral Contrastin, Craig Ferguson, Victor
Jean Pichon-Pharabod jp622

University of Cambridge Gomes, Joe lIsaacs, Hrutvik Kanabar, Neel Krishnaswami, Dylan

McDermott, lan Orton, Peter Rugg, Peter Sewell, Ben Simner,
CST Part Il - 2019,/2020 Domagoj Stolfa, Ross Tooley, and Conrad Watt for remarks and
reporting mistakes.

Motivation Background
We often fail to write programs that meet our expectations, which There are many verification & validation techniques of varying
we phrased in their specifications: coverage, expressivity, level of automation, ..., for example:

e we fail to write programs that meet their specification;

e we fail to write specifications that meet our expectations. automation coverage:
Addressing the former issue is called verification, and addressing - complete
the latter is called validation. 7777 bounded

program

E sparse
< » specification ¢<————— | desired goal program
C verification validation operational
. reasoning
In practice, verification and validation feed back into each other.

5 eXpressiVity (of safety properties)

Choice of technique

More expressive and complete techniques lead to more confidence.

It is important to choose the right set of verification & validation
techniques for the task at hand:

e verification can be very expensive and time-consuming.

e verified designs may still not work;

e verification can give a false sense of security;

More heavyweight techniques should be used together with testing,
not as a replacement.

Hoare logic

Course structure

This course is about two techniques, their underlying ideas, how to
use them, and why they are correct:

e Hoare logic (Lectures 1-6);

e Model checking (Lectures 7-12).

These are not just techniques, but also ways of thinking about
programs.

Lecture plan

Lecture 1: Informal introduction to Hoare logic

Lecture 2: Examples, loop invariants, and mechanisation
Lecture 3: Formal semantics and properties of Hoare logic
Lecture 4: Introduction to separation logic

Lecture 5: Verifying abstract data types in separation logic

Lecture 6: Extending Hoare logic

Hoare logic Partial correctness triples

Hoare logic uses partial correctness triples (also “Hoare triples”)
Hoare logic is a formalism for relating the initial and terminal for specifying and reasoning about the behaviour of programs:
state of a program.
{P} C{@}
Hoare logic was invented in 1969 by Tony Hoare, inspired by earlier
work of Robert Floyd.
There was little-known prior work by Alan Turing in 1949.

is a logical statement about a command C,
where P and @ are state predicates:

e P is called the precondition, and describes the initial state;

Hoare logic is still an active area of research.) .. .)
g e @ is called the postcondition, and describes the terminal state.

Components of a Hoare logic

To define a Hoare logic, we need four main components:

e the programming language that we want to reason about:
its syntax and dynamic (e.g. operational) semantics;

The WHILE language

e an assertion language for defining state predicates:

its syntax and an interpretation;
e an interpretation of Hoare triples;

e a (sound) syntactic proof system for deriving Hoare triples.

This lecture will introduce each component informally.
In the coming lectures, we will cover the formal details.

Commands of the WHILE language

WHILE is the prototypical imperative language. Programs consist
of commands, which include branching, iteration, and assignment:
C == skip

| GG

| X:=E

| if B then G else &
| while Bdo C

Here, X is a variable, E is an arithmetic expression, which
evaluates to an integer, and B is a boolean expression, which
evaluates to a boolean.

States are mappings from variables to integers, Var — Z.

Assertions and specifications

10

Expressions of the WHILE language

The grammar for arithmetic expressions and boolean expressions
includes the usual arithmetic operations and comparison operators,
respectively:

E = N | X | BE+E arithmetic expressions
El—Ez | E1><E2 |

B = T|F | =5 boolean expressions
| EB<BEB|EB>E]|--

Expressions do not have side effects.

The assertion language

Assertions (also “state predicates”) P, Q,... include boolean
expressions (which can contain variables), combined using the
usual logical operators: A, V, =, =, V, 3, ...

For instance, the predicate X = Y + 1 A Y > 0 describes states in
which the variable Y contains a positive value, and variable X
contains a value that is is equal to the value that Y contains

plus 1.

11

12

Informal semantics of partial correctness triples

The partial correctness triple {P} C {Q} holds semantically,
written = {P} C {Q}, if and only if:

e assuming C is executed in an initial state satisfying P,
e and assuming moreover that this execution terminates,

e then the terminal state of the execution satisfies Q.
For instance,

o ={X =1} X :=X+1{X =2} holds;
o ={X =1} X:=X+1{X =3} does not hold.

Examples of specifications

13

Partial correctness

Partial correctness triples are called partial because they only
specify the intended behaviour of terminating executions.

= {X =1} while X >0do X :=X+1{X =0}
holds, because the given program never terminates when executed

For instance,
from an initial state where X is 1.

Later, we will see that it is also possible to have total correctness
triples that strengthen partial correctness triples to require

termination.

14

Corner cases of partial correctness triples

{1} c{e}

e this says nothing about the behaviour of C,
because L never holds for any initial state.

{T} Cc{Q}
e this says that whenever C halts, Q holds.

{P} C{T}

e this holds for every precondition P and command C,

because T always holds in the terminate state.

15

The need for auxiliary variables

How can we specify that a program C computes the maximum of
two variables X and Y/, and stores the result in a variable Z7

Is this a good specification for C?

(TIC{X<Y=Z=Y)A(Y <X=Z=X)}

No! Take C to be
X:=0,Y:=0,Z2:=0
Then C satisfies the above specification!

The postcondition should refer to the initial values of X and Y.

16

Using auxiliary variables

The previous specification still allows C to change X and Y, which
may not be what we want. We can prevent that with

{X:x/\Y:y}C{X_XAY_yA }

x<y=Z=y)AN(y<x=27Z=x)

Using auxiliary variables, we can express that if C terminates, then
it exchanges the values of variables X and Y:

{X=xANY =y} C{X=yANY =x}

18

Auxiliary variables

In Hoare logic, we use auxiliary variables (also “ghost variables”,
or “logical variables”), which are not allowed to occur in the
program, to refer to the initial values of variables in postconditions.
We call the variables that can occur in programs program
variables.

Notation: program variables are uppercase, and auxiliary variables

are lowercase.

Using auxiliary variables, we can specify C with
{X=xANY=y} C{x<y=Z=y)AN(y<x=Z=x)}

Examples of partial correctness triples

C computes the Euclidian division of X by Y into Q and R:

{X=xANY=yAx>0Ay>0} C{x=Qxy+RAO<R<y}

C tests whether P is prime:

(R=0=3q,r-g>1Ar>1Ap=qgxr)A

P=pAp>0}C
Fepnp=0 {(R—1=>Vq,r.q>1Ar>1:>p7éqxr)

17

19

}

Formal proof system for Hoare logic

Inference rule schemas

The inference rule schemas of Hoare logic will be specified as
follows:

S - FS,
S

This expresses that S may be deduced from assumptions Sy, ..

These are schemas that may contain meta-variables.

. Sn.

Hoare logic

We will now introduce a natural deduction proof system for partial
correctness triples due to Tony Hoare.

The logic consists of a set of inference rule schemas for deriving
consequences from premises.

If S is a statement, we will write = S to mean that the statement
S is derivable. We will have two derivability judgements:

e ., P, for derivability of assertions; and

e - {P} C {Q}, for derivability of partial correctness triples.

20

Proof trees

A proof tree for = S in Hoare logic is a tree with = S at the root,
constructed using the inference rules of Hoare logic, where all
nodes are shown to be derivable (so leaves require no further
derivations):

F S F S
F S3 Sy
FS

We typically write proof trees with the root at the bottom.

21 22

Formal proof system for Hoare logic

F {P} skip {P} FA{P[E/X]} X .= E {P}

F{PYG QR F{Q} G {R}
F{P} Ci; & {R}

F{PAB} G {Q} F{PA-B} G{Q}
F{P} if B then C; else ; {Q}

-{PAB} C{P}
- {P} while B do C {P A B}

|_FOL P1:>P2 }_{P2} C{Q2} l_FOL 02:>Ql

F{P1} C {Q}

23
The assignment rule
F{PIE/X]} X := E {P}
Here, P[E/X] means the assertion P with the expression E
substituted for all occurrences of the variable X.
For instance,
F{X+1=2} X:=X+1{X=2}
F{Y+X=Y+10} X =Y+ X {X=Y+10}
25

The skip rule

F {P} skip {P}

&

The skip rule expresses that any assertion that holds before skip is
executed also holds afterwards.

P is a meta-variable ranging over an arbitrary state predicate.

For instance, F {X = 1} skip {X = 1}.

The rule of consequence

Fro P = Po }_{PZ}C{Q2}

F{P1} C {Q}

'_FOL Q2 = Ql

&

The rule of consequence allows us to strengthen preconditions and
weaken postconditions.

Note: the ., P = @ hypotheses are a different kind of judgment.

For instance, from H {X +1=2} X := X +1 {X =2},
we can deduce - {X =1} X=X +1{X =2}.

24

26

Sequential composition

F{P} G {Q} H{Q} G{R}
[{P} C]_; C2 {R}

&

If the postcondition of C; matches the precondition of G,
we can derive a specification for their sequential composition.

For example, if we have deduced:

e HF{X=1} X:=X+1{X =2} and
o H{X =2} X:=Xx2{X=4}

we may deduce F {X =1} X =X+ 1, X =X x 2 {X =4}.

The loop rule

-{PAB} C{P}
- {P} while B do C {P A B}

&

The loop rule says that

e if P is an invariant of the loop body when the loop condition
succeeds, then P is an invariant for the whole loop, and
e if the loop terminates, then the loop condition failed.

We will return to be problem of finding loop invariants.

29

The conditional rule

F{PAB} G {Q} F{PA-B} G {Q}
F{P} if B then C; else ; {Q}

&

For instance, to prove that
F{T}ifX>Ythen Z:=Xelse Z:=Y {Z=max(X,Y)}

it suffices to prove that - {TAX > Y} Z := X {Z = max(X, Y)}
and F{TA=(X>Y)} Z:=Y {Z=max(X,Y)}.

Example

28

Example: integer square root algorithm

We can use these rules to verify a very inefficient integer square
root algorithm:

{X=xAx>0}
S=0;while (§+1)x(§+1)<XdoS:=S5+1
{SXxS<xAx<(S+1)x(S5+1)}

30

The assignment rule

The assignment rule reads right-to-left; could we use another rule

that reads more easily?

Consider the following plausible alternative assignment rule:

F{P} X :=E {P[E/X]}

We can instantiate this rule to obtain the following triple, which
does not hold:

F{X=0}X:=1{1=0}

32

Example: integer square root algorithm

We can use the following invariant:

X=xAx>0ANSxS5<x

Not very practical... we will see how to fix that in the next lecture.

Conclusion

31

Applications

e Facebook’s bug-finding Infer tool:
http://fbinfer.com/

e The Rust programming language:
https://www.rust-lang.org/

e Verification of the selL.4 microkernel assembly:

https://entropy2018.sciencesconf.org/data/myreen.pdf

Summary

Hoare logic is a formalism for reasoning about the behaviour of

programs by relating their initial and terminal state.

It uses an assertion logic based on first-order logic to reason about
program states, and defines Hoare triples on top of it to reason

about the programs.

In the next lecture, we will use Hoare logic to reason about

example programs.

33

35

Tools

e For Hoare Logic:
e Why3 http://why3.1lri.fr/
Sedgewick in Why3:
http://pauillac.inria.fr/~levy/why3/index.html
e Boogie https://github.com/boogie-org/boogie

e For separation logic:
o VeriFast https://github.com/verifast/verifast
e The Iris higher-order concurrent separation logic framework,
implemented and verified in a proof assistant:
http://iris-project.org/

Papers of historical interest

e C. A. R. Hoare. An axiomatic basis for computer
programming. 1969.

e R. W. Floyd. Assigning meanings to programs. 1967.
e A. M. Turing. Checking a large routine. 1949.

34

36

Recap

Hoare logic

Lecture 2: Examples in Hoare logic In the previous lecture, we introduced Hoare logic, which uses
Hoare triples to specify the behaviour of imperative programs by
relating the initial state of a program with its terminate state.

Jean Pichon-Pharabod jp622

University of Cambridge Today, we will use Hoare logic to specify and verify some simple

programs.

CST Part Il —2019/2020

Proof outlines

Derivations in Hoare logic are often more readable when given as
proof outlines instead of proof trees. A proof outline of a
command is an annotation of the command with the pre- and

postcondition of each sub-command. ..

Proof outlines Instead of writing
T F{X+1)x2=4} X:=X+1{Xx2=4} F{Xx2=4} X =X x2{X =4}
FIX+1)x2=4} X =X+ 1L, X =X x2 {X =4}

we can write

{(X+1)x2=4}

X =X+1;
{X x2=14}
X =X x2

x =4}

Proof outlines Proof outline for the integer square root

...and where sequences of assertions indicate uses of the rule of

consequence. We elide sides of the rule of consequence that do not {X=xAx2>0}
change the assertion. We also elide (but need to check!) the {X=xAx>0A0x0<x}
derivations of implications between assertions. $:=0;

{X=xAx>0A5xS5<x}

while (S+1)x (S+1) < X do
{X=xAx>0ASxS<xAN(S+1)x(S54+1) <X}
{X=xAx>0A(S5+1)x(5+1) <x}

Instead of writing

Foa X=1=X+1=2 F{X+1=2}X:=X+1{X=2} FpX=2=X=2
F{X=1} X:=X+1{X=2}

we can write S$=5+1
{X=xAx>0ANSxS5<x}
X =1} (X=xAXx>0ASxS<xA~((S+1)x(S+1) < X)}
X+1=2} (X=xASxS<xAx<(S+1)x(S+1)}
X =X+1
{X =2}

Specifying a program computing factorial

We wish to verify that the following command computes the

factorial of X, and stores the result in Y:
while X #0do (Y ==Y x X; X =X —1)

Factorial First, we need to formalise the specification:

e Factorial is only defined for non-negative numbers,

so X should be non-negative in the initial state.

e The terminal state of Y should be equal to the factorial of the
initial state of X.

e The implementation assumes that Y is equal to 1 initially.

A specification of a program computing factorial

This corresponds to the following partial correctness triple:

{X=xAX>20AY =1}
while X Z0do (Y :=Y x X; X := X — 1)
{Y =x!}

Here, ‘I" denotes the usual mathematical factorial function.

Note that we used an auxiliary variable x to record the initial value
of X and relate the terminal value of Y with the initial value of X.

Analysing the factorial implementation

{X=xAX>0AY =1}
while X #0do (Y := Y x X; X := X — 1)
{Y =x!}

How does this program work? 2

How does one find a good invariant?

F{PAB} C {P}

b P =P+ {P}while Bdo C {PA—-B} Fu PA=B=Q

F {P’} while B do C {Q/}
Here, P is an invariant, meaning that it

e must hold initially;

e must be preserved by the loop body when B is true; and

Moreover, to be useful, it must imply the desired postcondition
when B is false.

Observations about the factorial implementation

(X=xAX>0AY =1}
while X £0do (Y := Y x X; X := X — 1)

{Y =x!}

iteration | Y X
0 1 X
1 1xx x—1
2 1xxx(x—1) x—2
3 Ixxx(x—1)x(x—2) x—3
X Ixxx(x—1)x(x=2)x---x1 0

Y is the value computed so far, and X! remains to be computed.

An invariant for the factorial implementation Proof outline for the implementation of factorial

{X=xAX>0ANY =1}
{Y x X! =xI A X >0}

while X # 0 do
{X=xAX>0ANY =1} {Y x XI=xINX>0AX #0}
while X #0do (Y := Y x X; X := X — 1) {(Y xX)x (X =1 =xIA(X—1) >0}
{Y =x!} Y =Y xX;

Y x (X—1)l=xIA(X—1)>0
Take / to be Y x X! = x! A X > 0. {Yx(X=Dr=xIn(X-1)>0}

(We need X > 0 for X! to make sense.) e X=X-1
(Y x X1 = xI A X > 0})

{Y xXI=xIAX>0A—(X#0)}

{Y =x!}
10 11

A verified Fibonacci implementation

We wish to verify that the following command computes the N-th
Fibonacci number (indexed from 1), and stores the result in Y.
This corresponds to the following partial correctness Hoare triple:

{1<NAN=nR}

. . X =0;
Fibonacci Y = 1.
Z :=1;

while Z < N do
(Y =X4+Y, X=Y-X,Z:=2Z2+1)
{Y = fib(n)}
Recall that the Fibonacci sequence is defined by
fib(1) =1, fib(2) =1, ¥n> 2.fib(n) = fib(n— 1)+ fib(n — 2)

Moreover, for convenience, we assume fib(0) = 0. 1

A verified Fibonacci implementation

Reasoning about the initial assignment of constants is easy.

How can we verify the loop?

{X=0ANY=1IANZ=1AN1<NAN=n}
while Z < N do

(Y =X+Y; X=Y-X,Z2:=2Z2+1)
{Y = fib(n)}

First, we need to understand the implementation.

Analysing the implementation of Fibonacci

{X=0ANY=1AZ=1A1<NAN=n}
while Z < N do
(Y =X+Y, X =Y-X,Z:=2+1)
{¥ = fib(n)}
Z is used to count loop iterations, and Y and X are used to
compute the Fibonacci number:

Y contains the current Fibonacci number,
and X contains the previous Fibonacci number.

This suggests trying the invariant
Y =1fib(Z)ANX = fib(Z —1)NZ > 0.
(We need Z > 0 for fib(Z — 1) to make sense.)

13

15

Observations about the implementation of Fibonacci

{X=0ANY=1INZ=1N1<NAN=n}

while Z < N do
(Y =X+Y; X=Y-X,Z2:=2Z2+1)
{Y = fib(n)}
iteration | 0 1 2 3 4 5 6 n—1
Y 1 1 2 3 5 8 13 --- fib(n)
X 01 12 35 8 - fib(n—1)
Z 1 2 3 456 7 n

Trying an invariant for the Fibonacci implementation

{X=0ANY=1AZ=1A1<NAN=n}
{n
while Z < N do
(Y =X+Y; X=Y-X;Z2:=2Z2+1)
{IN=(Z < N)}
{Y = fib(n)}
Take I =Y =fib(Z)ANX =fib(Z —1)NZ > 0.
Then we have to prove:
e X=0ANY=1AZ=1A1<NAN=n) =1
e F{INZ<N)}Y =X+Y, X=Y-X;Z:=Z+1{l}
o bro (I N(Z < N)) =Y = fib(n)

Do all these hold? Only the first two do. (Exercise.)

14

16

A better invariant for the Fibonacci implementation

{X=0ANY=1INZ=1AN1<NAN=n}
while Z < N do
(Y =X+Y; X=Y-X,Z2:=2Z2+1)
{Y = fib(n)}
While Y = fib(Z) A X = fib(Z — 1) A Z > 0 is an invariant,
it is not strong enough to establish the desired postcondition.

We need to know that when the loop terminates, Z = n.

It suffices to strengthen the invariant to:
Y =1fb(Z)ANX=1fib(Z-1)NZ>0NZ<NAN=n

&

17

Verification condition generation

Proof outline for the loop of the Fibonacci implementation

{X=0AY=1AZ=1AN1<NAN=n}

{Y=1ib(Z)YANX = fib(Z—1)ANZ>0ANZ<NAN=n}

while Z < N do
({Y = fib(Z)AX = fib(Z—=1)ANZ>0NZ<NAN=nAZ< N}
(X+Y=Fb(Z+1D)AX+Y)=X=Fb(Z)ANZ+1>0AZ+1<NAN=n}
Y =X+Y;
{Y=Fb(Z+1)AY =X =1ib(Z)NZ+1>0ANZ+1<NAN=n}
X =Y -X;
{(Y=Ffib(Z+1)AX=Ffb(Z)NZ+1>0ANZ+1<NAN=n}
{Y=1fib(Z+D)AX=1ib(Z+1)—1)ANZ+1>0NZ+1<NAN=n}
Z=7Z+1
{Y =fib(Z)AX = fib(Z-1)AZ >0AZ < NAN=n})

{Y =fib(Z)AX =fib(Z-=1)AZ>0ANZ<NAN=nA—(Z<N)}

{Y = fib(n)} 18

Architecture of a verifier

‘ Program to be verified & spec. ‘

———————————————————— human expert

‘ Program with loop invariants & spec. ‘

Kommmmm oo VC generator

automated
theorem prover

———————————————————— human expert

‘ End of proof ‘

19

Verification condition generation Summary
Finding invariants is difficult (as we will see in the next lecture).

However, we can write a simple recursive function VC that takes a We have used Hoare logic to verify a few simple examples, and at

precondition P, an annotated program C in which loop invariants how finding invariants is the core difficulty.
are provided as annotations, and a postcondition @, and returns a

set of assertions (called ‘“verification conditions”) such that, if they Writing out full proof trees or even proof outlines by hand is

all hold, then {P} |C| {@Q} holds (where |C| is C without the tedious and error-prone, even for simple programs.
annotations). However, the trivia can be mechanised, leaving only finding

invariants and proving difficult implications to the user.

Formally,

VC,P,Q.(YR € VC(P,C,Q). Fro, R) = (F {P} |C] {@})

o

In the next lecture, we will formalise the intuitions we gave in the
first lecture, and prove soundness of Hoare logic.

20
Recap

Hoare logic

Lecture 3: Formalising the semantics of Hoare logic . . .
In the previous lecture, we specified and verified some example
programs using the syntactic rules of Hoare logic that we
introduced in the first lecture.

Jean Pichon-Pharabod jp622

University of Cambridge In this lecture, we will prove the soundness of the syntactic rules,

and look at some other properties of Hoare logic.
CST Part Il —2019/2020

Semantics of Hoare logic

Recall: to define a Hoare logic, we need four main components:

e the programming language that we want to reason about:
its syntax and dynamic semantics;

e an assertion language for defining state predicates:

its syntax and an interpretation;

e an interpretation |= of Hoare triples;

a (sound) syntactic proof system - for deriving Hoare triples.

Dynamic semantics of WHILE

The dynamic semantics of WHILE will be given in the form of a
small-step operational semantics (as in Part IB Semantics).

The states of the small-step operational semantics, called
configurations, are pairs of a command C and a stack s.

We will abuse terminology, and also refer to s as the state.

The step relation (C,s) — (C’,s’) expresses that configuration
(C,s) can take a small step to become configuration (C’,s’).

We will write —* for the reflexive, transitive closure of —.

Dynamic semantics of WHILE

Dynamic semantics of WHILE

Stacks are functions from variables to integers:
def
s € Stack= Var— Z

These are total functions, and define the current value of every

program variable and auxiliary variable.

This models WHILE with arbitrary precision integer arithmetic.
A more realistic model might use 32-bit integers and require
reasoning about overflow, etc.

Dynamic semantics of expressions: first approach

We could have two small-step reduction relations for arithmetic
expressions and boolean expressions, (E,s) — (E’,s’) and
(B,s) — (B',s'):

Ni+No =N
(N1 4+ Na,s) — (N,s)

(X;s) = (s(X),s)

<E1a5> - <E{75/> <E235> — <E£,SI>
(Ey + E»,s) — (E{ + B, §') (N1 + E»,s) — (Ny + E}, §')

Semantics of expressions

E[E](s) evaluates arithmetic expression E to an integer in stack s:

E[-1(=) : Exp x Stack — Z

E[N](s) €N
EIXI(s) = s(X)
E[EL + BE](s) £ E[E](s) + E[E](s)

This semantics is too simple to handle operations such as division,

which fails to evaluate to an integer on some inputs.

For example, if s(X) =3 and s(Y) =0, then
EIX + 2](s) = €[X](s) + £[2](s) =3+ 2 =05, and
E[Y +4](s) = E[Y](s) + E[4](s) =0+ 4 = 4.

Dynamic semantics of expressions: our approach

However, expressions in WHILE do not change the stack, and do

not get stuck:

VE,s. IN. (E,s) —* (N,s)

(and the equivalent for B).

We take advantage of this, and specify the dynamic semantics of
expressions in a way which makes our setup easier (the results are

the same, but execution can take fewer steps):

We use functions E[E](s) and B[B](s) to evaluate arithmetic
expressions and boolean expressions in a given stack s, respectively.

Semantics of boolean expressions

B[B](s) evaluates boolean expression B to a boolean in stack s:

B[-](=) : BExp x Stack — B

def

BITI(s) =T
BIF](s) £ L
T if E[E](s) < E[E](s)

B[E < B](s) € _
1 otherwise

For example, if s(X) =3 and s(Y) = 0, then
B[X+2>Y+4](s) =E[X+2](s) > E[Y +4](s) =5>4=T.

Small-step operational semantics of WHILE

EIEN(s) = N
(X = E,s) — (skip, s[X — N])

<C175> — <C{75I>
<C1; C2,S> — <C{, C2,5/>

(skip; Ca,s) — (Cy,s)

BIB](s) =T BIB](s) = L

(if B then C; else Gy, s) — (Cy,s) (if B then C; else Gy, s) — (G, s)

B[B](s) = L
(while B do C,s) — (skip,s)

B[B](s)=T
(while B do C,s) — (C;while B do C,s) 9

Safety and determinacy

A configuration (C,s) is stuck, written (C,s) /4, when
VC',s'.=((C,s) — (C',s)).

The dynamic semantics of WHILE is safe, in that a configuration
is stuck exactly when its command is skip:

((C,s) /) < C = skip

This is true for any syntactically well-formed command, without
any further typing! (Because our language is very simple.)

The dynamic semantics of WHILE is deterministic:

<C,5> N <C/,5/> /\ <C,S> — <CN,SN> = CI/ — C//\SN — sl

10

Properties of WHILE

Non-termination

It is possible to have an infinite sequence of steps starting from a
configuration (C,s): (C,s) has a non-terminating execution (also
“can diverge”), written (C,s) —*, when there exists a sequence of
commands (Cp)nen and a sequence of stacks (s,)nen such that

Co=CAso=5sAVneN.(Cpy,sp) = (Chs1,Sn+1)
Note that
(C,s) =¥ & 3C', ' (C,s) = (C', sy A (C,s') =¥
Because WHILE is safe and deterministic, a configuration can
take steps to skip if and only if it does not diverge:
(3s'.(C,s) =" (skip,s')) & —((C,s) =)

This can break down with a non-deterministic language.

11

Substitution Substitution property for expressions

We use Ej[E;/X] to denote E; with Ej substituted for every

occurrence of program variable X: We will use the following expression substitution property later:

-[=/g : Expr x Expr x Var — Expr ELEL[E2/X]1(s) = E[EL](s[X — E[E2](s)])
N[Ey/X] Z N
y[E/x] TY=X E
fY#X Y The expression substitution property follows by induction on Ej.

(Ea + Eb)[E2/X] = (Ea[E2/X]) + (Es[E2/X]) Case £; = N:

EIN[E2/X]](s) = E[NI(s) = N = E[N](s[X = E[E](s)])

For example, (X + (Y x2))[3+Z/Y] =X+ ((3+ Z) x 2).

12 13

Proof of substitution property: variable case Proof of substitution property: addition case

ELEE/XIN(s) = ELEN(IX ~ EIEN(S)) AEIE/X]e) = ElE)EX = AENs))

Case E1 = E, + Ep:
Case E1 = VY- ! ? b

E[(Ea + Eb)[E2/X]1(s)
= E[(Ea[E2/X]) + (Eu[E2/ XD (s)
= E[E[E2/X1](s) + ETEp[E2/X]I(s)
= E[E](s[X = E[EA(5)]) + ELEp](s[X — E[ED(s)])
= E[Ea + Ep](s[X — E[E2](s)])

ETY(E/XI(s)
_ { Y =X EXIE/X])(s) = E[E](s) = EIXI([X — EE](s))
1Y £ X ENVIs) = s(¥) = EIVI(sIX = ELEA(s))

= E[YI(s[X = E[E](s)])

14 15

Semantics of assertions

The assertion language

The formal syntax of the assertion language is given below:

x = X|x variables
t u= x| f(tr,.... tn) n>0 terms
P.Q == L|T|PAQIPVQ[IP=Q assertions
| Vx.P|3Ix.P|lty=1t|p(ts,....tn) n>0
-P £ P=1

Quantifiers quantify over terms, and only bind logical variables.

Here f and p range over an unspecified set of function symbols
and predicate symbols, respectively, that includes (symbols for) the
usual mathematical functions and predicates on integers.

In particular, we assume that they contain symbols that allows us
to embed arithmetic expressions E as terms, and boolean

expressions B as assertions. 17

The language of assertions

Now, we have formally defined the dynamic semantics of the
WHILE language that we wish to reason about.

The next step is to formalise the assertion language that we will
use to describe and reason about states of WHILE programs.

We take the language of assertions to be (slight variation of)
an instance of single-sorted first-order logic with equality
(as in Part IB Logic and Proof).

16
Semantics of terms
[t](s) defines the semantics of a term t in a stack s:
[-1(z) : Term x Stack — Z
[x1(s) < s(x)
[F(t1, -oes t)](5) = TFNIELDCS)s oo, [ED(S))
We assume that the appropriate function [f] associated to each
function symbol f is provided along with the implicit signature.
In particular, we have [E](s) = E[E](s).
18

Semantics of assertions

[P] defines the set of stacks that satisfy the assertion P:
[-] : Assertion — P(Stack)

[L] = {s € Stack| L} =0
[T]% {s € Stack | T} = Stack
[PV Q] {se Stack|se [P]Vse[Q]} =[PIUIQ]

[PAQ]={seStack|sc[P]Ase[Q]} =[P]IN[Q]
[P= Q] £ {s e Stack| s € [P] = s € [Q]}

(continued)

19
Substitutions

We use t[E/X] and P[E/X] to denote t and P with E substituted

for every occurrence of program variable X, respectively.

Since our quantifiers bind logical variables, and all free variables in

E are program variables, there is no issue with variable capture:

(vx. P)[E/X] £ vx. (P[E/X])
21

Semantics of assertions (continued)

[t = t2] 2 {s € Stack| [:](s) = [20(s)}
[P(t1. o ta)] £ {s € Stack | [pI([t](5). . [ta](5))}

[Vx. P] £ {s € Stack | YN.s[x — N] € [P]}
[3x. P] £ {s € Stack | IN. s[x — N] € [P]}

We assume that the appropriate predicate [p] associated to each
predicate symbol p is provided along with the implicit signature.

In particular, we have [B] = {s | B[B](s) = T}.

We could write s = P for s € [P].

20

Substitution property

The term and assertion semantics satisfy a similar substitution
property to the expression semantics:

o [t[E/X]N(s) = [ed(s[X — ELED(s)])
o sc [PIE/X]] & s[X — E[E](s)] € [P]

They are easily provable by induction on t and P, respectively: the
former by using the substitution property for expressions, and the
latter by using the former. (Exercise)

The latter property will be useful in the proof of soundness of the
syntactic assignment rule.

22

Semantics of Hoare triples

Soundness of Hoare logic

Semantics of partial correctness triples

Now that we have formally defined the dynamic semantics of
WHILE and our assertion language, we can define the formal

meaning of our triples.

A partial correctness triple asserts that if the given command
terminates when executed from an initial state that satisfies the
precondition, then the terminal state must satisfy the
postcondition:

={P} C{Q} & Vs,s.se[P]A(C,s)—* (skip,s') = s € [Q]

Without safety, we would have to worry about getting stuck
without reaching skip.

Soundness of Hoare logic

Theorem (Soundness)

IfE{P} C {Q} then = {P} C {Q}.

Soundness expresses that any triple derivable using the syntactic

proof system holds semantically.

Soundness can be proved by induction on the - {P} C {Q}
derivation:

e it suffices to show, for each inference rule, that if each
hypothesis holds semantically, then the conclusion holds

semantically.

23

24

Soundness of the assignment rule

= {PIE/X]} X := E {P}

Assume s € [P[E/X]] and (X := E,s) —* (skip,s’).

From the substitution property, it follows that
s[X — E[E](s)] € [P]-

From inversion on the steps, there exists an N such that
E[E](s) = N and s’ = s[X — N], so s’ = s[X — E[E](s)]-

Hence, s’ € [P].

25

Soundness of the loop rule: base case

If (IH) Vs,s’.s € [PAB]A(C,s) —* (skip,s’) = s’ € [P],
then Vn > 0.Vk < n.Vs,s'.s € [P] A
(while B do C,s) —k (skip,s’) = s’ € [P A =B]

We can prove this by a (nested) induction on n:

Case 1: assume s € [P], k < 1, and
(while B do C,s) —k (skip, s').

Then while B do C = skip, so we have a contradiction.

27

Soundness of the loop rule

If = {P A B} C {P} then = {P} while B do C {P A -B}

How can we get past the fact that the loop step rule defines the
steps of a loop in terms of the steps of a loop?

We will prove = {P} while B do C {P A =B} by proving a
modified version of the property.

We write (C,s) =k (C’,s') to mean (C,s) can take k steps,
where k > 0, to reach (C’,s').

Soundness of the loop rule: inductive case

If (IH) Vs,s’.s € [PAB]A(C,s) =" (skip,s’) = s’ € [P],
then Vn > 0.Vk < n.Vs,s'.s € [P] A
(while B do C,s) —k (skip,s’) = s’ € [P A —=B]

Case n+ 1: assume s € [P], k < n+1,

(while B do C,s) —* (skip,s’), and

(nlH) Vk < n.Vs,s'.s € [P] A (while B do C,s) —* (skip,s’) =
s’ e [P A-B].

If k=0, it is as before.

If k =1, B must have evaluated to false: B[B](s) = L and s’ = s.

Since B[B](s) =L, s ¢ [B]. sos e [B] =s¢e[Ll] so
s e [B= 1], so s € [~B]. Therefore, s € [P A —B].
Hence, s' =s € [P A —B].

26

28

Soundness of the loop rule: inductive case (continued)

If (IH) Vs,s’.s € [PAB]A(C,s) —* (skip,s’) = s" € [P],
then Vn > 0.Vk < n.Vs,s'.s € [P] A (while B do C,s) —k
(skip,s’) = s’ € [P A —B]

If k > 1, B must have evaluated to true: B[B](s) = T, and there
exists s*, ki, and ky such that (C,s) —% (skip, s*),

(while B do C,s*) =k (skip,s’), and k = k; + ko + 2.

Since B[B](s) = T, s € [B]. Therefore, s € [P A B].

From the outer induction hypothesis IH, it follows that s* € [P],
and so by the inner induction hypothesis nlH, s’ € [P A =B].

29

Completeness

Completeness is the converse property of soundness:

If = {P} C {Q} then - {P} C {Q}.

Our Hoare logic inherits the incompleteness of arithmetic and is
therefore not complete.

30

Other properties of Hoare logic

Completeness

To see why, assume that = {P} C {Q} = F {P} C {Q}.

We can then show that our assertion logic is complete:
Assume = P, that is, Vs.s € [P].

Then |= {T} skip {P}.

Using completeness, we can derive - {T} skip {P}.

Then, by examining that derivation, we have a derivation of
Fro. T = P, and hence a derivation of ., P.

But the assertion logic includes arithmetic, and is therefore not
complete, so we have a contradiction.

31

Relative completeness Decidability

The previous argument showed that because the assertion logic is

not complete, then neither is Hoare logic.
Finally, Hoare logic is not decidable: there there does not exist a

However, Hoare logic is relatively complete for our simple computable function f such that

language:

f(P,.CRA)=T < E{P} C{Q}
e Relative completeness expresses that any failure to derive
F{P} C {Q} for a statement that holds semantically can be

traced back to a failure to prove -, R for some valid = {T} € {L} holds if and only if C does not terminate.

arithmetic statement R. Moreover, we can encode Turing machines in WHILE.
Hence, since the Halting problem is undecidable, so is Hoare logic.
In practice, completeness is not that important, and there is more

focus on nice, usable rules.

32 33

Other perspectives on Hoare triples

So far, we have assumed P, C, and @ were given, and focused on
proving - {P} C {Q}.

Recall, if P and Q are assertions, P is stronger than Q, and Q is
weaker than P, when ., P = Q.

Other perspectives on Hoare triples

If we are given P and C, can we infer a Q7

Is there a best such Q, sp(P, C)? (‘strongest postcondition’)

Symmetrically, if we are given C and Q, can we infer a P?
Is there a best such P, wip(C, Q)7 (‘weakest liberal precondition’)

Are there functions wip and sp such that

(Fro P = wip(C,Q)) & F{P} C{Q} & (Frwsp(P,C)= Q) 2

Terminology

We write wip and talk about weakest liberal precondition because
we only consider partial correctness.

This has no relevance here because, as we will see, there is no
effective general finite (first-order) formula for weakest
preconditions, liberal or not, or strongest postconditions, for
commands containing loops, so we will not consider weakest
preconditions, liberal or not, for loops, so there is no difference
between partial and total correctness.

35

Example of weakest liberal precondition computation

=

wip(X :=X+1,Y: =Y+ X, ImnX=2xmAY =2xn)
wip(X ==X +1, wip(Y: =Y+ X, ImnX=2xmAY =2xn))
wip(X :=X+1, (3mnX=2xmAY =2xn)[Y+ X/Y])
wip(X :=X+1, 3mn X =2xmAY +X =2xn)
(mn. X =2xmAY +X=2xn)[X+1/X]
ImnX+1=2xmAY+(X+1)=2xn

Am,n. X =2xm+1AY =2xn

37

Computing weakest liberal preconditions (except for loops)

Dijkstra gives rules for computing weakest liberal preconditions for
deterministic loop-free code:

wip(skip, Q) = Q
wip(X == E, Q) = Q[E/X]
wip(Cy; G, Q) = wip(Cy, wip(Gy, Q))
wip(if B then G else G, Q) = (B = wip(Gi, Q)) A
(=B = wip(G2, Q)

These rules are suggested by the relative completeness of the
Hoare logic proof rules from the first lecture.

36

Weakest preconditions for loops

While the following property holds for loops

wip(while B do C, Q) <
wip(if B then (C;while B do C) else skip, Q) <
(B = wip(C, wip(while B do C,Q))) A (B = Q)

it does not define wip(while B do C, Q) as a finite formula in
first-order logic.

There is no general finite formula for wip(while B do C, Q) in
first-order logic. (Otherwise, it would be easy to find invariants!)

38

Verification condition generation

We can now sketch the design of a verification condition
generation algorithm.

(1) The precondition needs to imply the approximate weakest
liberal precondition induced by the provided loop invariants.

(2) Moreover, the provided loop invariants need to be actual loop
invariants, and, together with the guard not holding, need to imply
the loop postcondition.

These can be computed mutually recursively.

Not examinable: Verification condition generation

We can define annotated programs:

C skip

C1;Co

X =E

if B then C; else C»

while B do {/} C

and an erasure function:
|skip| £ skip
C1iCa &
X = E]| ":st =EF
lif B then C; else C»| Z if B then |Cy] else |C,|
\while B do {/} C| £ while B do [C|

39

41

Summary

We have defined a dynamic semantics for the WHILE language,
and a formal semantics for a Hoare logic for WHILE.

We have shown that the syntactic proof system from the first
lecture is sound with respect to this semantics, but not complete.

Supplementary reading on soundness and completeness:

e Glynn Winskel. The Formal Semantics of Programming
Languages: An Introduction. Chapters 6—7.

e Software Foundations, Benjamin C. Pierce et al.

In the next lecture, we will look at extending Hoare logic to reason
about pointers.

40

Not examinable: Computing verification conditions 1/2

We can then define our verification condition generation function

def

VC(P,C, Q) £ {P = awlp(C, Q)} U VCaux(C, Q)

using (1) an approximation of weakest liberal precondition that
approximates loops using the provided invariants

awlp(skip, Q) £ Q
awlp(X := E, Q) "”Q[E/X]
awlp(C1; Ca, Q) = awlp(Cy, awlp(Ca, Q))
awlp(if B then C; else Co, Q) = (B = awlp(Cy, Q)) A

(=B = awlp(C;, Q))
awlp(while B do {/} C,Q) £ |

42

Not examinable: Computing verification conditions 2/2

(2) an auxiliary function that collects side-conditions of loops: Hoare Iogic

Lecture 4: Introduction to separation logic

Q
<

e

VCaux(skip, Q

Q
LY

e

0
0

Q
<

e

VCaux(C1, Q) U VCaux(Ca, Q)

VCaux(if B then C; else C3,

Q
VCaux(Cy; Ca, Q

)
VCaux(X = E, Q)
)
) Jean Pichon-Pharabod jp622

def
= VCaux(C1, awlp(C2, Q) U University of Cambridge
VCaux(Co, Q)
VCaux(while Bdo {/} C,Q) %< {IA-B= Q,IAB= awlp(C,I)} U CST Part Il — 2019,/2020
VCaux(C, 1)

43

Recap

In the previous lectures, we have considered a language, WHILE,

where mutability only concerned program variables.

WHILE,, a language with pointers

In this lecture, we will extend the WHILE language with pointer
operations on a heap, and look at the challenges Hoare logic faces

when trying to reason about this language.

This will motivate introducing an extension of Hoare logic, called
separation logic, to enable practical reasoning about pointers.

Syntax of WHILE, The heap

We introduce new commands to manipulate the heap: Commands are now evaluated also with respect to a heap that
E == N| X| B+5E arithmetic expressions stores the current values of allocated locations.
| Et—E | EyxEy | - We elect for locations to be non-negative integers:
def el
null £ (elocE{tez|0<l}

_ null is a location, but a “bad” one, that is never allocated.
B = T|F| EE=E boolean expressions

| Bs<B[hR2E| To model the fact that only a finite number of locations is

allocated at any given time, the heap is a finite function, that is, a

C u= skip | GG | X =F commands partial function with a finite domain:
if B then C; else G s i
while B do C h € Heap = (Loc\ {null}) = Z

X = [E] ‘ [El] = E2

X := alloc(Ey, ..., E,) State % Stack x Heap

dispose(E) ,
Failure Why failure?
Heap assignment, dereferencing, and deallocation fail if the given
locations are not currently allocated. Instead of modelling failure explicitly, we could just leave the
configuration stuck, but explicit failure makes things clearer and
This is a design choice that makes WHILE, more like a easier to state.
programming language, whereas having a heap with all locations
always allocated would make WHILE, more like assembly. In particular, WHILE, is somewhat safe in the following sense:
*
To explicitly model failure, we introduce a distinguished failure (C{sih) ="tV
w
value 4, and adapt the semantics: Vs, h | {C (s,) =9V
', s'.(C, (s, h)) =" (skip, (s, ')

— P((Cmd x State) x ((Cmd x State) + {4 }))

Adapting the base constructs to handle the heap

The base constructs can be adapted to handle the extended state
and failure in the expected way:
E[EN(s) = N
(X :=E, (s, h)) — (skip, (s|[X — NI, h))

(G (s, h) = (G, (s, M)
(Cl; C27 <S, h)> — <C{r C27 <5/v h/>>

(skip; G, (s, h)) — (Cy, (s, h))

B[B](s) =T B[B](s) = L
(if B then G else G, (s, h)) — (C1, (s, h)) (if B then G else G, (s, h)) — (G, (s, h))

BIB](s) = L BIBI(s) =T

(while B do C, (s, h)) — (skip, (s, h)) (while B do C, (s, h)) — (C;while B do C, (s, h))

(C1,(s,h)) — 4
<C1; C2a <57 h>> — é

Heap assignment

Assigning to an allocated location updates the heap at that

location with the assigned value:

E[E](s)=¢ ¢ € dom(h) E[E](s) =N
([E1] := Ea, (s, h)) — (skip, (s, h[¢ — N]))

Assigning to an unallocated location or to something that is not a
location leads to a fault:

EIEN(Gs) =€ £ ¢ dom(h) 0. £[E](s) = ¢
<[E1] = B, <57 h>> =4 <[E1] = B, <57 h>> — 4

Heap dereferencing

Dereferencing an allocated location stores the value at that
location to the target program variable:

E[EN(s)=¢ ¢ & dom(h) h(¢) =N

(X = [E], (s, h)) — (skip, (s|[X — NJ, h))

Dereferencing an unallocated location and dereferencing something
that is not a location lead to a fault:

EIEI(s) = ¢ ¢ dom(h) 0. E[E](s) = ¢
(X :=[E], (s, h)) = ¢ (X :=[E], (s, h)) = ¢

We could have heap dereferencing be an expression, but then
expressions would fault, which would add complexity.

Deallocation

Deallocating an allocated location removes that location from the
heap:
E[E](s) =¢ ¢ € dom(h)
(dispose(E), (s, h)) — (skip, (s, h\ {{(¢, h({))}))

Deallocating an unallocated location or something that is not a
location leads to a fault:

EIEN(s)=¢ ¢ ¢ dom(h) . E[E](s) = ¢
(dispose(E), (s, h)) — 4 (dispose(E), (s, h)) — 4

Allocation Pointers

Allocating finds a block of unallocated locations of the right size, WHILE, has proper pointer operations, as opposed for example
updates the heap at those locations with the initialisation values, to references:
and stores the start-of-block location to the target program

e pointers can be invalid: X := [null] faults
variable:

E[E](s) = No EE](s) = N, e we can perform pointer arithmetic:
vi € {0 n}E iy do”m(h) 5 e X :=alloc(37,42); Y := [X 4 1] ends with Y = 42
£ # null
(X :=alloc(Eg, ..., Ep), (s, h)) — (skip, (s[X + £], h[¢ — No, ..., L+ n— Nu]))

e X :=alloc(0);if X =3 then [3] :=1 else [X] := 2 is safe

We do not have a separate type of pointers: we use integers as
Because the heap has a finite domain, it is always possible to pick pointers
a suitable ¢, so allocation never faults. A real machine would run
out of memory at some point.

Pointers in C have many more subtleties. For example, in C,
Because of allocation, WHILE, is not deterministic.

10 pointers can point to the stack.

Pointers and data structures Operations on mutable data structures

In WHILE,, we can encode data structures in the heap. For HEAD = 99 ‘ 0—’—>’ 37 ‘ 0—’—>%

example, we can encode the mathematical list [12,99, 37] with the

following singly-linked list: /_\
X “HEAD ——{12] o}——{00 [e}——{37| e}——[<

HEAD ——{12 [&]——{99 |&]——{37 | e} ——{

M ly: /_\
ore concretely X ~HEAD { 99 \ 0—‘—4 37 \ "’—’X

0 7 8 10 11 21122
HEAD =10 ’ 99 ‘ 121 ‘ ’ 12 ‘ 7 ‘ ’ 37 ‘ 0 ‘ For instance, this operation deletes the first element of the list:

X = [HEAD + 1]; // lookup address of second element
dispose(HEAD); // deallocate first element

In WHILE, we would have had to encode that in integers, for .
dispose(HEAD + 1);

example as HEAD = 212 x 3% x 537 (as in Part IB Computation
theory). HEAD = X // swing head to point to second element
12

Attempting to reason about
pointers in Hoare logic

Approximating modified program variables

We can syntactically overapproximate the set of program variables
that might be modified by a command C:

mod(skip) =

mod(X := E) =

mod(Cy; G) =

mod(if B then C; else G;) =
mod(while B do C) =

mod([E1] := Ep) =
mod(X := [E]) = {X
mod(X := alloc(Ey, . .., E,))
mod(dispose(E))

od(Cy) U mod((Cy)
od(C1) U mod(()

Attempting to reason about pointers in Hoare logic

We will show that reasoning about pointers in Hoare logic is not
practicable.

To do so, we will first show what makes compositional reasoning
possible in standard Hoare logic (in the absence of pointers), and
then show how it fails when we introduce pointers.

For reference: free variables

The set of free variables of a term and of an assertion is given by
FV(=): Term — P(Var)
FV(x) < {x}
FV(f(tr,....tn) £ FV(t)U...UFV(t,)

and
FV(=) : Assertion — P(Var)

FV(T)=FV(L)Zp
FV(PAQ)=FV(PVQ)=FV(P= Q) ZFV(P)UFV(Q)
FV(Vx.P) = FV(3x. P) £ FV(P)\ {x}
FV(t; = t) £ FV(t1) U FV(t2)
FV(p(ti,....t)) ZFV(t1)U... FV(t,)

t1

15 respectively.

The rule of constancy

In standard Hoare logic (without the rules that we will introduce
later, and thus without the new commands we have introduced),
the rule of constancy expresses that assertions that do not refer to
program variables modified by a command are automatically
preserved during its execution:

F{P} C{Q} mod(C)NFV(R)=10
F{PAR} C{QAR}

This rule is admissible in standard Hoare logic.

17

A bad rule for reasoning about pointers

Imagine we extended Hoare logic with a new assertion, t; < t»,
for asserting that location t; currently contains the value t;, and
extended the proof system with the following (sound) rule:

F {E|V. E1 — V} [El] = E2 {El — E2}
Then we would lose the rule of constancy, as using it, we would be
able to derive

F{3v.37 < v} [37] := 42 {37 — 42} mod([37] :=42) N FV(Y < 0) =0
F {3037 VA Y <5 0} [37] 1= 42 {37 <5 42 A Y < 0}

even if Y = 37, in which case the postcondition would require 0 to
be equal to 42. There is a problem!

19

Modularity and the rule of constancy

This rule is important for modularity, as it allows us to only
mention the part of the state that we access.
Using the rule of constancy, we can separately verify two

complicated commands:

F{P} G {Q} F{R} G {S}

and then, as long as they use different program variables, we can
compose them.

For example, if mod(Cy) N FV(R) = and

mod(Cy) N FV(Q) =), we can compose them sequentially:

F{R} G {S} mod(G)NFV(Q)=0
F{RAQI G {Sn@Q}

F{P} G {Q} mod(C)NFV(R)=0 Fum RAQ= QAR

Fra SAQ=QAS

F{PAR} G {QAR} F{QAR} G {QAS}

F{PAR} C;; G{QAS}

Reasoning about pointers

In the presence of pointers, we can have aliasing: syntactically
distinct expressions can refer to the same location. Updates made
through one expression can thus influence the state referenced by

other expressions.

This complicates reasoning, as we explicitly have to track

inequality of pointers to reason about updates:

18

}—{HV.El‘—>V/\E17éE3/\E3;>E4} [E1] =E {El‘—>E2/\E3‘—>E4}

We have to assume that any location is possibly modified unless
stated otherwise in the precondition. This is not compositional at
all, and quickly becomes unmanageable.

20

Separation logic

History and terminology

Separation logic was proposed by John Reynolds in 2000, and
developed further by Peter O'Hearn and Hongseok Yang around
2001. It is still a very active area of research.

There are many variants of separation logic.

In WHILE,, the heap in explicitly managed: the program is
meant to dispose of heap locations itself. To be able to show that
our programs do not leak memory, we are going to consider a
so-called linear (or classical) separation logic. If we were not
interested in reasoning about deallocation, for example because
there is no garbage collector, we could use an affine (or
intuitionistic) separation logic.

22

Separation logic

Separation logic is an extension of Hoare logic that enables
modular reasoning about resources.

It introduces new connectives to reason about the combination of
disjoint resources.

We will use separation logic to reason about pointers in WHILE,,.
Our resources will be parts of the heap, and we will use the new
connectives of separation logic to control aliasing.

Where a Hoare logic assertion refers to a (freely duplicable)
property of the current state, a separation logic assertion asserts
ownership of resources. Resources can be combined or compared
(and exchanged), but need to be accounted for.

21

The points-to assertion

We introduce a new assertion, written t; — t», and read
“t; points to t»", to reason about individual heap cells.

The points-to assertion t +— t»

e asserts that the current value that heap location t; maps to is
[5) (Iike t1 — l'z), and

e asserts ownership of heap location t;.

For example, X — Y + 1 asserts that the current value of heap
location X is Y + 1, and moreover asserts ownership of that heap
location.

23

The separating conjunction Examples of separation logic assertions

Separation logic extends Hoare logic with a new connective, the L (t1— to) * (t3 — tg)
separating conjunction ‘x', to reason about disjoint resources.

This assertion is unsatisfiable in a state where t; = t3, since
The assertion P * Q asserts that P and Q hold (somewhat like t1 + tp and t3 — t; would both assert ownership of the same
P A Q); however, it also asserts that the resources (the parts of the location.
heap) owned by P and Q are disjoint.

A heap satisfying this assertion is of the following shape:
The separating conjunction has a neutral element, emp, which

describes the empty resource (the empty heap): hh # 1B
empx P < P < Pxemp.
24 25
Examples of separation logic assertions Examples of separation logic assertions

3. (t1 = tp) x (t1 — t3)
2. For example,

This assertion is not satisfiable, as t; is not disjoint from itself.
(X —=101) (Y —102))AX =TAY =41

is satisfied by the following heap: 4 it A3ty

7 41 This asserts that the heap is described by t; — t, and also by
X=1 102f— Y =41 st

Therefore, t; = t», and so t3 = ty

26 27

Examples of separation logic assertions

5. A heap satisfying
(tl — tz) * (tz — tl)
is of the following shape:

t1 to

A
to t1
e

6. For instance, a heap satisfying
(X = Y)x(Y = X)

is of the following shape:

ey

28

Semantics of separation logic
assertions

Examples of separation logic assertions

7. (X = to, Y)* (Y — t1,null)

e

X th | o t1 | e Yy

Here, X +— tg, ..., t, is shorthand for
(X=to)«(X+1)—=t1)*x-x((X+n)—t,)

8. Ix,y. (HEAD — 12,x) % (x + 99, y) * (y + 37, null)

This describes our singly linked list from earlier:

HEAD ——{12 | @}——{99 |o}——137 [e}——{{]

29

Semantics of separation logic assertions

The semantics of a separation logic assertion P, [P], is the set of
states (that is, pairs of a stack and a heap) that satisfy P.

It is simpler to define it indirectly, through the semantics of P
given a stack s, written [P](s), which is the set of heaps that,
together with stack s, satisfy P.

Recall that we want to capture the notion of ownership:
if h € [P](s), then P should assert ownership of any locations in
dom(h).

The heaps h € [P](s) are thus referred to as partial heaps, since
they only contain the locations owned by P.

30

Semantics of separation logic assertions Semantics of separation logic assertions: points-to

The propositional and first-order primitives are interpreted much The points-to assertion t; — t» asserts ownership of the location

like for Hoare logic (with the extra indirection): referenced by t1, and that this location currently contains ty:

[-1(=) : Assertion — Stack — P(Heap)

[L1(s) =0 [t](s) = ¢ A
def £ # null A
[T1(s) = Heap [t1— t2](s) £ < h e Heap|30, N. [t](s) = N A
[P A QI(s) £ [PI(s) N [QI(s) dom(h) = {£} A
[PV QI(s) Z [PI(s) U [QI(s) h(f) = N
[P = QI(s) £ {he Heap| he[P](s)= he[Q]s)}

t; — tp asserts ownership of location ¢, so to capture ownership,

requires {¢} C dom(h). Moreover, to prevent memory leaks, we
require dom(h) = {{}.

31

Semantics of separation logic assertions: x Semantics of separation logic assertions: emp

Separating conjunction, P x Q, asserts that the heap can be split

into two disjoint parts such that one satisfies P, and the other Q:
The empty assertion only holds for the empty heap:

hy € [P](s) A [emp](s) £ {h € Heap | dom(h) = 0}
[P * Q1(s) £ { h € Heap|3hy. ho. hy € [Q](s) A

h=hdh emp does not assert ownership of any location, so to capture

ownership, dom(h) = (.
where h = hy W hy is equal to h = hy U hy, but only holds when

dom(hl) N dom(hz) = (.

33

Summary: separation logic assertions

Separation logic assertions not only describe properties of the
current state (as Hoare logic assertions did), but also assert
ownership of parts of the current heap.

Separation logic controls aliasing of pointers by enforcing that
assertions own disjoint parts of the heap.

35

Semantics of separation logic triples

Separation logic not only extends the assertion language, but
strengthens the semantics of correctness triples in two ways:

e they ensure that commands do not fail;

e they ensure that the ownership discipline associated with
assertions is respected.

36

Semantics of separation logic triples

Ownership and separation logic triples

Separation logic triples ensure that the ownership discipline is
respected by requiring that the precondition asserts ownership of
any heap cells that the command might use.

For instance, we want the following triple, which asserts ownership
of location 37, stores the value 42 at this location, and asserts that
after that location 37 contains value 42, to be valid:

= {37+ 1} [37] := 42 {37 — 42}
However, we do not want the following triple to be valid, because
it updates a location that it is not the owner of:

K~ {100 — 1} [37] := 42 {100 > 1}

even though the precondition ensures that the postcondition is
true! 37

Framing

How can we make this principle that triples must assert ownership
of the heap cells they modify precise?

The idea is to require that all triples must preserve any assertion
that asserts ownership of a part of the heap disjoint from the part

of the heap that their precondition asserts ownership of.

This is exactly what the separating conjunction, *, allows us to

express.

38

Examples of framing

How does preserving all frames force triples to assert ownership of
heap cells they modify?

Imagine that the following triple did hold and preserved all frames:
{100 > 1} [37] := 42 {100 — 1}
In particular, it would preserve the frame 37 — 1:
{100 +— 1% 37 +— 1} [37] := 42 {100 +— 1 % 37 +— 1}

This triple definitely does not hold, since location 37 contains 42 in

the terminal state.

40

The frame rule

This intent that all triples preserve any assertion R disjoint from
the precondition, called the frame, is captured by the frame rule:

F{P} C{Q} mod(C)NFV(R) =10
F{P*R} C {Q*R}

The frame rule is similar to the rule of constancy, but uses the

separating conjunction to express separation.

We still need to be careful about program variables (in the stack),
so we need mod(C) N FV(R) = 0.

39
Examples of framing
This problem does not arise for triples that assert ownership of the
heap cells they modify, since triples only have to preserve frames
disjoint from the precondition.
For instance, consider this triple which asserts ownership of
location 37:
{37+ 1} [37] := 42 {37 — 42}
If we frame on 37 — 1, then we get the following triple, which
holds vacuously since no initial state satisfies 37 — 1% 37 — 1:
{37+ 1%37+— 1} [37] :=42 {37+ 42% 37 — 1}
41

Informal semantics of separation logic triples

The meaning of {P} C {Q} in separation logic is thus

e if hy satisfies P, when C is executed from an initial state with
an initial heap h1 W hg, then

e (does not fault, and

e if C terminates, then the terminal heap has the form h} W hg,
where h} satisfies Q.

The first condition ensures that the precondition asserts ownership
of all the locations that might be accessed.

The second condition bakes in the requirement that triples must
satisfy framing, by requiring that they preserve all disjoint heaps
hF.

42

Summary

Separation logic is an extension of Hoare logic that enables
modular reasoning about resources. It extends Hoare logic with
new assertions, and refines the semantics of assertions to reason
about ownership and separation.

We leverage this to control aliasing, which enables practical
reasoning about pointers and mutable data structures.

In the next lecture, we will look at a proof system for separation
logic, and apply separation logic to examples.

Papers of historical interest:

e John C. Reynolds. Separation Logic: A Logic for Shared
Mutable Data Structures.
44

Formal semantics of separation logic triples

Written formally, the semantics is:

={P} C{Q} ¥
Vs, h1, he. dom(hy) N dom(hg) = O A by € [P](s) =
(=((C, (s, hp W he)) =* £)) A

s K <C7 <Sa hl H'J hF>> —* <Sklp, <5/, h/>> =
U 3K = M he Ay € [QI(S)

We then have the semantic version of the frame rule baked in:
If = {P} C {Q} and mod(C) N FV(R) = (), then
={PxR} C {Q=*R}.

43

Hoare logic

Lecture 5: Verifying abstract data types in separation logic

Jean Pichon-Pharabod jp622
University of Cambridge

CST Part Il - 2019/2020

Recap

Last time, we introduced separation logic, a reinterpretation of
Hoare logic that makes reasoning about pointers tractable.
Separation logic is based on the notions of separation and
ownership of resources.

A separation logic partial correctness triple ensures that the A prOOf system for separation |0gIC

execution of the command (1) does not fault in a heap matching -
exactly its precondition, which ensures that it asserts ownership of
all the parts of the heap it accesses, and (2) preserves the part of

the heap disjoint from that matching the precondition.

In this lecture, we will look at a proof system for separation logic,
and put separation logic into practice.

A proof system for separation logic Recap: The frame rule

The frame rule is the core of separation logic.
It expresses that separation logic triples always preserve any

Separation logic inherits all the partial correctness rules from Hoare assertion disjoint from the precondition:

logic from the first lecture, and extends them with

o rules for each new heap-manipulating command; F{P} C{Q} mod(C)NFV(R) =)
F{PxR} C{Q=*R}

e structural rules, including the frame rule.

We now want the rule of consequence to be able manipulate our
extended assertion language, with our new assertions P x @, The second hypothesis ensures that the frame R does not refer to

t; — tp, and emp, and not just first-order logic anymore. any program variables modified by the command C.

This builds in modularity.

Other structural rules

Given the rules that we are going to consider for the
heap-manipulating commands, we are going to need to include
structural rules like the following:

H{P} C{Q}
F{3x. P} C {3x. Q}

Rules like these were admissible in Hoare logic.

We will represent uses of structural rules by indentation in proof
outlines.

The heap dereference rule

Separation logic triples must ensure the command does not fault.
The heap dereference rule thus asserts ownership of the given heap
location to ensure the location is allocated in the heap:

F{E— vAX=x} X =[E]{E[x/X] > VvAX=v}

Here, v and x are auxiliary variables; v is used to refer to the value
of the dereferenced location, and x is used to refer to the initial

value of program variable X in the postcondition.

The heap assignment rule

Separation logic triples must assert ownership of any heap cells
modified by the command. The heap assignment rule thus asserts
ownership of the heap location being assigned:

= {El — t} [El] =6 {El — E2}

If expressions were allowed to fault, we would need a more complex

rule.

Allocation and deallocation

The allocation rule introduces a new points-to assertion for each
newly allocated location:

- {X = x A emp} X := alloc(Eo, ..., En) {X — Eolx/X], ... Ealx/X]}

The deallocation rule destroys the points-to assertion for the
location to not be available anymore:

F{E — t} dispose(E) {emp}

Swap example

Proof outline for swap

{X->n1>r<Y>>n2}

A:=[X];
{X—=m«xY—=m)ANA=n}

B :=[Y];
{X—=nm*xY—=m)ANA=n AB=nm}
[X] = B;
{X—=BxY—=m)ANA=nmAB=n}
[Y]:=A

{X—=BxY—AANA=nmAB=ny}

{X|—>n2*Y»—>n1}

Justifying these individual steps is now considerably more involved
than in Hoare logic. 2

Specification of swap

To illustrate these rules, consider the following code snippet:

Cowap = A:=[X];B:=[Y];[X] :=B;[Y] = A

We want to show that it swaps the values in the locations
referenced by X and Y, when X and Y do not alias:

{X—=nm*Y = nm} Cuap {X—m*xY—n}

&

Detailed proof outline for the first triple of swap

{X—=nx*Y—n}

{Ja. (X = m*xY —m)ANA=2a)}
{(X+—=>m*xY—m)ANA=a}
{X—=mANA=a)*xY — m}

{X—mANA=a}

A:=[X]

{X[a/Al—= m ANA=n}

{X—=mANA=n}
{X—=mANA=m)*Y — n}
{X—=m*xY—=m)ANA=n}

{Fa.(X—=m*xY = m)ANA=m)}

{(X+—=nm*xY—=m)ANA=n} 10

For reference: proof of the first triple of swap

Put another way:
To prove this first triple, we use the heap dereference rule to derive:

{X—=mANA=a} A:=[X] {X[a/A]—» m ANA=nm}

Then we existentially quantify the auxiliary variable a:

{FJa. X = m ANA=a} A:=[X] {3a. X[a/A] — m NA=ni}
Applying the rule of consequence, we obtain:

{X=m}A=[X]{X—>mANA=nm}

Since A := [X] does not modify Y, we can frame on Y — ny:

{X=m*xY—=m} A=[X]{X—>mAA=n)*xY — m}
Lastly, by the rule of consequence, we obtain:

X m*xY—=m} A=[X]{X—=mxY—m)ANA=mn}
11

Properties of separation logic
assertions

Proof of the first triple of swap (continued)

We relied on many properties of our assertion logic.

For example, to justify the first application of consequence, we
need to show that

Foy P=3Ja.(PANA=a)

and to justify the last application of the rule of consequence, we
need to show that:

I—B,((X+—>n1/\A:n1)*Yr—>n2):>((Xr—>n1*Yr—>n2)/\A:n1)

12

Syntax of assertions in separation logic

We now have an extended language of assertions, with a new
connective, the separating conjunction x:

P,Q == L|T|PAQ|PVQ|P=Q
| PxQ|emp
| Vx.P|3x.P |ty =t | p(t1,....tn) n>0

— is a predicate symbol of arity 2.

This is not just usual first-order logic anymore: this is an instance
of the classical first-order logic of bunched implication (which is
related to linear logic).

We will also require inductive predicates later.

We will take an informal look at what kind of properties hold and
do not hold in this logic. Using the semantics, we can prove the
properties we need as we go. 13

Properties of separating conjunction

Separating conjunction is a commutative and associative operator
with emp as a neutral element (like A was with T):

Fo PxQ & QxP

Fo (PxQ)*R< Px(Qx*R)

Fg Pxemp < P

Separating conjunction is monotone with respect to implication:

|_BIP1:>Q1 |_BIP2:>Q2
Fo P P = Q1% Q2

Separating conjunction distributes over disjunction:

Fa (PVQ)*R< (PxR)V(QxR)

14

Properties of separating conjunction (continued)

In linear separation logic, T is not a neutral element for the

separating conjunction: we only have
Fo P=PxT

but I/ P* T = P in general.

This means that we cannot “forget” about allocated locations:
we have g Px Q = Px T, but I/, Px Q = P in general.

To actually get rid of Q, we have to deallocate the corresponding

locations.

16

Properties of separating conjunction (continued)

Assertions in separation logic are not freely duplicable in general:
Ve P= PxP

in general.

For example, we want

Ve t1 = ta = (t1 —) * (t1 — t2)

This is the sense in which assertions in separation logic are
resources: we cannot just duplicate them, we have to account for

them.

15

Properties of pure assertions

An assertion is pure when it does not talk about the heap.
Syntactically, this means it does not contain emp or .

Separating conjunction and conjunction become more similar when

they involve pure assertions:
Fo PANQ = PxQ when P or Q is pure
Fo PxQ=PAQ when P and @ are pure
Fo (PAQ)*R< PA(Q*R) when Pis pure

Separating conjunction semi-distributes over conjunction (but not
the other direction in general):

Fa (PAQ)*R=(PxR)AN(Q=*R)

17

Axioms for the points-to assertion

We also need some axioms about +:

null cannot point to anything:
Fo Vi1, to. t1 — to = (t1 — t A tp # null)
locations combined by * are disjoint:

Fg Vi, to, t3, ta. (tl =t x t3 t4) = (tl — b xtz — g Nt 75 f3)

We need to repeat the non-duplicable assertions on the right-hand

side of the implication to not “lose” them.

18

Verifying ADTs

Separation logic is very well-suited for specifying and reasoning
about mutable data structures typically found in standard libraries
such as lists, queues, stacks, etc.

To illustrate this, we will specify and verify a library for working

with lists, implemented using null-terminated singly-linked lists,

using separation logic.

19

Verifying abstract data types

A list library implemented using singly-linked lists

First, we need to define a memory representation for our lists.

We will use null-terminated singly-linked list, starting from some
designated HEAD program variable that refers to the first element
of the linked list.

(We have to make do with this unique head in WHILE.)

For instance, we will represent the mathematical list [12,99,37] as
we did in the previous lecture:

HEAD ——{12]s}——{G0]} —{37[s} I

20

Representation predicates

To formalise the memory representation, separation logic uses
representation predicates that relate an abstract description of
the state of the data structure with its concrete memory
representations.

For our example, we want a predicate list(t,) that relates a
mathematical list, a;, with its memory representation starting at
location t (here, a, 3,. .. are just terms, but we write them
differently to clarify the fact that they refer to mathematical lists).

To define such a predicate formally, we need to extend the
assertion logic to reason about inductively defined predicates. We
probably also want to extend it to reason about mathematical lists

directly rather than through encodings. We will elide these details.
21

Representation predicates

The representation predicate allows us to specify the behaviour of
the list operations by their effect on the abstract state of the list.

For example, assuming that we represent the mathematical list «
at location HEAD, we can specify a push operation Cp, that
pushes the value of program variable X onto the list in terms of its
behaviour on the abstract state of the list as follows:

{list(HEAD, a) AN X = x} Cpush {list(HEAD, x ::) }

23

Representation predicates

We are going to define the list(t, «) predicate by induction on the
list o

e The empty list [] is represented as a null pointer:

list(t,]) £ (t = null) A emp
e The list h:: a (again, h is just a term) is represented by a
pointer to two consecutive heap cells that contain the head h
of the list and the location of the representation of the tail «
of the list, respectively:

def

list(t,h o) =3y. (t— h)x ((t+ 1) — y)*list(y, «)

(recall that t — h = ((t — h) A t # null))

Representation predicates

We can specify all the operations of the library in a similar manner:

{emp} Cnew {/iSt(HEADa [])}

list(HEAD, o) A
X =x

} Cpush {list(HEAD, x :: a)}
< list(HEAD, []) A) y
a=[AERR =1
a=h:pgA
Ik, 8. | list(HEAD,) A
RET =hANERR=0

{/I'SlL(HEAD7 Oé)} Cpop

{list(HEAD,)} Cetete {emp}

The emp in the postcondition of Cyejere €nsures that the locations
of the precondition have been deallocated.

22

24

Implementation of push

The push operation stores the HEAD pointer into a temporary
variable Y before allocating two consecutive locations for the new
list element, storing the start-of-block location to HEAD:

Coush = Y := HEAD; HEAD := alloc(X, Y)

We wish to prove that Cp,s, satisfies its intended specification:
{list(HEAD, o) AN X = x} Cpush {list(HEAD, x :: o) }

&

(We could use HEAD := alloc(X, HEAD) instead.)

25
For reference: detailed proof outline for the allocation
{list(Y,a) N X = x}
{3z. (list(Y,a) N X = x) N HEAD = z}
{(list(Y,a) N X = x) N HEAD = z}
{(list(Y,a) N X = x) « (HEAD = z A\ emp)}
{HEAD = z N\ emp}
HEAD := alloc(X, Y)
{HEAD s X[z/HEAD], Y[z/HEAD]}
{HEAD — X, Y}
{(list(Y,a) N X = x) « HEAD — X, Y}
{(list(Y,a) « HEAD — X, Y)A X = x)}
{3z. (list(Y,a) * HEAD — X, Y) A X = x)}
{(list(Y, @) « HEAD — X, Y) A X = x}
27

Proof outline for push

Here is a proof outline for the push operation:

{list(HEAD, a) AN X = x}

Y := HEAD;

{list(Y,a) N X = x}

HEAD := alloc(X, Y)

{(list(Y,) x HEAD — X, Y) A X = x}
{list(HEAD, X :: a) AN X = x}
{list(HEAD, x :: «)}

For the alloc step, we frame off list(Y,a) A X = x.

Implementation of delete

The delete operation iterates down over the list, deallocating
nodes until it reaches the end of the list.

Coelete = X = HEAD;
while X # null do
(Y := [X + 1]; dispose(X); dispose(X + 1); X :=Y)

We wish to prove that Cgelete satisfies its intended specification:

{list(HEAD,)} Celete {€mp}

For that, we need a suitable loop invariant. Q
To execute safely, X effectively needs to point to a list (which is «
only at the start).

26

28

Proof outline for delete

We can pick the invariant that we own the rest of the list:
{list(HEAD, a)}
X := HEAD:;
{list(X,)}
{3B. list(X,)}
while X # null do
(3B. list(X, B) A X # null}
(Y :=[X + 1]; dispose(X); dispose(X + 1); X :=Y)
{3B. list(X, 5)}
{3B. list(X, 8) A =(X # null)}
{emp}
We need to complete the proof outline for the body of the loop.

Linear separation logic and deallocation

If we did not have the two deallocations in the body of the loop,
we would have to do something with

(X = h)=(X+1—Y)

We can weaken that assertion to T, but not fully eliminate it.

We could weaken our loop invariant to 3. list(X,) * T:
the T would indicate the memory leak.

Linear separation logic forces us to deallocate.

31

Proof outline for the loop body of delete

To verify the loop body, we need a lemma to unfold the list
representation predicate in the non-null case:
{3B. list(X, B) A X # null}
{3h,y,v. X = h,y *list(y,v)}
Y =[X+1];
{3h,v. X = h, Y = list(Y,v)}
dispose(X); dispose(X + 1);
{Fy. list(Y,v)}
X:=Y
{3 list(X,~)}
{3B. list(X, 8)}

Reasoning about the abstract state

To specify that a command computes the maximum element of a
non-empty list, we do not need to change our representation
predicate: we can just define a max/ predicate on the
mathematical list to specify our C,,,x command:

maxl([x]) £ x

maxl(x : y =) = max(x, maxl(y :: a))

where max is the maximum function on integers,
and then have the following specification:

{list(HEAD, h :: &)} Crax {list(HEAD, h::) AN M = maxI(h ::)}

30

32

Implementation of max Representation predicate for partial lists

The max operation iterates over a non-empty list, computing its

maximum element: To talk about partial lists, we can define a representation predicate
_ for partial lists, plist(t1, «, tz), inductively:
C.max -
X := [HEAD + 1]; M := [HEAD]; plist(t1,[], t2) = (t1 =) A emp
while X # null do plist(ty, h = a, 1) = (3y. t1 = h,y * plist(y, a, tp))

(E := [X]; (if E > M then M := E else skip); X := [X + 1])

We wish to prove that C,.x satisfies its intended specification:
In particular, we can split lists in the middle:

{list(HEAD, h :: &)} Crax {list(HEAD,h :: o) AN M = maxI(h ::)}

b list(ty, 0 + B) < (Ty. plist(t1, «, y) * list(y, 5))
For that, we need a suitable loop invariant. However, the lists

represented starting at HEAD and X are not disjoint.

33 34

Proof outline for max Implementation of merge (of merge sort)

{list(X, a) list(Y, B) A sorted(c) A sorted(S)}
Z := alloc(0, null); P := Z;

We can use plist to express our invariant:

{list(HEAD, h :: o) } while X # null and Y # null do
X := [HEAD + 1];M := [HEAD]; U:=[X];V :=[Y];
{(plist(HEAD, [h], X) * list(X, a)) A M = max([h])} if U<V then ([P+1]:=X;X :=[X +1])
{38,7.h = a =B+~ A (plist(HEAD, B8, X) x list(X,~)) A M = maxl(53)} else ([P+1]:=Y;Y :=[Y +1]);
while X + null do Pi=[P+1]

(E := [X]; (if E > M then M := E else skip); X := [X + 1]) if X = null then ([P + 1] := Y; Y := null)
{list(HEAD, h :: &) A M = max(h - a)} else ([P + 1] := X; X := null);

P :=[Z + 1]; dispose(Z); dispose(Z + 1); Z := P

We only use plist in the proof, not in the specification. {3v. list(Z,~) A sorted(v) A permutation(y, o +)}

35 We need to find a suitable invariant Q 36

Specification of merge Invariant of merge

Again, we did not need to change our representation predicate: we . .
))]) We can now express our invariant:
only need to state that the mathematical list that is represented is

sorted: Jau, g, B1, B2, 77,71, a.
sorted([]) £ T a=oa1+H axAB =P+ B2 A
sorted([x]) £ T sorted () A sorted(3) A
sorted(x = y = a) Z x < y A sorted(y ::) sorted(y) Ay1 +[a] =0y A

permutation(~y, a1 + 1) A

permutation(a,) £ list(X, ap) * list(Y, B2) *
(a=p=Mv plist(Z, 1, P) * plist(P. [2],)
(Ba.o/, " a=[a] = o/ N =[a] :: B’ A permutation(c/, ') v

(Fa,b,v.a=[a] = [b] =y A B =[b] i [a]ly) V
(3. permutation(c,) A permutation(y, 3))

and that a list is a permutation of another:

It is a rather readable — albeit detailed — description of why the
program is correct.

37

Summary

We can specify abstract data types using representation predicates
which relate an abstract model of the state of the data structure .
with a concrete memory representation. Hoare |OglC

Lecture 6: Extending Hoare logic

We only need to know what the representation predicate is when

we implement and verify our library, not when we use it. This gives

us abstraction and modularity.
Jean Pichon-Pharabod jp622

L s . Uni ity of Cambrid
Justification of individual steps has to be made quite carefully niversity of -ambridee

given the unfamiliar interaction of connectives in separation logic,
_ _ CST Part Il — 2019/2020
but proof outlines remain very readable.

In the next lecture, we will look at some extensions of Hoare logic.

39

Recap

Last time, we looked at how separation logic enables modular

reasoning about pointers and mutable data structures.

In this lecture, we will consider extending Hoare logic in other
directions:

e We will look at extending partial correctness triples to enforce
termination, and at adapting the Hoare logic rules for partial
correctness to total correctness.

e We will look at how to handle (a crude form of) functions.

e We will look at how to reason about simple forms of

concurrency.

Total correctness

So far, we have concerned ourselves only with partial correctness,
and not with whether the program diverges.

However, in many contexts where we care about correctness
enough to use Hoare logic for verification, we also care about
termination.

Total correctness

Total correctness triples

There is no standard notation for total correctness triples;
we will use [P] C [Q].

The total correctness triple [P] C [Q] holds if and only if:

e assuming C is executed in an initial state satisfying P,
e then the execution terminates,

e and the terminal state satisfies Q.

Semantics of total correctness triples

A total correctness triple asserts that when the given command is
executed from an initial state that satisfies the precondition, then
any execution must terminate, and that any terminal state satisfies

the postcondition:
=PI ClQE

Vs.s e [P] = (

ﬁ(<C7 S> _>w) N
(Vs'.(C,s) —* (skip,s’) = s’ € [Q])

Examples of total correctness triples

e The following total correctness triple is valid:
E[X > 0] while X #£20do X :=X—-1[X =0]

the loop terminates when executed from an initial state where
X is non-negative.

e The following total correctness triple is not valid:
K [T] while X #0do X := X — 1 [X = 0]

the loop only terminates when executed from an initial state
where X is non-negative, but not when executed from an
initial state where X is negative.

Both of the corresponding partial correctness triples hold.

Semantics of total correctness triples

Since WHILE is safe and deterministic, this is equivalent to

Vs.s € [P] = 3s'.(C,s) —* (skip,s’) A s’ € [Q]

Assume s € [P] and (C,s) —* (skip,s’).

Since WHILE is safe and deterministic, =((C,s) —“). Moreover,
since WHILE is deterministic, for all s” such that
(C,s) —* (skip,s”), s" =5, so s" € [Q].

Corner cases of total correctness triples

[P] C [T]

e this says that C always terminates when executed from an
initial state satisfying P.

[T] C[Q]

e this says that C always terminates, and ends up in a state
where @ holds.

[P] € [1]

e this says that C always terminates when executed from an
initial state satisfying P, and ends up in a state where L

holds, which means that no state can satisfy P.

Rules for total correctness

while commands are the commands that introduce
non-termination.

Except for the loop rule, all the rules of Hoare logic
(from the first lecture) are sound for total correctness
as well as partial correctness.

F [P] skip [P] F[PIE/X]] X := E [P]

FIP] G [Q] F[Q] & [R] HIPAB] G [Q] FIPA-B] G [Q]

Unsoundness of the partial correctness loop rule for total cor-
rectness

The loop rule that we have for partial correctness is not sound for
total correctness:

Foo (TAT)=T F{T}skip{T} FoT=T
F{T AT} skip {T} :
Fro T=T F{T} while T do skip {T AT} FTA-T=1

- [P] Ci; G [R] - [P] if B then C; else G [Q)]

= P1 = P2 [[Pz] C [Qz] = Q2 = Ql
F [P C Q]

Loop variants

We need an alternative total correctness loop rule that ensures
that the loop always terminates.

The idea is to require that on each iteration of the loop, some
quantity that cannot decrease forever, the variant, decreases.

For example, there is no infinite descending chain of non-negative

integers. We will restrict ourselves to non-negative integer variants.

10

= {T} while T do skip {L}

If the loop rule were sound for total correctness, then this would

show that while T do skip always terminates in a state satisfying
1.

Loop rule for total correctness

In the rule below, the variant is t, and the fact that it decreases is
specified with an auxiliary variable n:

FIPABA(t=n)] C[PA(t<n) Froo PAB=1t>0
+ [P] while B do C [P A —B]

The second hypothesis ensures that the variant is non-negative.
The variant t does not have to occur in C.

11

Total correctness: factorial example

Consider the factorial computation we looked at before:

X=xAX>0AY =1]
while X Z0do (Y := Y x X; X := X — 1)
[Y =x]

By assumption, X is non-negative and decreases in each iteration
of the loop.

To verify that this factorial implementation terminates, we can
thus take the variant t to be X.

Total correctness, partial correctness, and termination

Informally: total correctness = partial correctness + termination.

This is captured formally by:

o If - {P} C {Q} and I [P] C [T], then F [P] C [Q].

e If [P] C [Q], then - {P} C {Q}.

It is often easier to show partial correctness and termination
separately.

12

14

Total correctness: factorial example

[X=xAXZ>0AY =1]
while X #0do (Y=Y x X; X =X —1)
[Y = x]

Take the invariant / to be Y x X! = x! A X >0, and the variant t
to be X.

Then we have to show that

o b (X=xAX>0AY =1)=|

e FIAXAOA(X=n]Y =Y xX; X:=X—1[IA(X<n)]
o Fro (| A=(X #0)) = Y = xl

o b | AX#0)=X>0

13
Showing termination separately
Termination is usually straightforward to show, but there are
examples where it is not.
For example, no one knows whether the program below terminates
for all values of X:
while X > 1 do
if ODD(X) then X :=3x X +1else X := X DIV 2
(The Collatz conjecture is that this terminates with X = 1.)
Microsoft’s T2 tool is used to prove termination of systems code.
15

Summary of total correctness

We have given rules for total correctness, similar to those for
partial correctness.

Only the loop rule differs: the premises of the loop rule require
that the loop body decreases a variant.

It is even possible to do amortised, asymptotic complexity analysis
in Hoare logic:

o A Fistful of Dollars, Armaél Guéneau et al., ESOP 2018

16
Functions
Consider an extension of our language with the following crude
form of functions where arguments are passed by reference :
Cuo=...|let F(Xq,...,Xp) =G in G| F(X1,...,X,)
{X=xAx>0}
let F(X,N) =
(if X >1then (X=X —-1,N:=Nx X; F(X,N))
else skip) in
N .= X:
F(X,N)
{N = x!}
17

Functions (not examinable)

Hoare Logic rules for functions

We need to extend our judgment - with a component F to keep
track of the pre- and postconditions of functions:

F(F)=(P,Q)

b AP[Zu)/ X1, - Zn)Xal} F(Z1,- .., Z0) {QIZ1) X1, - - Zn/Xa]}

FrFs e P GAQY Frrapon AP G {Q)

Fr {P} let F(Xl,...,Xn) =Cin G {Q}

We need to be careful to not have aliasing between program
variables. We assume that the ... assumptions deal with that.

18

Verifying an example using functions

{X =xAx>0}

let F(X,N)=
{X>0AN=Xx...xx}

if X > 1 then
{X>0AN=Xx...xxAX>1}
{X=1>0ANx(X—-1)=(X—-1)x...xx}

X =X-1;
{X>0ANXxX=Xx...xx}
N:=Nx X;
{X>0AN=Xx...xx}
F(X,N)

{N=1x...xx}
else
(X>0AN=Xx...xxA~(X>1)}
skip
{N=1x...xx}
{N=1x...xx}in

{X=xAx>0}
{X>0AX=Xx...xx}
N = X;
{X>0AN=Xx...xx}
F(X,N)

{N = x!}

Concurrency (not examinable)

Summary of functions

Hoare triples are a natural fit for specifying and verifying functions.

Recursive function pre- and postconditions are like loop invariants,
but with a “gap” between the entry and exit of the function (the
only gap between an iteration of a loop and the next is the guard):

let F(...)=
{P}

Concurrent composition

Consider an extension of our WHILE language with a concurrent
composition construct (also “parallel composition”), C; || Ca.

For our simple form of concurrency, the statement C || C; reduces
by interleaving execution steps of C; and C,, until both have

terminated:
(G, (s, h)) = (G, (s',)
(GG, (s.h) = (G G, (s 1))
(G, (s,) = (G, (s, M)
(Gl Gy (s,) = (G| G (s’ 1))

For instance, (X := 0| X := 1); print(X) is allowed to print 0 or 1.

Final states are now of the form F ::=skip | F1 || F2.

20

21

Concurrency disciplines

Adding concurrency complicates reasoning by introducing the
possibility of concurrent interference on shared state.

While separation logic does extend to reason about general
concurrent interference, we will focus on two common idioms of
concurrent programming with limited forms of interference:

e disjoint concurrency, and

e well-synchronised shared state.

Disjoint concurrency

Disjoint concurrency refers to multiple commands potentially
executing concurrently, but all working on disjoint state.

Parallel implementations of divide-and-conquer algorithms can

often be expressed using disjoint concurrency.

For instance, in a parallel merge sort, the recursive calls to merge

sort operate on disjoint parts of the underlying array.

22

23

Disjoint concurrency

Disjoint concurrency

The proof rule for disjoint concurrency requires us to split our
assertions into two disjoint parts, P; and P,, and give each parallel

command ownership of one of them:

F{P1} G {1} F{P} G {Q}
mod(C1) N FV (P2, Q) =0 mod(C) N FV (P, Q1) =0

FA{P1x P} G||C {Q1 % @}

The third hypothesis ensures that C; does not modify any program
variables used in the specification of (5, the fourth hypothesis

ensures the symmetric.

24

Disjoint concurrency example

Here is a simple example to illustrate two parallel increment
operations that operate on disjoint parts of the heap:

{X—3xY — 4}

{X — 3} {Y — 4}
A=[X];[X] =A+1| B:=[Y][Y]=B+1
{X — 4} {Y — 5}

{X—4xY — 5}

25

Well-synchronised shared state

Well-synchronised shared state refers to the common concurrency
idiom of using locks to ensure exclusive access to state shared

between multiple threads.

To reason about locking, concurrent separation logic extends
separation logic with lock invariants that describe the resources

protected by locks.
When acquiring a lock, the acquiring thread takes ownership of the

lock invariant and when releasing the lock, must give back

ownership of the lock invariant.

26

Well-synchronised concurrency

Well-synchronised shared state

To illustrate, consider a simplified setting with a single global lock.

We write =, {P} C {Q} to indicate that we can derive the given
triple assuming the lock invariant is /. We have the following rules:

FV(1) =0 FV(1) =0
F; {emp} lock {/ * locked} Fy {I % locked} unlock {emp}

The locked resource ensures the lock can only be unlocked by the
thread that currently has the lock.

27

Well-synchronised shared state example Well-synchronised shared state example

To illustrate, consider a program with two threads that both access
a number stored in shared heap cell at location X concurrently.

First, we need to define a lock invariant.
Thread A increments X by 1 twice, and thread B increments X by

2. The threads use a lock to ensure their accesses are The lock invariant needs to own the shared heap cell at location X

well-synchronised. and should express that it always contains an even number:

Assuming that location X initially contains an even number, we | = dn.x—=2xn

wish to prove that the contents of location X is still even after the

two concurrent threads have terminated. We have to use an indirection through X = x because / is not

allowed to mention program variables.

A non-synchronised interleaving would allow X to end up being

odd.
28 29
Well-synchronised shared state example Summary of concurrent separation logic
{X = x A emp} We have seen how concurrent separation logic supports reasoning
{X = x A emp} {X = x A emp}
lock. lock. about concurrent programs.
ock ' The rule for disjoint concurrency enables reasoning about the parts
{X = x A I« locked} {X =x A I« locked}

of the state that are not shared, and the rules for locks enable
{X =xA(3n.x+— 2 x n)x*locked}

A=[X][X] =A+1;
{X=xAN3n.x—2xn+1)xlocked} || C:=[X];[X] :=C+2;
B:=[X];[X] :=B+1;

{X =xA(3n.x — 2 x n) « locked}

reasoning about the parts of the state that are shared but guarded
by locks.

Concurrent separation logic can also be extended to support
reasoning about general concurrency interference.

{X = x Al % locked} {X =x A I« locked}
unlock unlock Papers of historical interest:
{X = x A emp} {X = x A emp}
{X = x A emp} e Peter O'Hearn. Resources, Concurrency and Local Reasoning.

We can temporarily violate the invariant when holding the lock. 2 2

Overall summary

We have seen that Hoare logic (separation logic, when we have
pointers) enables specifying and reasoning about programs.

. Reasoning remains close to the syntax, and captures the intuitions
Conclusion we have about why programs are correct.

It's all about invariants!

32

