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Motivation

We often fail to write programs that meet our expectations, which

we phrased in their specifications:

• we fail to write programs that meet their specification;

• we fail to write specifications that meet our expectations.

Addressing the former issue is called verification, and addressing

the latter is called validation.

desired goalspecification

program

.c
verification validation

In practice, verification and validation feed back into each other.
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Background

There are many verification & validation techniques of varying

coverage, expressivity, level of automation, ..., for example:

typing

testing
model

checking program

logics
operational

reasoning

expressivity (of safety properties)

automation coverage:

complete

bounded

sparse
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Choice of technique

More expressive and complete techniques lead to more confidence.

It is important to choose the right set of verification & validation

techniques for the task at hand:

• verification can be very expensive and time-consuming.

• verified designs may still not work;

• verification can give a false sense of security;

More heavyweight techniques should be used together with testing,

not as a replacement.

4

Course structure

This course is about two techniques, their underlying ideas, how to

use them, and why they are correct:

• Hoare logic (Lectures 1-6);

• Model checking (Lectures 7-12).

These are not just techniques, but also ways of thinking about

programs.
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Hoare logic

Lecture plan

Lecture 1: Informal introduction to Hoare logic

Lecture 2: Examples, loop invariants, and mechanisation

Lecture 3: Formal semantics and properties of Hoare logic

Lecture 4: Introduction to separation logic

Lecture 5: Verifying abstract data types in separation logic

Lecture 6: Extending Hoare logic
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Hoare logic

Hoare logic is a formalism for relating the initial and terminal

state of a program.

Hoare logic was invented in 1969 by Tony Hoare, inspired by earlier

work of Robert Floyd.

There was little-known prior work by Alan Turing in 1949.

Hoare logic is still an active area of research.
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Partial correctness triples

Hoare logic uses partial correctness triples (also “Hoare triples”)

for specifying and reasoning about the behaviour of programs:

{P} C {Q}

is a logical statement about a command C ,

where P and Q are state predicates:

• P is called the precondition, and describes the initial state;

• Q is called the postcondition, and describes the terminal state.
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Components of a Hoare logic

To define a Hoare logic, we need four main components:

• the programming language that we want to reason about:

its syntax and dynamic (e.g. operational) semantics;

• an assertion language for defining state predicates:

its syntax and an interpretation;

• an interpretation of Hoare triples;

• a (sound) syntactic proof system for deriving Hoare triples.

This lecture will introduce each component informally.

In the coming lectures, we will cover the formal details.
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The WHILE language



Commands of the WHILE language

WHILE is the prototypical imperative language. Programs consist

of commands, which include branching, iteration, and assignment:

C ::= skip

| C1;C2

| X := E

| if B then C1 else C2

| while B do C

Here, X is a variable, E is an arithmetic expression, which

evaluates to an integer, and B is a boolean expression, which

evaluates to a boolean.

States are mappings from variables to integers, Var→ Z.
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Expressions of the WHILE language

The grammar for arithmetic expressions and boolean expressions

includes the usual arithmetic operations and comparison operators,

respectively:

E ::= N | X | E1 + E2 arithmetic expressions

| E1 − E2 | E1 × E2 | · · ·

B ::= T | F | E1 = E2 boolean expressions

| E1 ≤ E2 | E1 ≥ E2 | · · ·

Expressions do not have side effects.
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Assertions and specifications

The assertion language

Assertions (also “state predicates”) P,Q, . . . include boolean

expressions (which can contain variables), combined using the

usual logical operators: ∧, ∨, ¬, ⇒, ∀, ∃, . . .

For instance, the predicate X = Y + 1 ∧ Y > 0 describes states in

which the variable Y contains a positive value, and variable X

contains a value that is is equal to the value that Y contains

plus 1.
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Informal semantics of partial correctness triples

The partial correctness triple {P} C {Q} holds semantically,

written |= {P} C {Q}, if and only if:

• assuming C is executed in an initial state satisfying P,

• and assuming moreover that this execution terminates,

• then the terminal state of the execution satisfies Q.

For instance,

• |= {X = 1} X := X + 1 {X = 2} holds;

• |= {X = 1} X := X + 1 {X = 3} does not hold.
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Partial correctness

Partial correctness triples are called partial because they only

specify the intended behaviour of terminating executions.

For instance, |= {X = 1} while X > 0 do X := X + 1 {X = 0}
holds, because the given program never terminates when executed

from an initial state where X is 1.

Later, we will see that it is also possible to have total correctness

triples that strengthen partial correctness triples to require

termination.
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Examples of specifications

Corner cases of partial correctness triples

{⊥} C {Q}

• this says nothing about the behaviour of C ,

because ⊥ never holds for any initial state.

{>} C {Q}

• this says that whenever C halts, Q holds.

{P} C {>}

• this holds for every precondition P and command C ,

because > always holds in the terminate state.
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The need for auxiliary variables

How can we specify that a program C computes the maximum of

two variables X and Y , and stores the result in a variable Z?

Is this a good specification for C?

{>} C {(X ≤ Y ⇒ Z = Y ) ∧ (Y ≤ X ⇒ Z = X )}

No! Take C to be

X := 0;Y := 0;Z := 0

Then C satisfies the above specification!

The postcondition should refer to the initial values of X and Y .
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Auxiliary variables

In Hoare logic, we use auxiliary variables (also “ghost variables”,

or “logical variables”), which are not allowed to occur in the

program, to refer to the initial values of variables in postconditions.

We call the variables that can occur in programs program

variables.

Notation: program variables are uppercase, and auxiliary variables

are lowercase.

Using auxiliary variables, we can specify C with

{X = x ∧ Y = y} C {(x ≤ y ⇒ Z = y) ∧ (y ≤ x ⇒ Z = x)}.
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Using auxiliary variables

The previous specification still allows C to change X and Y , which

may not be what we want. We can prevent that with

{X = x ∧ Y = y} C
{

X = x ∧ Y = y ∧
(x ≤ y ⇒ Z = y) ∧ (y ≤ x ⇒ Z = x)

}

Using auxiliary variables, we can express that if C terminates, then

it exchanges the values of variables X and Y :

{X = x ∧ Y = y} C {X = y ∧ Y = x}
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Examples of partial correctness triples

C computes the Euclidian division of X by Y into Q and R:

{X = x ∧ Y = y ∧ x ≥ 0 ∧ y > 0} C {x = Q × y + R ∧ 0 ≤ R < y}

C tests whether P is prime:

{P = p ∧ p > 0} C
{

(R = 0⇒ ∃q, r . q > 1 ∧ r > 1 ∧ p = q × r) ∧
(R = 1⇒ ∀q, r . q > 1 ∧ r > 1⇒ p 6= q × r)

}
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Formal proof system for Hoare logic

Hoare logic

We will now introduce a natural deduction proof system for partial

correctness triples due to Tony Hoare.

The logic consists of a set of inference rule schemas for deriving

consequences from premises.

If S is a statement, we will write ` S to mean that the statement

S is derivable. We will have two derivability judgements:

• `FOL P, for derivability of assertions; and

• ` {P} C {Q}, for derivability of partial correctness triples.
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Inference rule schemas

The inference rule schemas of Hoare logic will be specified as

follows:

` S1 · · · ` Sn

` S

This expresses that S may be deduced from assumptions S1, ..., Sn.

These are schemas that may contain meta-variables.
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Proof trees

A proof tree for ` S in Hoare logic is a tree with ` S at the root,

constructed using the inference rules of Hoare logic, where all

nodes are shown to be derivable (so leaves require no further

derivations):

` S1 ` S2

` S3 ` S4

` S

We typically write proof trees with the root at the bottom.
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Formal proof system for Hoare logic

` {P} skip {P} ` {P[E/X ]} X := E {P}

` {P} C1 {Q} ` {Q} C2 {R}
` {P} C1;C2 {R}

` {P ∧ B} C1 {Q} ` {P ∧ ¬B} C2 {Q}
` {P} if B then C1 else C2 {Q}

` {P ∧ B} C {P}
` {P} while B do C {P ∧ ¬B}

`FOL P1 ⇒ P2 ` {P2} C {Q2} `FOL Q2 ⇒ Q1

` {P1} C {Q1}
23

The skip rule

` {P} skip {P}

P

The skip rule expresses that any assertion that holds before skip is

executed also holds afterwards.

P is a meta-variable ranging over an arbitrary state predicate.

For instance, ` {X = 1} skip {X = 1}.
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The assignment rule

` {P[E/X ]} X := E {P}

P

Here, P[E/X ] means the assertion P with the expression E

substituted for all occurrences of the variable X .

For instance,

` {X + 1 = 2} X := X + 1 {X = 2}
` {Y + X = Y + 10} X := Y + X {X = Y + 10}
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The rule of consequence

`FOL P1 ⇒ P2 ` {P2} C {Q2} `FOL Q2 ⇒ Q1

` {P1} C {Q1}

P
The rule of consequence allows us to strengthen preconditions and

weaken postconditions.

Note: the `FOL P ⇒ Q hypotheses are a different kind of judgment.

For instance, from ` {X + 1 = 2} X := X + 1 {X = 2},
we can deduce ` {X = 1} X := X + 1 {X = 2}.
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Sequential composition

` {P} C1 {Q} ` {Q} C2 {R}
` {P} C1;C2 {R}

P
If the postcondition of C1 matches the precondition of C2,

we can derive a specification for their sequential composition.

For example, if we have deduced:

• ` {X = 1} X := X + 1 {X = 2} and

• ` {X = 2} X := X × 2 {X = 4}

we may deduce ` {X = 1} X := X + 1;X := X × 2 {X = 4}. 27

The conditional rule

` {P ∧ B} C1 {Q} ` {P ∧ ¬B} C2 {Q}
` {P} if B then C1 else C2 {Q}

P
For instance, to prove that

` {>} if X ≥ Y then Z := X else Z := Y {Z = max(X ,Y )}

it suffices to prove that ` {>∧X ≥ Y } Z := X {Z = max(X ,Y )}
and ` {> ∧ ¬(X ≥ Y )} Z := Y {Z = max(X ,Y )}.
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The loop rule

` {P ∧ B} C {P}
` {P} while B do C {P ∧ ¬B}

P
The loop rule says that

• if P is an invariant of the loop body when the loop condition

succeeds, then P is an invariant for the whole loop, and

• if the loop terminates, then the loop condition failed.

We will return to be problem of finding loop invariants.

29
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Example: integer square root algorithm

We can use these rules to verify a very inefficient integer square

root algorithm:

{X = x ∧ x ≥ 0}
S = 0; while (S + 1)× (S + 1) ≤ X do S := S + 1

{S × S ≤ x ∧ x < (S + 1)× (S + 1)}

P
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Example: integer square root algorithm

We can use the following invariant:

X = x ∧ x ≥ 0 ∧ S × S ≤ x

∇1 =

...

`FOL X = x ∧ x ≥ 0 ∧ S × S ≤ x ∧ (S + 1)× (S + 1) ≤ X ⇒ X = x ∧ x ≥ 0 ∧ (S + 1)× (S + 1) ≤ X ` {X = x ∧ x ≥ 0 ∧ (S + 1)× (S + 1) ≤ X} S := S + 1 {X = x ∧ x ≥ 0 ∧ S × S ≤ x}

...

`FOL X = x ∧ x ≥ 0 ∧ S × S ≤ x ⇒ X = x ∧ x ≥ 0 ∧ S × S ≤ x

` {X = x ∧ x ≥ 0 ∧ S × S ≤ x ∧ (S + 1)× (S + 1) ≤ X} S := S + 1 {X = x ∧ x ≥ 0 ∧ S × S ≤ x}

∇2 =

...

`FOL X = x ∧ x ≥ 0 ∧ S × S ≤ x ⇒ X = x ∧ x ≥ 0 ∧ S × S ≤ x

∇1

` {X = x ∧ x ≥ 0 ∧ S × S ≤ x ∧ (S + 1)× (S + 1) ≤ X} S := S + 1 {X = x ∧ x ≥ 0 ∧ S × S ≤ x}
` {X = x ∧ x ≥ 0 ∧ S × S ≤ x} while (S + 1)× (S + 1) ≤ X do S := S + 1 {X = x ∧ x ≥ 0 ∧ S × S ≤ x ∧ ¬((S + 1)× (S + 1) ≤ X )}

...

`FOL X = x ∧ x ≥ 0 ∧ S × S ≤ x ∧ ¬((S + 1)× (S + 1) ≤ X )⇒ S × S ≤ x ∧ x < (S + 1)× (S + 1)

` {X = x ∧ x ≥ 0 ∧ S × S ≤ x} while (S + 1)× (S + 1) < X do S := S + 1 {S × S ≤ x ∧ x < (S + 1)× (S + 1)}

...

`FOL X = x ∧ x ≥ 0⇒ X = x ∧ x ≥ 0 ∧ 0× 0 ≤ x ` {X = x ∧ x ≥ 0 ∧ 0× 0 ≤ x} S := 0 {X = x ∧ x ≥ 0 ∧ S × S ≤ x}

...

`FOL X = x ∧ x ≥ 0 ∧ S = 0⇒ X = x ∧ x ≥ 0 ∧ S × S ≤ x

` {X = x ∧ x ≥ 0} S := 0 {X = x ∧ x ≥ 0 ∧ S × S ≤ x}
∇2

` {X = x ∧ x ≥ 0 ∧ S × S ≤ x} while (S + 1)× (S + 1) ≤ X do S := S + 1 {S × S ≤ x ∧ x < (S + 1)× (S + 1)}
` {X = x ∧ x ≥ 0} S := 0; while (S + 1)× (S + 1) ≤ X do S := S + 1 {S × S ≤ x ∧ x < (S + 1)× (S + 1)}

Not very practical... we will see how to fix that in the next lecture.
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The assignment rule

The assignment rule reads right-to-left; could we use another rule

that reads more easily?

Consider the following plausible alternative assignment rule:

` {P} X := E {P[E/X ]}

We can instantiate this rule to obtain the following triple, which

does not hold:

` {X = 0} X := 1 {1 = 0}

32
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Applications

• Facebook’s bug-finding Infer tool:

http://fbinfer.com/

• The Rust programming language:

https://www.rust-lang.org/

• Verification of the seL4 microkernel assembly:

https://entropy2018.sciencesconf.org/data/myreen.pdf
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Tools

• For Hoare Logic:

• Why3 http://why3.lri.fr/

Sedgewick in Why3:

http://pauillac.inria.fr/~levy/why3/index.html

• Boogie https://github.com/boogie-org/boogie

• For separation logic:

• VeriFast https://github.com/verifast/verifast

• The Iris higher-order concurrent separation logic framework,

implemented and verified in a proof assistant:

http://iris-project.org/
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Summary

Hoare logic is a formalism for reasoning about the behaviour of

programs by relating their initial and terminal state.

It uses an assertion logic based on first-order logic to reason about

program states, and defines Hoare triples on top of it to reason

about the programs.

In the next lecture, we will use Hoare logic to reason about

example programs.
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Papers of historical interest

• C. A. R. Hoare. An axiomatic basis for computer

programming. 1969.

• R. W. Floyd. Assigning meanings to programs. 1967.

• A. M. Turing. Checking a large routine. 1949.
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Recap

In the previous lecture, we introduced Hoare logic, which uses

Hoare triples to specify the behaviour of imperative programs by

relating the initial state of a program with its terminate state.

Today, we will use Hoare logic to specify and verify some simple

programs.

1

Proof outlines

Proof outlines

Derivations in Hoare logic are often more readable when given as

proof outlines instead of proof trees. A proof outline of a

command is an annotation of the command with the pre- and

postcondition of each sub-command. . .

Instead of writing

` {(X + 1)× 2 = 4} X := X + 1 {X × 2 = 4} ` {X × 2 = 4} X := X × 2 {X = 4}
` {(X + 1)× 2 = 4} X := X + 1; X := X × 2 {X = 4}

we can write

{(X + 1)× 2 = 4}
X := X + 1;

{X × 2 = 4}
X := X × 2

{X = 4} 2



Proof outlines

. . .and where sequences of assertions indicate uses of the rule of

consequence. We elide sides of the rule of consequence that do not

change the assertion. We also elide (but need to check!) the

derivations of implications between assertions.

Instead of writing
...

`FOL X = 1⇒ X + 1 = 2 ` {X + 1 = 2} X := X + 1 {X = 2}

...

`FOL X = 2⇒ X = 2

` {X = 1} X := X + 1 {X = 2}
we can write

{X = 1}
{X + 1 = 2}
X := X + 1

{X = 2}
3

Proof outline for the integer square root

{X = x ∧ x ≥ 0}
{X = x ∧ x ≥ 0 ∧ 0× 0 ≤ x}
S := 0;

{X = x ∧ x ≥ 0 ∧ S × S ≤ x}
while (S + 1)× (S + 1) ≤ X do

{X = x ∧ x ≥ 0 ∧ S × S ≤ x ∧ (S + 1)× (S + 1) ≤ X}
{X = x ∧ x ≥ 0 ∧ (S + 1)× (S + 1) ≤ x}
S := S + 1

{X = x ∧ x ≥ 0 ∧ S × S ≤ x}
{X = x ∧ x ≥ 0 ∧ S × S ≤ x ∧ ¬((S + 1)× (S + 1) ≤ X )}
{X = x ∧ S × S ≤ x ∧ x < (S + 1)× (S + 1)}

4

Factorial

Specifying a program computing factorial

We wish to verify that the following command computes the

factorial of X , and stores the result in Y :

while X 6= 0 do (Y := Y × X ; X := X − 1)

First, we need to formalise the specification:

• Factorial is only defined for non-negative numbers,

so X should be non-negative in the initial state.

• The terminal state of Y should be equal to the factorial of the

initial state of X .

• The implementation assumes that Y is equal to 1 initially.

5



A specification of a program computing factorial

This corresponds to the following partial correctness triple:

{X = x ∧ X ≥ 0 ∧ Y = 1}
while X 6= 0 do (Y := Y × X ; X := X − 1)

{Y = x!}

Here, ‘!’ denotes the usual mathematical factorial function.

Note that we used an auxiliary variable x to record the initial value

of X and relate the terminal value of Y with the initial value of X .

6

How does one find a good invariant?

...

`FOL P ′ ⇒ P

` {P ∧ B} C {P}
` {P} while B do C {P ∧ ¬B}

...

`FOL P ∧ ¬B ⇒ Q ′

` {P ′} while B do C {Q ′}

Here, P is an invariant, meaning that it

• must hold initially;

• must be preserved by the loop body when B is true; and

Moreover, to be useful, it must imply the desired postcondition

when B is false.

7

Analysing the factorial implementation

{X = x ∧ X ≥ 0 ∧ Y = 1}
while X 6= 0 do (Y := Y × X ; X := X − 1)

{Y = x!}

How does this program work? P
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Observations about the factorial implementation

{X = x ∧ X ≥ 0 ∧ Y = 1}
while X 6= 0 do (Y := Y × X ; X := X − 1)

{Y = x!}

iteration Y X

0 1 x

1 1× x x − 1

2 1× x × (x − 1) x − 2

3 1× x × (x − 1)× (x − 2) x − 3
...

...
...

x 1× x × (x − 1)× (x − 2)× · · · × 1 0

Y is the value computed so far, and X ! remains to be computed.
9



An invariant for the factorial implementation

{X = x ∧ X ≥ 0 ∧ Y = 1}
while X 6= 0 do (Y := Y × X ; X := X − 1)

{Y = x!}

Take I to be Y × X ! = x! ∧ X ≥ 0.

(We need X ≥ 0 for X ! to make sense.) P
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Proof outline for the implementation of factorial

{X = x ∧ X ≥ 0 ∧ Y = 1}
{Y × X ! = x! ∧ X ≥ 0}
while X 6= 0 do

({Y × X ! = x! ∧ X ≥ 0 ∧ X 6= 0}
{(Y × X )× (X − 1)! = x! ∧ (X − 1) ≥ 0}
Y := Y × X ;

{Y × (X − 1)! = x! ∧ (X − 1) ≥ 0}
X := X − 1

{Y × X ! = x! ∧ X ≥ 0})
{Y × X ! = x! ∧ X ≥ 0 ∧ ¬(X 6= 0)}
{Y = x!}
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Fibonacci

A verified Fibonacci implementation

We wish to verify that the following command computes the N-th

Fibonacci number (indexed from 1), and stores the result in Y .

This corresponds to the following partial correctness Hoare triple:

{1 ≤ N ∧ N = n}
X = 0;

Y := 1;

Z := 1;

while Z < N do

(Y := X + Y ; X := Y − X ; Z := Z + 1)

{Y = fib(n)}

Recall that the Fibonacci sequence is defined by

fib(1) = 1, fib(2) = 1, ∀n > 2. fib(n) = fib(n − 1) + fib(n − 2)

Moreover, for convenience, we assume fib(0) = 0.
12



A verified Fibonacci implementation

Reasoning about the initial assignment of constants is easy.

How can we verify the loop?

{X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n}
while Z < N do

(Y := X + Y ; X := Y − X ; Z := Z + 1)

{Y = fib(n)}

First, we need to understand the implementation. P
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Observations about the implementation of Fibonacci

{X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n}
while Z < N do

(Y := X + Y ; X := Y − X ; Z := Z + 1)

{Y = fib(n)}

iteration 0 1 2 3 4 5 6 · · · n − 1

Y 1 1 2 3 5 8 13 · · · fib(n)

X 0 1 1 2 3 5 8 · · · fib(n − 1)

Z 1 2 3 4 5 6 7 · · · n
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Analysing the implementation of Fibonacci

{X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n}
while Z < N do

(Y := X + Y ; X := Y − X ; Z := Z + 1)

{Y = fib(n)}
Z is used to count loop iterations, and Y and X are used to

compute the Fibonacci number:

Y contains the current Fibonacci number,

and X contains the previous Fibonacci number.

This suggests trying the invariant

Y = fib(Z ) ∧ X = fib(Z − 1) ∧ Z > 0.

(We need Z > 0 for fib(Z − 1) to make sense.)
15

Trying an invariant for the Fibonacci implementation

{X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n}
{I}
while Z < N do

(Y := X + Y ; X := Y − X ; Z := Z + 1)

{I ∧ ¬(Z < N)}
{Y = fib(n)}

Take I ≡ Y = fib(Z ) ∧ X = fib(Z − 1) ∧ Z > 0.

Then we have to prove:

• `FOL (X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n)⇒ I

• ` {I ∧ (Z < N)} Y := X + Y ; X := Y − X ; Z := Z + 1 {I}
• `FOL (I ∧ ¬(Z < N))⇒ Y = fib(n)

Do all these hold? Only the first two do. (Exercise.)
16



A better invariant for the Fibonacci implementation

{X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n}
while Z < N do

(Y := X + Y ; X := Y − X ; Z := Z + 1)

{Y = fib(n)}
While Y = fib(Z ) ∧ X = fib(Z − 1) ∧ Z > 0 is an invariant,

it is not strong enough to establish the desired postcondition.

We need to know that when the loop terminates, Z = n.

It suffices to strengthen the invariant to:

Y = fib(Z ) ∧ X = fib(Z − 1) ∧ Z > 0 ∧ Z ≤ N ∧ N = n

P
17

Proof outline for the loop of the Fibonacci implementation

{X = 0 ∧ Y = 1 ∧ Z = 1 ∧ 1 ≤ N ∧ N = n}
{Y = fib(Z ) ∧ X = fib(Z − 1) ∧ Z > 0 ∧ Z ≤ N ∧ N = n}
while Z < N do

({Y = fib(Z ) ∧ X = fib(Z − 1) ∧ Z > 0 ∧ Z ≤ N ∧ N = n ∧ Z < N}
{X + Y = fib(Z + 1) ∧ (X + Y )− X = fib(Z ) ∧ Z + 1 > 0 ∧ Z + 1 ≤ N ∧ N = n}
Y := X + Y ;

{Y = fib(Z + 1) ∧ Y − X = fib(Z ) ∧ Z + 1 > 0 ∧ Z + 1 ≤ N ∧ N = n}
X := Y − X ;

{Y = fib(Z + 1) ∧ X = fib(Z ) ∧ Z + 1 > 0 ∧ Z + 1 ≤ N ∧ N = n}
{Y = fib(Z + 1) ∧ X = fib((Z + 1)− 1) ∧ Z + 1 > 0 ∧ Z + 1 ≤ N ∧ N = n}
Z := Z + 1

{Y = fib(Z ) ∧ X = fib(Z − 1) ∧ Z > 0 ∧ Z ≤ N ∧ N = n})
{Y = fib(Z ) ∧ X = fib(Z − 1) ∧ Z > 0 ∧ Z ≤ N ∧ N = n ∧ ¬(Z < N)}
{Y = fib(n)} 18

Verification condition generation

Architecture of a verifier

Program to be verified & spec.

Program with loop invariants & spec.

Set of verification conditions

Reduced set of VCs

End of proof

human expert

VC generator

automated

theorem prover

human expert

19



Verification condition generation

Finding invariants is difficult (as we will see in the next lecture).

However, we can write a simple recursive function VC that takes a

precondition P, an annotated program C in which loop invariants

are provided as annotations, and a postcondition Q, and returns a

set of assertions (called “verification conditions”) such that, if they

all hold, then {P} |C| {Q} holds (where |C| is C without the

annotations).

Formally,

∀C,P,Q. (∀R ∈ VC (P, C,Q). `FOL R)⇒ (` {P} |C| {Q})

3
20

Summary

We have used Hoare logic to verify a few simple examples, and at

how finding invariants is the core difficulty.

Writing out full proof trees or even proof outlines by hand is

tedious and error-prone, even for simple programs.

However, the trivia can be mechanised, leaving only finding

invariants and proving difficult implications to the user.

In the next lecture, we will formalise the intuitions we gave in the

first lecture, and prove soundness of Hoare logic.
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Recap

In the previous lecture, we specified and verified some example

programs using the syntactic rules of Hoare logic that we

introduced in the first lecture.

In this lecture, we will prove the soundness of the syntactic rules,

and look at some other properties of Hoare logic.

1



Semantics of Hoare logic

Recall: to define a Hoare logic, we need four main components:

• the programming language that we want to reason about:

its syntax and dynamic semantics;

• an assertion language for defining state predicates:

its syntax and an interpretation;

• an interpretation |= of Hoare triples;

• a (sound) syntactic proof system ` for deriving Hoare triples.

2

Dynamic semantics of WHILE

Dynamic semantics of WHILE

The dynamic semantics of WHILE will be given in the form of a

small-step operational semantics (as in Part IB Semantics).

The states of the small-step operational semantics, called

configurations, are pairs of a command C and a stack s.

We will abuse terminology, and also refer to s as the state.

The step relation 〈C , s〉 → 〈C ′, s ′〉 expresses that configuration

〈C , s〉 can take a small step to become configuration 〈C ′, s ′〉.

We will write →∗ for the reflexive, transitive closure of →.

3

Dynamic semantics of WHILE

Stacks are functions from variables to integers:

s ∈ Stack
def
= Var→ Z

These are total functions, and define the current value of every

program variable and auxiliary variable.

This models WHILE with arbitrary precision integer arithmetic.

A more realistic model might use 32-bit integers and require

reasoning about overflow, etc.

4



Dynamic semantics of expressions: first approach

We could have two small-step reduction relations for arithmetic

expressions and boolean expressions, 〈E , s〉 → 〈E ′, s ′〉 and

〈B, s〉 → 〈B ′, s ′〉:

〈X , s〉 → 〈s(X ), s〉
N1 + N2 = N

〈N1 + N2, s〉 → 〈N, s〉

〈E1, s〉 → 〈E ′1, s ′〉
〈E1 + E2, s〉 → 〈E ′1 + E2, s

′〉
〈E2, s〉 → 〈E ′2, s ′〉

〈N1 + E2, s〉 → 〈N1 + E ′2, s
′〉

. . .

5

Dynamic semantics of expressions: our approach

However, expressions in WHILE do not change the stack, and do

not get stuck:

∀E , s. ∃N. 〈E , s〉 →∗ 〈N, s〉

(and the equivalent for B).

We take advantage of this, and specify the dynamic semantics of

expressions in a way which makes our setup easier (the results are

the same, but execution can take fewer steps):

We use functions E [[E ]](s) and B[[B]](s) to evaluate arithmetic

expressions and boolean expressions in a given stack s, respectively.

6

Semantics of expressions

E [[E ]](s) evaluates arithmetic expression E to an integer in stack s:

E [[←]](⇐) : Exp× Stack→ Z

E [[N]](s)
def
= N

E [[X ]](s)
def
= s(X )

E [[E1 + E2]](s)
def
= E [[E1]](s) + E [[E2]](s)

...

This semantics is too simple to handle operations such as division,

which fails to evaluate to an integer on some inputs.

For example, if s(X ) = 3 and s(Y ) = 0, then

E [[X + 2]](s) = E [[X ]](s) + E [[2]](s) = 3 + 2 = 5, and

E [[Y + 4]](s) = E [[Y ]](s) + E [[4]](s) = 0 + 4 = 4.
7

Semantics of boolean expressions

B[[B]](s) evaluates boolean expression B to a boolean in stack s:

B[[←]](⇐) : BExp× Stack→ B

B[[T]](s)
def
= >

B[[F]](s)
def
= ⊥

B[[E1 ≤ E2]](s)
def
=




> if E [[E1]](s) ≤ E [[E2]](s)

⊥ otherwise

...

For example, if s(X ) = 3 and s(Y ) = 0, then

B[[X + 2 ≥ Y + 4]](s) = E [[X + 2]](s) ≥ E [[Y + 4]](s) = 5 ≥ 4 = >.

8



Small-step operational semantics of WHILE

E [[E ]](s) = N

〈X := E , s〉 → 〈skip, s[X 7→ N]〉

〈skip;C2, s〉 → 〈C2, s〉
〈C1, s〉 → 〈C ′1, s ′〉

〈C1;C2, s〉 → 〈C ′1;C2, s
′〉

B[[B]](s) = >
〈if B then C1 else C2, s〉 → 〈C1, s〉

B[[B]](s) = ⊥
〈if B then C1 else C2, s〉 → 〈C2, s〉

B[[B]](s) = ⊥
〈while B do C , s〉 → 〈skip, s〉

B[[B]](s) = >
〈while B do C , s〉 → 〈C ; while B do C , s〉 9

Properties of WHILE

Safety and determinacy

A configuration 〈C , s〉 is stuck, written 〈C , s〉 6→, when

∀C ′, s ′.¬(〈C , s〉 → 〈C ′, s ′〉).

The dynamic semantics of WHILE is safe, in that a configuration

is stuck exactly when its command is skip:

(〈C , s〉 6→)⇔ C = skip

This is true for any syntactically well-formed command, without

any further typing! (Because our language is very simple.)

The dynamic semantics of WHILE is deterministic:

〈C , s〉 → 〈C ′, s ′〉 ∧ 〈C , s〉 → 〈C ′′, s ′′〉 ⇒ C ′′ = C ′ ∧ s ′′ = s ′

10

Non-termination

It is possible to have an infinite sequence of steps starting from a

configuration 〈C , s〉: 〈C , s〉 has a non-terminating execution (also

“can diverge”), written 〈C , s〉 →ω, when there exists a sequence of

commands (Cn)n∈N and a sequence of stacks (sn)n∈N such that

C0 = C ∧ s0 = s ∧ ∀n ∈ N. 〈Cn, sn〉 → 〈Cn+1, sn+1〉
Note that

〈C , s〉 →ω ⇔ ∃C ′, s ′. 〈C , s〉 → 〈C ′, s ′〉 ∧ 〈C ′, s ′〉 →ω

Because WHILE is safe and deterministic, a configuration can

take steps to skip if and only if it does not diverge:

(∃s ′. 〈C , s〉 →∗ 〈skip, s ′〉)⇔ ¬(〈C , s〉 →ω)

This can break down with a non-deterministic language.

11



Substitution

We use E1[E2/X ] to denote E1 with E2 substituted for every

occurrence of program variable X :

← [⇐ / ⇚] : Expr × Expr × Var → Expr

N[E2/X ]
def
= N

Y [E2/X ]
def
=

{
if Y = X E2

if Y 6= X Y

(Ea + Eb)[E2/X ]
def
= (Ea[E2/X ]) + (Eb[E2/X ])

...

For example, (X + (Y × 2))[3 + Z/Y ] = X + ((3 + Z )× 2).

12

Substitution property for expressions

We will use the following expression substitution property later:

E [[E1[E2/X ]]](s) = E [[E1]](s[X 7→ E [[E2]](s)])

The expression substitution property follows by induction on E1.

Case E1 ≡ N:

E [[N[E2/X ]]](s) = E [[N]](s) = N = E [[N]](s[X 7→ E [[E2]](s)])

13

Proof of substitution property: variable case

E [[E1[E2/X ]]](s) = E [[E1]](s[X 7→ E [[E2]](s)])

Case E1 ≡ Y :

E [[Y [E2/X ]]](s)

=

{
if Y = X E [[X [E2/X ]]](s) = E [[E2]](s) = E [[X ]](s[X 7→ E [[E2]](s)])

if Y 6= X E [[Y ]](s) = s(Y ) = E [[Y ]](s[X 7→ E [[E2]](s)])

= E [[Y ]](s[X 7→ E [[E2]](s)])

14

Proof of substitution property: addition case

E [[E1[E2/X ]]](s) = E [[E1]](s[X 7→ E [[E2]](s)])

Case E1 ≡ Ea + Eb:

E [[(Ea + Eb)[E2/X ]]](s)

= E [[(Ea[E2/X ]) + (Eb[E2/X ])]](s)

= E [[Ea[E2/X ]]](s) + E [[Eb[E2/X ]]](s)

= E [[Ea]](s[X 7→ E [[E2]](s)]) + E [[Eb]](s[X 7→ E [[E2]](s)])

= E [[Ea + Eb]](s[X 7→ E [[E2]](s)])

15



Semantics of assertions

The language of assertions

Now, we have formally defined the dynamic semantics of the

WHILE language that we wish to reason about.

The next step is to formalise the assertion language that we will

use to describe and reason about states of WHILE programs.

We take the language of assertions to be (slight variation of)

an instance of single-sorted first-order logic with equality

(as in Part IB Logic and Proof).

16

The assertion language

The formal syntax of the assertion language is given below:

χ ::= X | x variables

t ::= χ | f (t1, ..., tn) n ≥ 0 terms

P,Q ::= ⊥ | > | P ∧ Q | P ∨ Q | P ⇒ Q assertions

| ∀x .P | ∃x .P | t1 = t2 | p(t1, ..., tn) n ≥ 0

¬P def
= P ⇒ ⊥

Quantifiers quantify over terms, and only bind logical variables.

Here f and p range over an unspecified set of function symbols

and predicate symbols, respectively, that includes (symbols for) the

usual mathematical functions and predicates on integers.

In particular, we assume that they contain symbols that allows us

to embed arithmetic expressions E as terms, and boolean

expressions B as assertions. 17

Semantics of terms

[[t]](s) defines the semantics of a term t in a stack s:

[[←]](⇐) : Term× Stack→ Z

[[χ]](s)
def
= s(χ)

[[f (t1, ..., tn)]](s)
def
= [[f ]]([[t1]](s), ..., [[tn]](s))

We assume that the appropriate function [[f ]] associated to each

function symbol f is provided along with the implicit signature.

In particular, we have [[E ]](s) = E [[E ]](s).

18



Semantics of assertions

[[P]] defines the set of stacks that satisfy the assertion P:

[[←]] : Assertion→ P(Stack)

[[⊥]]
def
= {s ∈ Stack | ⊥} = ∅

[[>]]
def
= {s ∈ Stack | >} = Stack

[[P ∨ Q]]
def
= {s ∈ Stack | s ∈ [[P]] ∨ s ∈ [[Q]]} = [[P]] ∪ [[Q]]

[[P ∧ Q]]
def
= {s ∈ Stack | s ∈ [[P]] ∧ s ∈ [[Q]]} = [[P]] ∩ [[Q]]

[[P ⇒ Q]]
def
= {s ∈ Stack | s ∈ [[P]]⇒ s ∈ [[Q]]}

(continued)

19

Semantics of assertions (continued)

[[t1 = t2]]
def
= {s ∈ Stack | [[t1]](s) = [[t2]](s)}

[[p(t1, ..., tn)]]
def
= {s ∈ Stack | [[p]]([[t1]](s), ..., [[tn]](s))}

[[∀x .P]]
def
= {s ∈ Stack | ∀N. s[x 7→ N] ∈ [[P]]}

[[∃x .P]]
def
= {s ∈ Stack | ∃N. s[x 7→ N] ∈ [[P]]}

We assume that the appropriate predicate [[p]] associated to each

predicate symbol p is provided along with the implicit signature.

In particular, we have [[B]] = {s | B[[B]](s) = >}.

We could write s |= P for s ∈ [[P]].

20

Substitutions

We use t[E/X ] and P[E/X ] to denote t and P with E substituted

for every occurrence of program variable X , respectively.

Since our quantifiers bind logical variables, and all free variables in

E are program variables, there is no issue with variable capture:

(∀x .P)[E/X ]
def
= ∀x . (P[E/X ])

...

21

Substitution property

The term and assertion semantics satisfy a similar substitution

property to the expression semantics:

• [[t[E/X ]]](s) = [[t]](s[X 7→ E [[E ]](s)])

• s ∈ [[P[E/X ]]]⇔ s[X 7→ E [[E ]](s)] ∈ [[P]]

They are easily provable by induction on t and P, respectively: the

former by using the substitution property for expressions, and the

latter by using the former. (Exercise)

The latter property will be useful in the proof of soundness of the

syntactic assignment rule.
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Semantics of Hoare triples

Semantics of partial correctness triples

Now that we have formally defined the dynamic semantics of

WHILE and our assertion language, we can define the formal

meaning of our triples.

A partial correctness triple asserts that if the given command

terminates when executed from an initial state that satisfies the

precondition, then the terminal state must satisfy the

postcondition:

|= {P} C {Q} def
= ∀s, s ′. s ∈ [[P]] ∧ 〈C , s〉 →∗ 〈skip, s ′〉 ⇒ s ′ ∈ [[Q]]

Without safety, we would have to worry about getting stuck

without reaching skip.

23

Soundness of Hoare logic

Soundness of Hoare logic

Theorem (Soundness)
If ` {P} C {Q} then |= {P} C {Q}.

Soundness expresses that any triple derivable using the syntactic

proof system holds semantically.

Soundness can be proved by induction on the ` {P} C {Q}
derivation:

• it suffices to show, for each inference rule, that if each

hypothesis holds semantically, then the conclusion holds

semantically.
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Soundness of the assignment rule

|= {P[E/X ]} X := E {P}

Assume s ∈ [[P[E/X ]]] and 〈X := E , s〉 →∗ 〈skip, s ′〉.

From the substitution property, it follows that

s[X 7→ E [[E ]](s)] ∈ [[P]].

From inversion on the steps, there exists an N such that

E [[E ]](s) = N and s ′ = s[X 7→ N], so s ′ = s[X 7→ E [[E ]](s)].

Hence, s ′ ∈ [[P]].

25

Soundness of the loop rule

If |= {P ∧ B} C {P} then |= {P} while B do C {P ∧ ¬B}

How can we get past the fact that the loop step rule defines the

steps of a loop in terms of the steps of a loop?

We will prove |= {P} while B do C {P ∧ ¬B} by proving a

modified version of the property.

We write 〈C , s〉 →k 〈C ′, s ′〉 to mean 〈C , s〉 can take k steps,

where k ≥ 0, to reach 〈C ′, s ′〉.

26

Soundness of the loop rule: base case

If (IH) ∀s, s ′. s ∈ [[P ∧ B]] ∧ 〈C , s〉 →∗ 〈skip, s ′〉 ⇒ s ′ ∈ [[P]],

then ∀n > 0. ∀k < n.∀s, s ′. s ∈ [[P]] ∧
〈while B do C , s〉 →k 〈skip, s ′〉 ⇒ s ′ ∈ [[P ∧ ¬B]]

We can prove this by a (nested) induction on n:

Case 1: assume s ∈ [[P]], k < 1, and

〈while B do C , s〉 →k 〈skip, s ′〉.

Then while B do C = skip, so we have a contradiction.

27

Soundness of the loop rule: inductive case

If (IH) ∀s, s ′. s ∈ [[P ∧ B]] ∧ 〈C , s〉 →∗ 〈skip, s ′〉 ⇒ s ′ ∈ [[P]],

then ∀n > 0. ∀k < n.∀s, s ′. s ∈ [[P]] ∧
〈while B do C , s〉 →k 〈skip, s ′〉 ⇒ s ′ ∈ [[P ∧ ¬B]]

Case n + 1: assume s ∈ [[P]], k < n + 1,

〈while B do C , s〉 →k 〈skip, s ′〉, and

(nIH) ∀k < n.∀s, s ′. s ∈ [[P]] ∧ 〈while B do C , s〉 →k 〈skip, s ′〉 ⇒
s ′ ∈ [[P ∧ ¬B]].

If k = 0, it is as before.

If k = 1, B must have evaluated to false: B[[B]](s) = ⊥ and s ′ = s.

Since B[[B]](s) = ⊥, s /∈ [[B]], so s ∈ [[B]]⇒ s ∈ [[⊥]], so

s ∈ [[B ⇒ ⊥]], so s ∈ [[¬B]]. Therefore, s ∈ [[P ∧ ¬B]].

Hence, s ′ = s ∈ [[P ∧ ¬B]]. 28



Soundness of the loop rule: inductive case (continued)

If (IH) ∀s, s ′. s ∈ [[P ∧ B]] ∧ 〈C , s〉 →∗ 〈skip, s ′〉 ⇒ s ′ ∈ [[P]],

then ∀n > 0. ∀k < n.∀s, s ′. s ∈ [[P]] ∧ 〈while B do C , s〉 →k

〈skip, s ′〉 ⇒ s ′ ∈ [[P ∧ ¬B]]

If k > 1, B must have evaluated to true: B[[B]](s) = >, and there

exists s∗, k1, and k2 such that 〈C , s〉 →k1 〈skip, s∗〉,
〈while B do C , s∗〉 →k2 〈skip, s ′〉, and k = k1 + k2 + 2.

Since B[[B]](s) = >, s ∈ [[B]]. Therefore, s ∈ [[P ∧ B]].

From the outer induction hypothesis IH, it follows that s∗ ∈ [[P]],

and so by the inner induction hypothesis nIH, s ′ ∈ [[P ∧ ¬B]].
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Other properties of Hoare logic

Completeness

Completeness is the converse property of soundness:

If |= {P} C {Q} then ` {P} C {Q}.

Our Hoare logic inherits the incompleteness of arithmetic and is

therefore not complete.

30

Completeness

To see why, assume that |= {P} C {Q} ⇒ ` {P} C {Q}.

We can then show that our assertion logic is complete:

Assume |= P, that is, ∀s. s ∈ [[P]].

Then |= {>} skip {P}.
Using completeness, we can derive ` {>} skip {P}.
Then, by examining that derivation, we have a derivation of

`FOL > ⇒ P, and hence a derivation of `FOL P.

But the assertion logic includes arithmetic, and is therefore not

complete, so we have a contradiction.
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Relative completeness

The previous argument showed that because the assertion logic is

not complete, then neither is Hoare logic.

However, Hoare logic is relatively complete for our simple

language:

• Relative completeness expresses that any failure to derive

` {P} C {Q} for a statement that holds semantically can be

traced back to a failure to prove `FOL R for some valid

arithmetic statement R.

In practice, completeness is not that important, and there is more

focus on nice, usable rules.
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Decidability

Finally, Hoare logic is not decidable: there there does not exist a

computable function f such that

f (P,C ,Q) = > ⇔ |= {P} C {Q}

|= {>} C {⊥} holds if and only if C does not terminate.

Moreover, we can encode Turing machines in WHILE.

Hence, since the Halting problem is undecidable, so is Hoare logic.
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Other perspectives on Hoare triples

Other perspectives on Hoare triples

So far, we have assumed P, C , and Q were given, and focused on

proving ` {P} C {Q}.

Recall, if P and Q are assertions, P is stronger than Q, and Q is

weaker than P, when `FOL P ⇒ Q.

If we are given P and C , can we infer a Q?

Is there a best such Q, sp(P,C )? (‘strongest postcondition’)

Symmetrically, if we are given C and Q, can we infer a P?

Is there a best such P, wlp(C ,Q)? (‘weakest liberal precondition’)

Are there functions wlp and sp such that

(`FOL P ⇒ wlp(C ,Q)) ⇔ ` {P} C {Q} ⇔ (`FOL sp(P,C )⇒ Q)
34



Terminology

We write wlp and talk about weakest liberal precondition because

we only consider partial correctness.

This has no relevance here because, as we will see, there is no

effective general finite (first-order) formula for weakest

preconditions, liberal or not, or strongest postconditions, for

commands containing loops, so we will not consider weakest

preconditions, liberal or not, for loops, so there is no difference

between partial and total correctness.
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Computing weakest liberal preconditions (except for loops)

Dijkstra gives rules for computing weakest liberal preconditions for

deterministic loop-free code:

wlp(skip,Q) = Q

wlp(X := E ,Q) = Q[E/X ]

wlp(C1;C2,Q) = wlp(C1,wlp(C2,Q))

wlp(if B then C1 else C2,Q) = (B ⇒ wlp(C1,Q)) ∧
(¬B ⇒ wlp(C2,Q))

These rules are suggested by the relative completeness of the

Hoare logic proof rules from the first lecture.
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Example of weakest liberal precondition computation

wlp(X := X + 1;Y := Y + X , ∃m, n.X = 2×m ∧ Y = 2× n)

= wlp(X := X + 1, wlp(Y := Y + X , ∃m, n.X = 2×m ∧ Y = 2× n))

= wlp(X := X + 1, (∃m, n.X = 2×m ∧ Y = 2× n)[Y + X/Y ])

= wlp(X := X + 1, ∃m, n.X = 2×m ∧ Y + X = 2× n)

= (∃m, n.X = 2×m ∧ Y + X = 2× n)[X + 1/X ]

= ∃m, n.X + 1 = 2×m ∧ Y + (X + 1) = 2× n

⇔ ∃m, n.X = 2×m + 1 ∧ Y = 2× n
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Weakest preconditions for loops

While the following property holds for loops

wlp(while B do C ,Q)⇔
wlp(if B then (C ; while B do C ) else skip,Q)⇔
(B ⇒ wlp(C ,wlp(while B do C ,Q))) ∧ (¬B ⇒ Q)

it does not define wlp(while B do C ,Q) as a finite formula in

first-order logic.

There is no general finite formula for wlp(while B do C ,Q) in

first-order logic. (Otherwise, it would be easy to find invariants!)
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Verification condition generation

We can now sketch the design of a verification condition

generation algorithm.

(1) The precondition needs to imply the approximate weakest

liberal precondition induced by the provided loop invariants.

(2) Moreover, the provided loop invariants need to be actual loop

invariants, and, together with the guard not holding, need to imply

the loop postcondition.

These can be computed mutually recursively.

39

Summary

We have defined a dynamic semantics for the WHILE language,

and a formal semantics for a Hoare logic for WHILE.

We have shown that the syntactic proof system from the first

lecture is sound with respect to this semantics, but not complete.

Supplementary reading on soundness and completeness:

• Glynn Winskel. The Formal Semantics of Programming

Languages: An Introduction. Chapters 6–7.

• Software Foundations, Benjamin C. Pierce et al.

In the next lecture, we will look at extending Hoare logic to reason

about pointers.
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Not examinable: Verification condition generation

We can define annotated programs:

C ::= skip

| C1; C2
| X := E

| if B then C1 else C2
| while B do {I} C

and an erasure function:

|skip| def= skip

|C1; C2| def= |C1|; |C2|
|X := E | def= X := E

|if B then C1 else C2| def= if B then |C1| else |C2|
|while B do {I} C| def= while B do |C|

41

Not examinable: Computing verification conditions 1/2

We can then define our verification condition generation function

VC (P, C,Q)
def
= {P ⇒ awlp(C,Q)} ∪ VCaux(C,Q)

using (1) an approximation of weakest liberal precondition that

approximates loops using the provided invariants

awlp(skip,Q)
def
= Q

awlp(X := E ,Q)
def
= Q[E/X ]

awlp(C1; C2,Q)
def
= awlp(C1, awlp(C2,Q))

awlp(if B then C1 else C2,Q)
def
= (B ⇒ awlp(C1,Q)) ∧

(¬B ⇒ awlp(C2,Q))

awlp(while B do {I} C,Q)
def
= I
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Not examinable: Computing verification conditions 2/2

(2) an auxiliary function that collects side-conditions of loops:

VCaux(skip,Q)
def
= ∅

VCaux(X := E ,Q)
def
= ∅

VCaux(if B then C1 else C2,Q)
def
= VCaux(C1,Q) ∪ VCaux(C2,Q)

VCaux(C1; C2,Q)
def
= VCaux(C1, awlp(C2,Q)) ∪

VCaux(C2,Q)

VCaux(while B do {I} C,Q)
def
= {I ∧ ¬B ⇒ Q, I ∧ B ⇒ awlp(C, I )} ∪

VCaux(C, I )
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Recap

In the previous lectures, we have considered a language, WHILE,

where mutability only concerned program variables.

In this lecture, we will extend the WHILE language with pointer

operations on a heap, and look at the challenges Hoare logic faces

when trying to reason about this language.

This will motivate introducing an extension of Hoare logic, called

separation logic, to enable practical reasoning about pointers.

1

WHILEp, a language with pointers



Syntax of WHILEp

We introduce new commands to manipulate the heap:

E ::= N | X | E1 + E2 arithmetic expressions

| E1 − E2 | E1 × E2 | · · ·
null

def
= 0

B ::= T | F | E1 = E2 boolean expressions

| E1 ≤ E2 | E1 ≥ E2 | · · ·

C ::= skip | C1;C2 | X := E commands

| if B then C1 else C2

| while B do C

| X := [E ] | [E1] := E2

| X := alloc(E0, ...,En)

| dispose(E )
2

The heap

Commands are now evaluated also with respect to a heap that

stores the current values of allocated locations.

We elect for locations to be non-negative integers:

` ∈ Loc
def
= {` ∈ Z | 0 ≤ `}

null is a location, but a “bad” one, that is never allocated.

To model the fact that only a finite number of locations is

allocated at any given time, the heap is a finite function, that is, a

partial function with a finite domain:

h ∈ Heap
def
= (Loc \ {null}) fin→ Z

State
def
= Stack× Heap

3

Failure

Heap assignment, dereferencing, and deallocation fail if the given

locations are not currently allocated.

This is a design choice that makes WHILEp more like a

programming language, whereas having a heap with all locations

always allocated would make WHILEp more like assembly.

To explicitly model failure, we introduce a distinguished failure

value  , and adapt the semantics:

→ : P((Cmd× State)× ((Cmd× State) + { }))

4

Why failure?

Instead of modelling failure explicitly, we could just leave the

configuration stuck, but explicit failure makes things clearer and

easier to state.

In particular, WHILEp is somewhat safe in the following sense:

∀C , s, h.



〈C , 〈s, h〉〉 →∗  ∨
〈C , 〈s, h〉〉 →ω ∨
∃h′, s ′. 〈C , 〈s, h〉〉 →∗ 〈skip, 〈s ′, h′〉〉




5



Adapting the base constructs to handle the heap

The base constructs can be adapted to handle the extended state

and failure in the expected way:

E [[E ]](s) = N

〈X := E , 〈s, h〉〉 → 〈skip, 〈s[X 7→ N], h〉〉

〈skip;C2, 〈s, h〉〉 → 〈C2, 〈s, h〉〉
〈C1, 〈s, h〉〉 → 〈C ′1, 〈s ′, h′〉〉

〈C1;C2, 〈s, h〉〉 → 〈C ′1;C2, 〈s ′, h′〉〉

B[[B]](s) = >
〈if B then C1 else C2, 〈s, h〉〉 → 〈C1, 〈s, h〉〉

B[[B]](s) = ⊥
〈if B then C1 else C2, 〈s, h〉〉 → 〈C2, 〈s, h〉〉

B[[B]](s) = ⊥
〈while B do C , 〈s, h〉〉 → 〈skip, 〈s, h〉〉

B[[B]](s) = >
〈while B do C , 〈s, h〉〉 → 〈C ; while B do C , 〈s, h〉〉

〈C1, 〈s, h〉〉 →  
〈C1;C2, 〈s, h〉〉 →  

6

Heap dereferencing

Dereferencing an allocated location stores the value at that

location to the target program variable:

E [[E ]](s) = ` ` ∈ dom(h) h(`) = N

〈X := [E ], 〈s, h〉〉 → 〈skip, 〈s[X 7→ N], h〉〉

Dereferencing an unallocated location and dereferencing something

that is not a location lead to a fault:

E [[E ]](s) = ` ` /∈ dom(h)

〈X := [E ], 〈s, h〉〉 →  
@`. E [[E ]](s) = `

〈X := [E ], 〈s, h〉〉 →  

We could have heap dereferencing be an expression, but then

expressions would fault, which would add complexity.

7

Heap assignment

Assigning to an allocated location updates the heap at that

location with the assigned value:

E [[E1]](s) = ` ` ∈ dom(h) E [[E2]](s) = N

〈[E1] := E2, 〈s, h〉〉 → 〈skip, 〈s, h[` 7→ N]〉〉

Assigning to an unallocated location or to something that is not a

location leads to a fault:

E [[E1]](s) = ` ` /∈ dom(h)

〈[E1] := E2, 〈s, h〉〉 →  
@`. E [[E1]](s) = `

〈[E1] := E2, 〈s, h〉〉 →  

8

Deallocation

Deallocating an allocated location removes that location from the

heap:

E [[E ]](s) = ` ` ∈ dom(h)

〈dispose(E ), (s, h)〉 → 〈skip, 〈s, h \ {〈`, h(`)〉}〉〉

Deallocating an unallocated location or something that is not a

location leads to a fault:

E [[E ]](s) = ` ` /∈ dom(h)

〈dispose(E ), 〈s, h〉〉 →  
@`. E [[E ]](s) = `

〈dispose(E ), 〈s, h〉〉 →  

9



Allocation

Allocating finds a block of unallocated locations of the right size,

updates the heap at those locations with the initialisation values,

and stores the start-of-block location to the target program

variable:

E [[E0]](s) = N0 . . . E [[En]](s) = Nn

∀i ∈ {0, . . . , n}. `+ i /∈ dom(h)

` 6= null

〈X := alloc(E0, . . . ,En), 〈s, h〉〉 → 〈skip, 〈s[X 7→ `], h[` 7→ N0, . . . , `+ n 7→ Nn]〉〉

Because the heap has a finite domain, it is always possible to pick

a suitable `, so allocation never faults. A real machine would run

out of memory at some point.

Because of allocation, WHILEp is not deterministic.
10

Pointers

WHILEp has proper pointer operations, as opposed for example

to references:

• pointers can be invalid: X := [null] faults

• we can perform pointer arithmetic:
• X := alloc(37, 42);Y := [X + 1] ends with Y = 42

• X := alloc(0); if X = 3 then [3] := 1 else [X ] := 2 is safe

We do not have a separate type of pointers: we use integers as

pointers.

Pointers in C have many more subtleties. For example, in C,

pointers can point to the stack.
11

Pointers and data structures

In WHILEp, we can encode data structures in the heap. For

example, we can encode the mathematical list [12, 99, 37] with the

following singly-linked list:

12 99 37HEAD

More concretely:

99 121 12 7 37 0

0 7 8 10 11 121 122

HEAD = 10

In WHILE, we would have had to encode that in integers, for

example as HEAD = 212 × 399 × 537 (as in Part IB Computation

theory).
12

Operations on mutable data structures

12 99 37HEAD

12 99 37HEADX

99 37HEADX

For instance, this operation deletes the first element of the list:

X := [HEAD + 1]; // lookup address of second element

dispose(HEAD); // deallocate first element

dispose(HEAD + 1);

HEAD := X // swing head to point to second element

13



Attempting to reason about

pointers in Hoare logic

Attempting to reason about pointers in Hoare logic

We will show that reasoning about pointers in Hoare logic is not

practicable.

To do so, we will first show what makes compositional reasoning

possible in standard Hoare logic (in the absence of pointers), and

then show how it fails when we introduce pointers.

14

Approximating modified program variables

We can syntactically overapproximate the set of program variables

that might be modified by a command C :

mod(skip) = ∅
mod(X := E ) = {X}
mod(C1;C2) = mod(C1) ∪mod(C2)

mod(if B then C1 else C2) = mod(C1) ∪mod(C2)

mod(while B do C ) = mod(C )

mod([E1] := E2) = ∅
mod(X := [E ]) = {X}

mod(X := alloc(E0, . . . ,En)) = {X}
mod(dispose(E )) = ∅

15

For reference: free variables

The set of free variables of a term and of an assertion is given by

FV (−) : Term→ P(Var)

FV (χ)
def
= {χ}

FV (f (t1, . . . , tn))
def
= FV (t1) ∪ . . . ∪ FV (tn)

and
FV (−) : Assertion→ P(Var)

FV (>) = FV (⊥)
def
= ∅

FV (P ∧ Q) = FV (P ∨ Q) = FV (P ⇒ Q)
def
= FV (P) ∪ FV (Q)

FV (∀x .P) = FV (∃x .P)
def
= FV (P) \ {x}

FV (t1 = t2)
def
= FV (t1) ∪ FV (t2)

FV (p(t1, . . . , tn))
def
= FV (t1) ∪ . . .FV (tn)

respectively. 16



The rule of constancy

In standard Hoare logic (without the rules that we will introduce

later, and thus without the new commands we have introduced),

the rule of constancy expresses that assertions that do not refer to

program variables modified by a command are automatically

preserved during its execution:

` {P} C {Q} mod(C ) ∩ FV (R) = ∅
` {P ∧ R} C {Q ∧ R}

This rule is admissible in standard Hoare logic.

17

Modularity and the rule of constancy

This rule is important for modularity, as it allows us to only

mention the part of the state that we access.

Using the rule of constancy, we can separately verify two

complicated commands:

` {P} C1 {Q} ` {R} C2 {S}

and then, as long as they use different program variables, we can

compose them.

For example, if mod(C1) ∩ FV (R) = ∅ and

mod(C2) ∩ FV (Q) = ∅, we can compose them sequentially:

` {P} C1 {Q} mod(C1) ∩ FV (R) = ∅
` {P ∧ R} C1 {Q ∧ R}

`FOL R ∧ Q ⇒ Q ∧ R

` {R} C2 {S} mod(C2) ∩ FV (Q) = ∅
` {R ∧ Q} C2 {S ∧ Q} `FOL S ∧ Q ⇒ Q ∧ S

` {Q ∧ R} C2 {Q ∧ S}
` {P ∧ R} C1;C2 {Q ∧ S}

18

A bad rule for reasoning about pointers

Imagine we extended Hoare logic with a new assertion, t1 ↪→ t2,

for asserting that location t1 currently contains the value t2, and

extended the proof system with the following (sound) rule:

` {∃v .E1 ↪→ v} [E1] := E2 {E1 ↪→ E2}

Then we would lose the rule of constancy, as using it, we would be

able to derive

` {∃v . 37 ↪→ v} [37] := 42 {37 ↪→ 42} mod([37] := 42) ∩ FV (Y ↪→ 0) = ∅
` {∃v . 37 ↪→ v ∧ Y ↪→ 0} [37] := 42 {37 ↪→ 42 ∧ Y ↪→ 0}

even if Y = 37, in which case the postcondition would require 0 to

be equal to 42. There is a problem!

19

Reasoning about pointers

In the presence of pointers, we can have aliasing: syntactically

distinct expressions can refer to the same location. Updates made

through one expression can thus influence the state referenced by

other expressions.

This complicates reasoning, as we explicitly have to track

inequality of pointers to reason about updates:

` {∃v .E1 ↪→ v ∧ E1 6= E3 ∧ E3 ↪→ E4} [E1] := E2 {E1 ↪→ E2 ∧ E3 ↪→ E4}

We have to assume that any location is possibly modified unless

stated otherwise in the precondition. This is not compositional at

all, and quickly becomes unmanageable.

20



Separation logic

Separation logic

Separation logic is an extension of Hoare logic that enables

modular reasoning about resources.

It introduces new connectives to reason about the combination of

disjoint resources.

We will use separation logic to reason about pointers in WHILEp.

Our resources will be parts of the heap, and we will use the new

connectives of separation logic to control aliasing.

Where a Hoare logic assertion refers to a (freely duplicable)

property of the current state, a separation logic assertion asserts

ownership of resources. Resources can be combined or compared

(and exchanged), but need to be accounted for.

21

History and terminology

Separation logic was proposed by John Reynolds in 2000, and

developed further by Peter O’Hearn and Hongseok Yang around

2001. It is still a very active area of research.

There are many variants of separation logic.

In WHILEp, the heap in explicitly managed: the program is

meant to dispose of heap locations itself. To be able to show that

our programs do not leak memory, we are going to consider a

so-called linear (or classical) separation logic. If we were not

interested in reasoning about deallocation, for example because

there is no garbage collector, we could use an affine (or

intuitionistic) separation logic.

22

The points-to assertion

We introduce a new assertion, written t1 7→ t2, and read

“t1 points to t2”, to reason about individual heap cells.

The points-to assertion t1 7→ t2

• asserts that the current value that heap location t1 maps to is

t2 (like t1 ↪→ t2), and

• asserts ownership of heap location t1.

For example, X 7→ Y + 1 asserts that the current value of heap

location X is Y + 1, and moreover asserts ownership of that heap

location.

23



The separating conjunction

Separation logic extends Hoare logic with a new connective, the

separating conjunction ‘∗’, to reason about disjoint resources.

The assertion P ∗ Q asserts that P and Q hold (somewhat like

P ∧Q); however, it also asserts that the resources (the parts of the

heap) owned by P and Q are disjoint.

The separating conjunction has a neutral element, emp, which

describes the empty resource (the empty heap):

emp ∗ P ⇔ P ⇔ P ∗ emp.

24

Examples of separation logic assertions

1. (t1 7→ t2) ∗ (t3 7→ t4)

This assertion is unsatisfiable in a state where t1 = t3, since

t1 7→ t2 and t3 7→ t4 would both assert ownership of the same

location.

A heap satisfying this assertion is of the following shape:

t2

t1
t4

t36=

25

Examples of separation logic assertions

2. For example,

((X 7→ 101) ∗ (Y 7→ 102)) ∧ X = 7 ∧ Y = 41

is satisfied by the following heap:

101

7

102

41

X = 7 Y = 41

26

Examples of separation logic assertions

3. (t1 7→ t2) ∗ (t1 7→ t3)

This assertion is not satisfiable, as t1 is not disjoint from itself.

4. t1 7→ t2 ∧ t3 7→ t4

This asserts that the heap is described by t1 7→ t2, and also by

t3 7→ t4.

Therefore, t1 = t2, and so t3 = t4

27



Examples of separation logic assertions

5. A heap satisfying

(t1 7→ t2) ∗ (t2 7→ t1)

is of the following shape:

t2 t1

t1 t2

6. For instance, a heap satisfying

(X 7→ Y ) ∗ (Y 7→ X )

is of the following shape:

X Y

28

Examples of separation logic assertions

7. (X 7→ t0,Y ) ∗ (Y 7→ t1,null)

t0 t1X Y

Here, X 7→ t0, ..., tn is shorthand for

(X 7→ t0) ∗ ((X + 1) 7→ t1) ∗ · · · ∗ ((X + n) 7→ tn)

8. ∃x , y . (HEAD 7→ 12, x) ∗ (x 7→ 99, y) ∗ (y 7→ 37,null)

This describes our singly linked list from earlier:

12 99 37HEAD

29

Semantics of separation logic

assertions

Semantics of separation logic assertions

The semantics of a separation logic assertion P, [[P]], is the set of

states (that is, pairs of a stack and a heap) that satisfy P.

It is simpler to define it indirectly, through the semantics of P

given a stack s, written [[P]](s), which is the set of heaps that,

together with stack s, satisfy P.

Recall that we want to capture the notion of ownership:

if h ∈ [[P]](s), then P should assert ownership of any locations in

dom(h).

The heaps h ∈ [[P]](s) are thus referred to as partial heaps, since

they only contain the locations owned by P.

30



Semantics of separation logic assertions

The propositional and first-order primitives are interpreted much

like for Hoare logic (with the extra indirection):

[[←]](⇐) : Assertion→ Stack→ P(Heap)

[[⊥]](s)
def
= ∅

[[>]](s)
def
= Heap

[[P ∧ Q]](s)
def
= [[P]](s) ∩ [[Q]](s)

[[P ∨ Q]](s)
def
= [[P]](s) ∪ [[Q]](s)

[[P ⇒ Q]](s)
def
= {h ∈ Heap | h ∈ [[P]](s)⇒ h ∈ [[Q]](s)}

...

31

Semantics of separation logic assertions: points-to

The points-to assertion t1 7→ t2 asserts ownership of the location

referenced by t1, and that this location currently contains t2:

[[t1 7→ t2]](s)
def
=





h ∈ Heap

∣∣∣∣∣∣∣∣∣∣∣∣

∃`,N.

[[t1]](s) = ` ∧
` 6= null ∧
[[t2]](s) = N ∧
dom(h) = {`} ∧
h(`) = N





t1 7→ t2 asserts ownership of location `, so to capture ownership,

requires {`} ⊆ dom(h). Moreover, to prevent memory leaks, we

require dom(h) = {`}.

32

Semantics of separation logic assertions: ∗

Separating conjunction, P ∗ Q, asserts that the heap can be split

into two disjoint parts such that one satisfies P, and the other Q:

[[P ∗ Q]](s)
def
=




h ∈ Heap

∣∣∣∣∣∣∣
∃h1, h2.

h1 ∈ [[P]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2





where h = h1 ] h2 is equal to h = h1 ∪ h2, but only holds when

dom(h1) ∩ dom(h2) = ∅.

33

Semantics of separation logic assertions: emp

The empty assertion only holds for the empty heap:

[[emp]](s)
def
= {h ∈ Heap | dom(h) = ∅}

emp does not assert ownership of any location, so to capture

ownership, dom(h) = ∅.

34



Summary: separation logic assertions

Separation logic assertions not only describe properties of the

current state (as Hoare logic assertions did), but also assert

ownership of parts of the current heap.

Separation logic controls aliasing of pointers by enforcing that

assertions own disjoint parts of the heap.

35

Semantics of separation logic triples

Semantics of separation logic triples

Separation logic not only extends the assertion language, but

strengthens the semantics of correctness triples in two ways:

• they ensure that commands do not fail;

• they ensure that the ownership discipline associated with

assertions is respected.

36

Ownership and separation logic triples

Separation logic triples ensure that the ownership discipline is

respected by requiring that the precondition asserts ownership of

any heap cells that the command might use.

For instance, we want the following triple, which asserts ownership

of location 37, stores the value 42 at this location, and asserts that

after that location 37 contains value 42, to be valid:

|= {37 7→ 1} [37] := 42 {37 7→ 42}

However, we do not want the following triple to be valid, because

it updates a location that it is not the owner of:

6|= {100 7→ 1} [37] := 42 {100 7→ 1}
even though the precondition ensures that the postcondition is

true! 37



Framing

How can we make this principle that triples must assert ownership

of the heap cells they modify precise?

The idea is to require that all triples must preserve any assertion

that asserts ownership of a part of the heap disjoint from the part

of the heap that their precondition asserts ownership of.

This is exactly what the separating conjunction, ∗, allows us to

express.

38

The frame rule

This intent that all triples preserve any assertion R disjoint from

the precondition, called the frame, is captured by the frame rule:

` {P} C {Q} mod(C ) ∩ FV (R) = ∅
` {P ∗ R} C {Q ∗ R}

The frame rule is similar to the rule of constancy, but uses the

separating conjunction to express separation.

We still need to be careful about program variables (in the stack),

so we need mod(C ) ∩ FV (R) = ∅.
39

Examples of framing

How does preserving all frames force triples to assert ownership of

heap cells they modify?

Imagine that the following triple did hold and preserved all frames:

{100 7→ 1} [37] := 42 {100 7→ 1}

In particular, it would preserve the frame 37 7→ 1:

{100 7→ 1 ∗ 37 7→ 1} [37] := 42 {100 7→ 1 ∗ 37 7→ 1}

This triple definitely does not hold, since location 37 contains 42 in

the terminal state.

40

Examples of framing

This problem does not arise for triples that assert ownership of the

heap cells they modify, since triples only have to preserve frames

disjoint from the precondition.

For instance, consider this triple which asserts ownership of

location 37:

{37 7→ 1} [37] := 42 {37 7→ 42}

If we frame on 37 7→ 1, then we get the following triple, which

holds vacuously since no initial state satisfies 37 7→ 1 ∗ 37 7→ 1:

{37 7→ 1 ∗ 37 7→ 1} [37] := 42 {37 7→ 42 ∗ 37 7→ 1}

41



Informal semantics of separation logic triples

The meaning of {P} C {Q} in separation logic is thus

• if h1 satisfies P, when C is executed from an initial state with
an initial heap h1 ] hF , then

• C does not fault, and

• if C terminates, then the terminal heap has the form h′1 ] hF ,

where h′1 satisfies Q.

The first condition ensures that the precondition asserts ownership

of all the locations that might be accessed.

The second condition bakes in the requirement that triples must

satisfy framing, by requiring that they preserve all disjoint heaps

hF .

42

Formal semantics of separation logic triples

Written formally, the semantics is:

|= {P} C {Q} def
=

∀s, h1, hF . dom(h1) ∩ dom(hF ) = ∅ ∧ h1 ∈ [[P]](s)⇒



(¬(〈C , 〈s, h1 ] hf 〉〉 →∗  )) ∧(
∀s ′, h′. 〈C , 〈s, h1 ] hF 〉〉 →∗ 〈skip, 〈s ′, h′〉〉 ⇒

∃h′1. h′ = h′1 ] hF ∧ h′1 ∈ [[Q]](s ′)

)



We then have the semantic version of the frame rule baked in:

If |= {P} C {Q} and mod(C ) ∩ FV (R) = ∅, then

|= {P ∗ R} C {Q ∗ R}.
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Summary

Separation logic is an extension of Hoare logic that enables

modular reasoning about resources. It extends Hoare logic with

new assertions, and refines the semantics of assertions to reason

about ownership and separation.

We leverage this to control aliasing, which enables practical

reasoning about pointers and mutable data structures.

In the next lecture, we will look at a proof system for separation

logic, and apply separation logic to examples.

Papers of historical interest:

• John C. Reynolds. Separation Logic: A Logic for Shared

Mutable Data Structures.
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Recap

Last time, we introduced separation logic, a reinterpretation of

Hoare logic that makes reasoning about pointers tractable.

Separation logic is based on the notions of separation and

ownership of resources.

A separation logic partial correctness triple ensures that the

execution of the command (1) does not fault in a heap matching

exactly its precondition, which ensures that it asserts ownership of

all the parts of the heap it accesses, and (2) preserves the part of

the heap disjoint from that matching the precondition.

In this lecture, we will look at a proof system for separation logic,

and put separation logic into practice.

1

A proof system for separation logic

A proof system for separation logic

Separation logic inherits all the partial correctness rules from Hoare

logic from the first lecture, and extends them with

• rules for each new heap-manipulating command;

• structural rules, including the frame rule.

We now want the rule of consequence to be able manipulate our

extended assertion language, with our new assertions P ∗ Q,

t1 7→ t2, and emp, and not just first-order logic anymore.

2

Recap: The frame rule

The frame rule is the core of separation logic.

It expresses that separation logic triples always preserve any

assertion disjoint from the precondition:

` {P} C {Q} mod(C ) ∩ FV (R) = ∅
` {P ∗ R} C {Q ∗ R}

The second hypothesis ensures that the frame R does not refer to

any program variables modified by the command C .

This builds in modularity.

3



Other structural rules

Given the rules that we are going to consider for the

heap-manipulating commands, we are going to need to include

structural rules like the following:

` {P} C {Q}
` {∃x .P} C {∃x .Q}

...

Rules like these were admissible in Hoare logic.

We will represent uses of structural rules by indentation in proof

outlines.

4

The heap assignment rule

Separation logic triples must assert ownership of any heap cells

modified by the command. The heap assignment rule thus asserts

ownership of the heap location being assigned:

` {E1 7→ t} [E1] := E2 {E1 7→ E2}

If expressions were allowed to fault, we would need a more complex

rule.

5

The heap dereference rule

Separation logic triples must ensure the command does not fault.

The heap dereference rule thus asserts ownership of the given heap

location to ensure the location is allocated in the heap:

` {E 7→ v ∧ X = x} X := [E ] {E [x/X ] 7→ v ∧ X = v}

Here, v and x are auxiliary variables; v is used to refer to the value

of the dereferenced location, and x is used to refer to the initial

value of program variable X in the postcondition.

6

Allocation and deallocation

The allocation rule introduces a new points-to assertion for each

newly allocated location:

` {X = x ∧ emp} X := alloc(E0, ...,En) {X 7→ E0[x/X ], ...,En[x/X ]}

The deallocation rule destroys the points-to assertion for the

location to not be available anymore:

` {E 7→ t} dispose(E ) {emp}

7



Swap example

Specification of swap

To illustrate these rules, consider the following code snippet:

Cswap ≡ A := [X ];B := [Y ]; [X ] := B; [Y ] := A;

We want to show that it swaps the values in the locations

referenced by X and Y , when X and Y do not alias:

{X 7→ n1 ∗ Y 7→ n2} Cswap {X 7→ n2 ∗ Y 7→ n1}

P

8

Proof outline for swap

{X 7→ n1 ∗ Y 7→ n2}
A := [X ];

{(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1}
B := [Y ];

{(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1 ∧ B = n2}
[X ] := B;

{(X 7→ B ∗ Y 7→ n2) ∧ A = n1 ∧ B = n2}
[Y ] := A;

{(X 7→ B ∗ Y 7→ A) ∧ A = n1 ∧ B = n2}
{X 7→ n2 ∗ Y 7→ n1}

Justifying these individual steps is now considerably more involved

than in Hoare logic. P
9

Detailed proof outline for the first triple of swap

{X 7→ n1 ∗ Y 7→ n2}
{∃a. ((X 7→ n1 ∗ Y 7→ n2) ∧ A = a)}
{(X 7→ n1 ∗ Y 7→ n2) ∧ A = a}
{(X 7→ n1 ∧ A = a) ∗ Y 7→ n2}
{X 7→ n1 ∧ A = a}

A := [X ]

{X [a/A] 7→ n1 ∧ A = n1}
{X 7→ n1 ∧ A = n1}
{(X 7→ n1 ∧ A = n1) ∗ Y 7→ n2}
{(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1}

{∃a. ((X 7→ n1 ∗ Y 7→ n2) ∧ A = n1)}
{(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1} 10



For reference: proof of the first triple of swap

Put another way:

To prove this first triple, we use the heap dereference rule to derive:

{X 7→ n1 ∧ A = a} A := [X ] {X [a/A] 7→ n1 ∧ A = n1}
Then we existentially quantify the auxiliary variable a:

{∃a.X 7→ n1 ∧ A = a} A := [X ] {∃a.X [a/A] 7→ n1 ∧ A = n1}
Applying the rule of consequence, we obtain:

{X 7→ n1} A := [X ] {X 7→ n1 ∧ A = n1}
Since A := [X ] does not modify Y , we can frame on Y 7→ n2:

{X 7→ n1 ∗ Y 7→ n2} A := [X ] {(X 7→ n1 ∧ A = n1) ∗ Y 7→ n2}
Lastly, by the rule of consequence, we obtain:

{X 7→ n1 ∗ Y 7→ n2} A := [X ] {(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1}
11

Proof of the first triple of swap (continued)

We relied on many properties of our assertion logic.

For example, to justify the first application of consequence, we

need to show that

`BI P ⇒ ∃a. (P ∧ A = a)

and to justify the last application of the rule of consequence, we

need to show that:

`BI ((X 7→ n1 ∧ A = n1) ∗ Y 7→ n2)⇒ ((X 7→ n1 ∗ Y 7→ n2) ∧ A = n1)

12

Properties of separation logic

assertions

Syntax of assertions in separation logic

We now have an extended language of assertions, with a new

connective, the separating conjunction ∗:
P,Q ::= ⊥ | > | P ∧ Q | P ∨ Q | P ⇒ Q

| P ∗ Q | emp

| ∀x .P | ∃x .P | t1 = t2 | p(t1, ..., tn) n ≥ 0

7→ is a predicate symbol of arity 2.

This is not just usual first-order logic anymore: this is an instance

of the classical first-order logic of bunched implication (which is

related to linear logic).

We will also require inductive predicates later.

We will take an informal look at what kind of properties hold and

do not hold in this logic. Using the semantics, we can prove the

properties we need as we go. 13



Properties of separating conjunction

Separating conjunction is a commutative and associative operator

with emp as a neutral element (like ∧ was with >):

`BI P ∗ Q ⇔ Q ∗ P
`BI (P ∗ Q) ∗ R ⇔ P ∗ (Q ∗ R)

`BI P ∗ emp ⇔ P

Separating conjunction is monotone with respect to implication:

`BI P1 ⇒ Q1 `BI P2 ⇒ Q2

`BI P1 ∗ P2 ⇒ Q1 ∗ Q2

Separating conjunction distributes over disjunction:

`BI (P ∨ Q) ∗ R ⇔ (P ∗ R) ∨ (Q ∗ R)

14

Properties of separating conjunction (continued)

Assertions in separation logic are not freely duplicable in general:

6`BI P ⇒ P ∗ P

in general.

For example, we want

6`BI t1 7→ t2 ⇒ (t1 7→ t2) ∗ (t1 7→ t2)

This is the sense in which assertions in separation logic are

resources: we cannot just duplicate them, we have to account for

them.

15

Properties of separating conjunction (continued)

In linear separation logic, > is not a neutral element for the

separating conjunction: we only have

`BI P ⇒ P ∗ >

but 6`BI P ∗ > ⇒ P in general.

This means that we cannot “forget” about allocated locations:

we have `BI P ∗ Q ⇒ P ∗ >, but 6`BI P ∗ Q ⇒ P in general.

To actually get rid of Q, we have to deallocate the corresponding

locations.

16

Properties of pure assertions

An assertion is pure when it does not talk about the heap.

Syntactically, this means it does not contain emp or 7→.

Separating conjunction and conjunction become more similar when

they involve pure assertions:

`BI P ∧ Q ⇒ P ∗ Q when P or Q is pure

`BI P ∗ Q ⇒ P ∧ Q when P and Q are pure

`BI (P ∧ Q) ∗ R ⇔ P ∧ (Q ∗ R) when P is pure

Separating conjunction semi-distributes over conjunction (but not

the other direction in general):

`BI (P ∧ Q) ∗ R ⇒ (P ∗ R) ∧ (Q ∗ R)

17



Axioms for the points-to assertion

We also need some axioms about 7→:

null cannot point to anything:

`BI ∀t1, t2. t1 7→ t2 ⇒ (t1 7→ t2 ∧ t1 6= null)

locations combined by ∗ are disjoint:

`BI ∀t1, t2, t3, t4. (t1 7→ t2 ∗ t3 7→ t4)⇒ (t1 7→ t2 ∗ t3 7→ t4 ∧ t1 6= t3)

...

We need to repeat the non-duplicable assertions on the right-hand

side of the implication to not “lose” them.

18

Verifying abstract data types

Verifying ADTs

Separation logic is very well-suited for specifying and reasoning

about mutable data structures typically found in standard libraries

such as lists, queues, stacks, etc.

To illustrate this, we will specify and verify a library for working

with lists, implemented using null-terminated singly-linked lists,

using separation logic.

19

A list library implemented using singly-linked lists

First, we need to define a memory representation for our lists.

We will use null-terminated singly-linked list, starting from some

designated HEAD program variable that refers to the first element

of the linked list.

(We have to make do with this unique head in WHILEp.)

For instance, we will represent the mathematical list [12, 99, 37] as

we did in the previous lecture:

12 99 37HEAD

20



Representation predicates

To formalise the memory representation, separation logic uses

representation predicates that relate an abstract description of

the state of the data structure with its concrete memory

representations.

For our example, we want a predicate list(t, α) that relates a

mathematical list, α, with its memory representation starting at

location t (here, α, β, . . . are just terms, but we write them

differently to clarify the fact that they refer to mathematical lists).

To define such a predicate formally, we need to extend the

assertion logic to reason about inductively defined predicates. We

probably also want to extend it to reason about mathematical lists

directly rather than through encodings. We will elide these details.
21

Representation predicates

We are going to define the list(t, α) predicate by induction on the

list α:

• The empty list [] is represented as a null pointer:

list(t, [])
def
= (t = null) ∧ emp

• The list h :: α (again, h is just a term) is represented by a

pointer to two consecutive heap cells that contain the head h

of the list and the location of the representation of the tail α

of the list, respectively:

list(t, h :: α)
def
= ∃y . (t 7→ h) ∗ ((t + 1) 7→ y) ∗ list(y , α)

(recall that t 7→ h⇒ ((t 7→ h) ∧ t 6= null))

22

Representation predicates

The representation predicate allows us to specify the behaviour of

the list operations by their effect on the abstract state of the list.

For example, assuming that we represent the mathematical list α

at location HEAD, we can specify a push operation Cpush that

pushes the value of program variable X onto the list in terms of its

behaviour on the abstract state of the list as follows:

{list(HEAD, α) ∧ X = x} Cpush {list(HEAD, x :: α)}

23

Representation predicates

We can specify all the operations of the library in a similar manner:

{emp} Cnew {list(HEAD, [])}
{

list(HEAD, α) ∧
X = x

}
Cpush {list(HEAD, x :: α)}

{list(HEAD, α)} Cpop





(
list(HEAD, []) ∧
α = [] ∧ ERR = 1

)
∨


∃h, β.




α = h :: β ∧
list(HEAD, β) ∧
RET = h ∧ ERR = 0











{list(HEAD, α)} Cdelete {emp}
...

The emp in the postcondition of Cdelete ensures that the locations

of the precondition have been deallocated. 24



Implementation of push

The push operation stores the HEAD pointer into a temporary

variable Y before allocating two consecutive locations for the new

list element, storing the start-of-block location to HEAD:

Cpush ≡ Y := HEAD;HEAD := alloc(X ,Y )

We wish to prove that Cpush satisfies its intended specification:

{list(HEAD, α) ∧ X = x} Cpush {list(HEAD, x :: α)}

P

(We could use HEAD := alloc(X ,HEAD) instead.)

25

Proof outline for push

Here is a proof outline for the push operation:

{list(HEAD, α) ∧ X = x}
Y := HEAD;

{list(Y , α) ∧ X = x}
HEAD := alloc(X ,Y )

{(list(Y , α) ∗ HEAD 7→ X ,Y ) ∧ X = x}
{list(HEAD,X :: α) ∧ X = x}
{list(HEAD, x :: α)}

For the alloc step, we frame off list(Y , α) ∧ X = x .

26

For reference: detailed proof outline for the allocation

{list(Y , α) ∧ X = x}
{∃z . (list(Y , α) ∧ X = x) ∧ HEAD = z}
{(list(Y , α) ∧ X = x) ∧ HEAD = z}
{(list(Y , α) ∧ X = x) ∗ (HEAD = z ∧ emp)}
{HEAD = z ∧ emp}

HEAD := alloc(X ,Y )

{HEAD 7→ X [z/HEAD],Y [z/HEAD]}
{HEAD 7→ X ,Y }
{(list(Y , α) ∧ X = x) ∗ HEAD 7→ X ,Y }
{(list(Y , α) ∗ HEAD 7→ X ,Y ) ∧ X = x)}
{∃z . (list(Y , α) ∗ HEAD 7→ X ,Y ) ∧ X = x)}
{(list(Y , α) ∗ HEAD 7→ X ,Y ) ∧ X = x}

27

Implementation of delete

The delete operation iterates down over the list, deallocating

nodes until it reaches the end of the list.

Cdelete ≡ X := HEAD;

while X 6= null do

(Y := [X + 1]; dispose(X ); dispose(X + 1);X := Y )

We wish to prove that Cdelete satisfies its intended specification:

{list(HEAD, α)} Cdelete {emp}

For that, we need a suitable loop invariant. ­
To execute safely, X effectively needs to point to a list (which is α

only at the start).

28



Proof outline for delete

We can pick the invariant that we own the rest of the list:

{list(HEAD, α)}
X := HEAD;

{list(X , α)}
{∃β. list(X , β)}
while X 6= null do

{∃β. list(X , β) ∧ X 6= null}
(Y := [X + 1]; dispose(X ); dispose(X + 1);X := Y )

{∃β. list(X , β)}
{∃β. list(X , β) ∧ ¬(X 6= null)}
{emp}

We need to complete the proof outline for the body of the loop.
29

Proof outline for the loop body of delete

To verify the loop body, we need a lemma to unfold the list

representation predicate in the non-null case:

{∃β. list(X , β) ∧ X 6= null}
{∃h, y , γ.X 7→ h, y ∗ list(y , γ)}
Y := [X + 1];

{∃h, γ.X 7→ h,Y ∗ list(Y , γ)}
dispose(X ); dispose(X + 1);

{∃γ. list(Y , γ)}
X := Y

{∃γ. list(X , γ)}
{∃β. list(X , β)}

30

Linear separation logic and deallocation

If we did not have the two deallocations in the body of the loop,

we would have to do something with

(X 7→ h) ∗ (X + 1 7→ Y )

We can weaken that assertion to >, but not fully eliminate it.

We could weaken our loop invariant to ∃β. list(X , β) ∗ >:

the > would indicate the memory leak.

Linear separation logic forces us to deallocate.

31

Reasoning about the abstract state

To specify that a command computes the maximum element of a

non-empty list, we do not need to change our representation

predicate: we can just define a maxl predicate on the

mathematical list to specify our Cmax command:

maxl([x ])
def
= x

maxl(x :: y :: α)
def
= max(x ,maxl(y :: α))

where max is the maximum function on integers,

and then have the following specification:

{list(HEAD, h :: α)} Cmax {list(HEAD, h :: α) ∧M = maxl(h :: α)}

32



Implementation of max

The max operation iterates over a non-empty list, computing its

maximum element:

Cmax ≡
X := [HEAD + 1];M := [HEAD];

while X 6= null do

(E := [X ]; (if E > M then M := E else skip);X := [X + 1])

We wish to prove that Cmax satisfies its intended specification:

{list(HEAD, h :: α)} Cmax {list(HEAD, h :: α) ∧M = maxl(h :: α)}

For that, we need a suitable loop invariant. However, the lists

represented starting at HEAD and X are not disjoint. ­
33

Representation predicate for partial lists

To talk about partial lists, we can define a representation predicate

for partial lists, plist(t1, α, t2), inductively:

plist(t1, [], t2)
def
= (t1 = t2) ∧ emp

plist(t1, h :: α, t2)
def
= (∃y . t1 7→ h, y ∗ plist(y , α, t2))

In particular, we can split lists in the middle:

`BI list(t1, α ++ β)⇔ (∃y . plist(t1, α, y) ∗ list(y , β))

34

Proof outline for max

We can use plist to express our invariant:

{list(HEAD, h :: α)}
X := [HEAD + 1];M := [HEAD];

{(plist(HEAD, [h],X ) ∗ list(X , α)) ∧M = max([h])}
{∃β, γ. h :: α = β ++ γ ∧ (plist(HEAD, β,X ) ∗ list(X , γ)) ∧M = maxl(β)}
while X 6= null do

(E := [X ]; (if E > M then M := E else skip);X := [X + 1])

{list(HEAD, h :: α) ∧M = maxl(h :: α)}

We only use plist in the proof, not in the specification.

35

Implementation of merge (of merge sort)

{list(X , α) ∗ list(Y , β) ∧ sorted(α) ∧ sorted(β)}
Z := alloc(0,null);P := Z ;

while X 6= null and Y 6= null do



U := [X ];V := [Y ];

if U ≤ V then ([P + 1] := X ;X := [X + 1])

else ([P + 1] := Y ;Y := [Y + 1]);

P := [P + 1]


 ;

if X = null then ([P + 1] := Y ;Y := null)

else ([P + 1] := X ;X := null);

P := [Z + 1]; dispose(Z ); dispose(Z + 1);Z := P

{∃γ. list(Z , γ) ∧ sorted(γ) ∧ permutation(γ, α ++ β)}

We need to find a suitable invariant ­ 36



Specification of merge

Again, we did not need to change our representation predicate: we

only need to state that the mathematical list that is represented is

sorted:

sorted([])
def
= >

sorted([x ])
def
= >

sorted(x :: y :: α)
def
= x ≤ y ∧ sorted(y :: α)

and that a list is a permutation of another:

permutation(α, β)
def
=

(α = β = []) ∨
(∃a, α′, β′. α = [a] :: α′ ∧ β = [a] :: β′ ∧ permutation(α′, β′)) ∨
(∃a, b, γ. α = [a] :: [b] :: γ ∧ β = [b] :::: [a]γ) ∨
(∃γ. permutation(α, γ) ∧ permutation(γ, β))

37

Invariant of merge

We can now express our invariant:

∃α1, α2, β1, β2, γ, γ1, a.

α = α1 ++ α2 ∧ β = β1 ++ β2 ∧
sorted(α) ∧ sorted(β) ∧
sorted(γ) ∧ γ1 ++ [a] = 0 :: γ ∧
permutation(γ, α1 ++ β1) ∧
list(X , α2) ∗ list(Y , β2) ∗
plist(Z , γ1,P) ∗ plist(P, [a], q)

It is a rather readable — albeit detailed — description of why the

program is correct.

38

Summary

We can specify abstract data types using representation predicates

which relate an abstract model of the state of the data structure

with a concrete memory representation.

We only need to know what the representation predicate is when

we implement and verify our library, not when we use it. This gives

us abstraction and modularity.

Justification of individual steps has to be made quite carefully

given the unfamiliar interaction of connectives in separation logic,

but proof outlines remain very readable.

In the next lecture, we will look at some extensions of Hoare logic.

39

Hoare logic

Lecture 6: Extending Hoare logic

Jean Pichon-Pharabod jp622

University of Cambridge

CST Part II – 2019/2020



Recap

Last time, we looked at how separation logic enables modular

reasoning about pointers and mutable data structures.

In this lecture, we will consider extending Hoare logic in other

directions:

• We will look at extending partial correctness triples to enforce

termination, and at adapting the Hoare logic rules for partial

correctness to total correctness.

• We will look at how to handle (a crude form of) functions.

• We will look at how to reason about simple forms of

concurrency.

1

Total correctness

Total correctness

So far, we have concerned ourselves only with partial correctness,

and not with whether the program diverges.

However, in many contexts where we care about correctness

enough to use Hoare logic for verification, we also care about

termination.

2

Total correctness triples

There is no standard notation for total correctness triples;

we will use [P] C [Q].

The total correctness triple [P] C [Q] holds if and only if:

• assuming C is executed in an initial state satisfying P,

• then the execution terminates,

• and the terminal state satisfies Q.

3



Semantics of total correctness triples

A total correctness triple asserts that when the given command is

executed from an initial state that satisfies the precondition, then

any execution must terminate, and that any terminal state satisfies

the postcondition:

|= [P] C [Q]
def
=

∀s. s ∈ [[P]]⇒
(
¬(〈C , s〉 →ω) ∧
(∀s ′. 〈C , s〉 →∗ 〈skip, s ′〉 ⇒ s ′ ∈ [[Q]])

)

4

Semantics of total correctness triples

Since WHILE is safe and deterministic, this is equivalent to

∀s. s ∈ [[P]]⇒ ∃s ′. 〈C , s〉 →∗ 〈skip, s ′〉 ∧ s ′ ∈ [[Q]]

Assume s ∈ [[P]] and 〈C , s〉 →∗ 〈skip, s ′〉.

Since WHILE is safe and deterministic, ¬(〈C , s〉 →ω). Moreover,

since WHILE is deterministic, for all s ′′ such that

〈C , s〉 →∗ 〈skip, s ′′〉, s ′′ = s ′, so s ′′ ∈ [[Q]].
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Examples of total correctness triples

• The following total correctness triple is valid:

|= [X ≥ 0] while X 6= 0 do X := X − 1 [X = 0]

the loop terminates when executed from an initial state where

X is non-negative.

• The following total correctness triple is not valid:

6|= [>] while X 6= 0 do X := X − 1 [X = 0]

the loop only terminates when executed from an initial state

where X is non-negative, but not when executed from an

initial state where X is negative.

Both of the corresponding partial correctness triples hold.

6

Corner cases of total correctness triples

[P] C [>]

• this says that C always terminates when executed from an

initial state satisfying P.

[>] C [Q]

• this says that C always terminates, and ends up in a state

where Q holds.

[P] C [⊥]

• this says that C always terminates when executed from an

initial state satisfying P, and ends up in a state where ⊥
holds, which means that no state can satisfy P.

7



Rules for total correctness

while commands are the commands that introduce

non-termination.

Except for the loop rule, all the rules of Hoare logic

(from the first lecture) are sound for total correctness

as well as partial correctness.

` [P] skip [P] ` [P[E/X ]] X := E [P]

` [P] C1 [Q] ` [Q] C2 [R]

` [P] C1;C2 [R]

` [P ∧ B] C1 [Q] ` [P ∧ ¬B] C2 [Q]

` [P] if B then C1 else C2 [Q]

` P1 ⇒ P2 ` [P2] C [Q2] ` Q2 ⇒ Q1

` [P1] C [Q1]
8

Unsoundness of the partial correctness loop rule for total cor-

rectness

The loop rule that we have for partial correctness is not sound for

total correctness:

`FOL > ⇒ >

...

`FOL (> ∧ T)⇒ > ` {>} skip {>}

...

`FOL > ⇒ >
` {> ∧ T} skip {>}

` {>} while T do skip {> ∧ ¬T}

...

` > ∧ ¬T⇒ ⊥
` {>} while T do skip {⊥}

If the loop rule were sound for total correctness, then this would

show that while T do skip always terminates in a state satisfying

⊥.

9

Loop variants

We need an alternative total correctness loop rule that ensures

that the loop always terminates.

The idea is to require that on each iteration of the loop, some

quantity that cannot decrease forever, the variant, decreases.

For example, there is no infinite descending chain of non-negative

integers. We will restrict ourselves to non-negative integer variants.
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Loop rule for total correctness

In the rule below, the variant is t, and the fact that it decreases is

specified with an auxiliary variable n:

` [P ∧ B ∧ (t = n)] C [P ∧ (t < n)] `FOL P ∧ B ⇒ t ≥ 0

` [P] while B do C [P ∧ ¬B]

The second hypothesis ensures that the variant is non-negative.

The variant t does not have to occur in C .

11



Total correctness: factorial example

Consider the factorial computation we looked at before:

[X = x ∧ X ≥ 0 ∧ Y = 1]

while X 6= 0 do (Y := Y × X ;X := X − 1)

[Y = x!]

By assumption, X is non-negative and decreases in each iteration

of the loop.

To verify that this factorial implementation terminates, we can

thus take the variant t to be X .

12

Total correctness: factorial example

[X = x ∧ X ≥ 0 ∧ Y = 1]

while X 6= 0 do (Y := Y × X ;X := X − 1)

[Y = x!]

Take the invariant I to be Y × X ! = x! ∧ X ≥ 0, and the variant t

to be X .

Then we have to show that

• `FOL (X = x ∧ X ≥ 0 ∧ Y = 1)⇒ I

• ` [I ∧ X 6= 0 ∧ (X = n)] Y := Y × X ;X := X − 1 [I ∧ (X < n)]

• `FOL (I ∧ ¬(X 6= 0))⇒ Y = x!

• `FOL (I ∧ X 6= 0)⇒ X ≥ 0

13

Total correctness, partial correctness, and termination

Informally: total correctness = partial correctness + termination.

This is captured formally by:

• If ` {P} C {Q} and ` [P] C [>], then ` [P] C [Q].

• If ` [P] C [Q], then ` {P} C {Q}.

It is often easier to show partial correctness and termination

separately.
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Showing termination separately

Termination is usually straightforward to show, but there are

examples where it is not.

For example, no one knows whether the program below terminates

for all values of X :

while X > 1 do

if ODD(X ) then X := 3× X + 1 else X := X DIV 2

(The Collatz conjecture is that this terminates with X = 1.)

Microsoft’s T2 tool is used to prove termination of systems code.

15



Summary of total correctness

We have given rules for total correctness, similar to those for

partial correctness.

Only the loop rule differs: the premises of the loop rule require

that the loop body decreases a variant.

It is even possible to do amortised, asymptotic complexity analysis

in Hoare logic:

• A Fistful of Dollars, Armaël Guéneau et al., ESOP 2018
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Functions (not examinable)

Functions

Consider an extension of our language with the following crude

form of functions where arguments are passed by reference :

C ::= . . . | let F (X1, . . . ,Xn) = C1 in C2 | F (X1, . . . ,Xn)

{X = x ∧ x > 0}
let F (X ,N) =

(if X > 1 then (X := X − 1;N := N × X ;F (X ,N))

else skip) in

N := X ;

F (X ,N)

{N = x!}

17

Hoare Logic rules for functions

We need to extend our judgment ` with a component F to keep

track of the pre- and postconditions of functions:

F(F ) = 〈P,Q〉 . . .

`F {P[Z1/X1, . . . ,Zn/Xn]} F (Z1, . . . ,Zn) {Q[Z1/X1, . . . ,Zn/Xn]}

`F [F 7→〈P′,Q′〉] {P ′} C1 {Q ′} `F [F 7→〈P′,Q′〉] {P} C2 {Q} . . .

`F {P} let F (X1, . . . ,Xn) = C1 in C2 {Q}

We need to be careful to not have aliasing between program

variables. We assume that the . . . assumptions deal with that.

18



Verifying an example using functions

{X = x ∧ x > 0}
let F (X ,N) =

{X > 0 ∧ N = X × . . .× x}


if X > 1 then

{X > 0 ∧ N = X × . . .× x ∧ X > 1}
{X − 1 > 0 ∧ N × (X − 1) = (X − 1)× . . .× x}
X := X − 1;

{X > 0 ∧ N × X = X × . . .× x}
N := N × X ;

{X > 0 ∧ N = X × . . .× x}
F (X ,N)

{N = 1× . . .× x}
else

{X > 0 ∧ N = X × . . .× x ∧ ¬(X > 1)}
skip

{N = 1× . . .× x}




{N = 1× . . .× x} in
{X = x ∧ x > 0}
{X > 0 ∧ X = X × . . .× x}
N := X ;

{X > 0 ∧ N = X × . . .× x}
F (X ,N)

{N = x!} 19

Summary of functions

Hoare triples are a natural fit for specifying and verifying functions.

Recursive function pre- and postconditions are like loop invariants,

but with a “gap” between the entry and exit of the function (the

only gap between an iteration of a loop and the next is the guard):

let F (. . .) =

{P}
. . .

{P[. . . / . . .]}
F (. . .)

{Q[. . . / . . .]}
. . .

{Q} in
. . .

{P[. . . / . . .]}
F (. . .)

{Q[. . . / . . .]} 20

Concurrency (not examinable)

Concurrent composition

Consider an extension of our WHILE language with a concurrent

composition construct (also “parallel composition”), C1 ||C2.

For our simple form of concurrency, the statement C1 ||C2 reduces

by interleaving execution steps of C1 and C2, until both have

terminated:

〈C1, 〈s, h〉〉 → 〈C ′1, 〈s ′, h′〉〉
〈C1 ||C2, 〈s, h〉〉 → 〈C ′1 ||C2, 〈s ′, h′〉〉
〈C2, 〈s, h〉〉 → 〈C ′2, 〈s ′, h′〉〉

〈C1 ||C2, 〈s, h〉〉 → 〈C1 ||C ′2, 〈s ′, h′〉〉

For instance, (X := 0 ||X := 1); print(X ) is allowed to print 0 or 1.

Final states are now of the form F ::= skip | F1 ||F2.

21



Concurrency disciplines

Adding concurrency complicates reasoning by introducing the

possibility of concurrent interference on shared state.

While separation logic does extend to reason about general

concurrent interference, we will focus on two common idioms of

concurrent programming with limited forms of interference:

• disjoint concurrency, and

• well-synchronised shared state.

22

Disjoint concurrency

Disjoint concurrency

Disjoint concurrency refers to multiple commands potentially

executing concurrently, but all working on disjoint state.

Parallel implementations of divide-and-conquer algorithms can

often be expressed using disjoint concurrency.

For instance, in a parallel merge sort, the recursive calls to merge

sort operate on disjoint parts of the underlying array.

23

Disjoint concurrency

The proof rule for disjoint concurrency requires us to split our

assertions into two disjoint parts, P1 and P2, and give each parallel

command ownership of one of them:

` {P1} C1 {Q1} ` {P2} C2 {Q2}
mod(C1) ∩ FV (P2,Q2) = ∅ mod(C2) ∩ FV (P1,Q1) = ∅

` {P1 ∗ P2} C1||C2 {Q1 ∗ Q2}

The third hypothesis ensures that C1 does not modify any program

variables used in the specification of C2, the fourth hypothesis

ensures the symmetric.

24



Disjoint concurrency example

Here is a simple example to illustrate two parallel increment

operations that operate on disjoint parts of the heap:

{X 7→ 3 ∗ Y 7→ 4}
{X 7→ 3} {Y 7→ 4}
A := [X ]; [X ] := A + 1 B := [Y ]; [Y ] := B + 1

{X 7→ 4} {Y 7→ 5}
{X 7→ 4 ∗ Y 7→ 5}

25

Well-synchronised concurrency

Well-synchronised shared state

Well-synchronised shared state refers to the common concurrency

idiom of using locks to ensure exclusive access to state shared

between multiple threads.

To reason about locking, concurrent separation logic extends

separation logic with lock invariants that describe the resources

protected by locks.

When acquiring a lock, the acquiring thread takes ownership of the

lock invariant and when releasing the lock, must give back

ownership of the lock invariant.

26

Well-synchronised shared state

To illustrate, consider a simplified setting with a single global lock.

We write `I {P} C {Q} to indicate that we can derive the given

triple assuming the lock invariant is I . We have the following rules:

FV (I ) = ∅
`I {emp} lock {I ∗ locked}

FV (I ) = ∅
`I {I ∗ locked} unlock {emp}

The locked resource ensures the lock can only be unlocked by the

thread that currently has the lock.

27



Well-synchronised shared state example

To illustrate, consider a program with two threads that both access

a number stored in shared heap cell at location X concurrently.

Thread A increments X by 1 twice, and thread B increments X by

2. The threads use a lock to ensure their accesses are

well-synchronised.

Assuming that location X initially contains an even number, we

wish to prove that the contents of location X is still even after the

two concurrent threads have terminated.

A non-synchronised interleaving would allow X to end up being

odd.

28

Well-synchronised shared state example

First, we need to define a lock invariant.

The lock invariant needs to own the shared heap cell at location X

and should express that it always contains an even number:

I ≡ ∃n. x 7→ 2× n

We have to use an indirection through X = x because I is not

allowed to mention program variables.

29

Well-synchronised shared state example

{X = x ∧ emp}
{X = x ∧ emp} {X = x ∧ emp}
lock; lock;

{X = x ∧ I ∗ locked} {X = x ∧ I ∗ locked}
{X = x ∧ (∃n. x 7→ 2× n) ∗ locked}
A := [X ]; [X ] := A + 1;

{X = x ∧ (∃n. x 7→ 2× n + 1) ∗ locked}
B := [X ]; [X ] := B + 1;

{X = x ∧ (∃n. x 7→ 2× n) ∗ locked}

C := [X ]; [X ] := C + 2;

{X = x ∧ I ∗ locked} {X = x ∧ I ∗ locked}
unlock unlock

{X = x ∧ emp} {X = x ∧ emp}
{X = x ∧ emp}

We can temporarily violate the invariant when holding the lock.
30

Summary of concurrent separation logic

We have seen how concurrent separation logic supports reasoning

about concurrent programs.

The rule for disjoint concurrency enables reasoning about the parts

of the state that are not shared, and the rules for locks enable

reasoning about the parts of the state that are shared but guarded

by locks.

Concurrent separation logic can also be extended to support

reasoning about general concurrency interference.

Papers of historical interest:

• Peter O’Hearn. Resources, Concurrency and Local Reasoning.
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Conclusion

Overall summary

We have seen that Hoare logic (separation logic, when we have

pointers) enables specifying and reasoning about programs.

Reasoning remains close to the syntax, and captures the intuitions

we have about why programs are correct.

It’s all about invariants!
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