
Hoare logic and Model checking
Part II: Model checking

Lecture 8: Temporal logic

Jean Pichon-Pharabod
University of Cambridge

CST Part II – 2019/20



Recap

In the previous lecture, we saw how temporal models can be used
to model various systems.

In this lecture, we will look at how temporal logic can be used to
specify the behaviour of temporal models.

1



Why not use first-order logic?

Why not model time explicitly in first-order logic with equality
and <, and have variables represent time points?

For example:

∀t1. p(t1) ⇒ (∃t2. t1 < t2 ∧ q(t2))

D It works.
D It has a well-understood theory.
% It is very error-prone.
% Is is very expensive to check.

2



Paths and states

Two intuitive things to consider: states, and paths.

• CTL∗ allows both,
• CTL (computation tree logic) focuses on states,
• LTL (linear temporal logic) focuses on paths.

When using model checking, one generally picks (a language based
on) either LTL or CTL.
To describe model checking, CTL∗ makes things clearer.

We will first focus on the implication-free fragment.

3



Syntax of the implication-free fragment of CTL∗

Given a fixed set of atomic propositions AP ,

ψ, . . . ∈ StateProp ::= φ, . . . ∈ PathProp ::=

⊥ | false
> | true
ψ1 ∧s ψ2 | conjunction
ψ1 ∨s ψ2 | disjunction
injp p | atomic predicate
A φ | universal
E φ existential

φ1 ∧p φ2 | conjunction
φ1 ∨p φ2 | disjunction
injs ψ | state property
X φ | next
F φ | future
G φ | generally
φ1 U φ2 until

We almost always omit injp and injs.

4



Informal semantics of the implication-free fragment of CTL∗

• injp p: the current state satisfies atomic proposition p
• A φ: all paths starting from the current state satisfy φ
• A φ: some path starting from the current state satisfies φ
• injs ψ: the first state of the current path satisfies ψ
• G φ: every suffix of the current path satisfies φ
• F φ: some suffix of the current path satisfies φ
• X φ: the tail of the current path satisfies φ
• φ1 U φ2: some suffix of the current path satisfies φ2, and all

the suffixes of the current path of which that path is a suffix
satisfy φ1

5



Example propositions in the implication-free fragment of CTL∗

• E (F (injs (injp p))): there is a state reachable from the
current state that satisfies atomic proposition p

• E (F (injs (injp p ∧s injp q))): there is a state reachable from
the current state that satisfies both atomic proposition p and
atomic proposition q

• (E (F (injs (injp p)))) ∧s (E (F (injs (injp q)))): there is a
state reachable from the current state that satisfies atomic
proposition p, and a reachable state that satisfies proposition
q

• E ((F (injs (injp p))) ∧p (F (injs (injp q)))): there is a path
from the current state, along which there is a state satisfying
atomic proposition p, and a state satisfying atomic
proposition q

• E (X (injs (injp p))): there is a successor state satisfying
atomic proposition p 6



Example propositions in the implication-free fragment of CTL∗

• A (G (injp p)): p always holds (in any path)

• E (G (injp p)): there is one path where p always holds

• A (G (A (F (injp idle)))): the tea & coffee machine always
goes back to an idle state

• A (F (A (G (injp broken)))): the tea & coffee machine ends
up permanently broken

7



Path conjunction vs. state conjunction

• E (F (injs ((injp p) ∧s (injp q)))): there is a state that is
reachable from the current state and that satisfies both p and
q

• E ((F (injs (injp p))) ∧p (F (injs (injp q)))): there is a state
that is reachable from the current state and that satisfies p,
and a state reachable that is reachable from the current state
and that satisfies q

8



Example of path conjunction vs. state conjunction

“At Cambridge, you can row and study”

Mpessimistic

∅

{
Y

} {
P

}

Moptimistic

∅

{
P,Y

}

Mrealistic

∅

{
Y

} {
P

}

9



Semantics of the implication-free fragment of CTL∗

We define whether M satisfies ψ,

À � Á ∈ TModel → StateProp → Prop
M � ψ

def
= ∀s ∈ M�S. M�S0 s → s �M ψ

using two auxiliary mutually inductive predicates

Á �s
À

Â ∈ (M ∈ TModel) → M�S → StateProp → Prop
Á �p

À Â ∈ (M ∈ TModel) → stream M�S → PathProp → Prop

We write the arguments that remain constant through recursive
calls in this shade of grey blue.

10



Semantics of the implication-free fragment of CTL∗:
state properties

s �s
M > def

= >
s �s

M ⊥ def
= ⊥

s �s
M ψ1 ∧s ψ2

def
=
(
s �s

M ψ1
)
∧
(
s �s

M ψ2
)

s �s
M ψ1 ∨s ψ2

def
=
(
s �s

M ψ1
)
∨
(
s �s

M ψ2
)

s �s
M injp p def

= M�` s p

s �s
M A φ

def
=

(
∀π ∈ stream M�S.

IsPath M π → π 0 = s → π �p
M φ

)

s �s
M E φ

def
=

 ∃π ∈ stream M�S.
IsPath M π ∧ π 0 = s ∧
π �p

M φ


11



Semantics of the implication-free fragment of CTL∗:
path properties

π �p
M injs ψ def

= (π 0) �s
M ψ

π �p
M φ1 ∧p φ2

def
=
(
π �p

M φ1
)
∧
(
π �p

M φ2
)

π �p
M φ1 ∨p φ2

def
=
(
π �p

M φ1
)
∨
(
π �p

M φ2
)

π �p
M X φ

def
= (tailn M�S 1 π) �p

M φ

π �p
M F φ

def
= ∃n ∈ N. (tailn M�S n π) �p

M φ

π �p
M G φ

def
= ∀n ∈ N. (tailn M�S n π) �p

M φ

π �p
M φ1 U φ2

def
=

∃n ∈ N.

(∀k ∈ N. 0 ≤ k < n → (tailn M�S k π) �p
M φ1

)
∧

(tailn M�S π) �p
M φ2


12



Moving goats

If we extend our atomic propositions to include fine-grained
descriptions of the different items, we can write:

Safe ∧s Live
Safe def

= A (G StateSafe)
Live def

= A (F (Done))
StateSafe def

=l-Safe ∧s d-Safe

l-Safe def
=

(
ldYs

)
∨s
(
sldY

)
∨s(

lsd
)
∨s
(
dsl

)
d-Safe def

= . . .

Done def
= sldcY

We can also express the fact that the puzzle has a solution with

E ((G StateSafe) ∧p (F Done))
13



Informal specification of indicating

Rule 103
Signals warn and inform other road users, including pedestrians
([. . .]), of your intended actions. You should always

• give clear signals in plenty of time, having checked it is not
misleading to signal at that time

• use them to advise other road users before changing course or
direction, stopping or moving off

• [. . .]

14



Formal specification of indicating

A (G ( ∨ ( U )))

A G (SpecSN ∨p SpecSI ∨p SpecTI)
SpecSN = (( ∧s ) ∧p (( ∧s ) U ( ∧s )))

SpecSI = (( ∧s ) ∧p (( ∧s ) U ( ∧s )))

SpecTI = (( ∧s ) ∧p (( ∧s ) U ( ∧s )))

If we want to allow cancelling: make the RHS of until in SpecSI
have . . . ∨s ( ∧s ).
If we want to allow driving straight forever: make the RHS of
SpecSN have . . . ∨s G ( ∧s ); similarly for turning forever.

15



Implication



Unstable assertions

It may be more natural to use the following:

A (G ( → ))

A (G ((E (X )) → ))

but implication is not stable under abstraction.

We can add implication (and thereby negation) to our temporal
logic:

D more intuitive,
% more brittle: it conflates not being labelled with p with being

labelled with ¬p, and thus does not respect abstraction.

16



Syntax of CTL∗ with implication

StateProp ∈ Set
ψ, . . . ∈ StateProp ::=

⊥ | > | ¬s ψ | ψ1 ∧s ψ2 | ψ1 ∨s ψ2 | ψ1 →s ψ2 |
injp p | A φ | E φ

PathProp ∈ Set
φ, . . . ∈ PathProp ::=

¬p φ | φ1 ∧p φ2 | φ1 ∨p φ2 | φ1 →p φ2 |
injs ψ | X φ | F φ | G φ | φ1 U φ2

17



Splitting

Checking a full CTL∗ property can be reduced to checking an
implication-free CTL∗ property.

To do so, we need to represent the fact that an atomic proposition
can be negated.
We do this by having two versions of each atomic property p:
⊕p corresponds to p, and 	p corresponds to ¬p:

Inductive split (AP ∈ Set) ∈ Set :=
| ⊕← ∈ AP → split AP
| 	← ∈ AP → split AP

18



Fragments



Fragments

Fragments of CTL∗: CTL, LTL, ACTL∗, ECTL∗, ...

19



Fragments: CTL



CTL

CTL restricts CTL∗ so that path quantifiers and temporal
operators always come together:

ψ, . . . ∈ StateProp ∈ Set ::=
⊥ | > | ¬s ψ |
ψ1 ∧s ψ2 | ψ1 ∨s ψ2 | ψ1 →s ψ2 |
injp p | A φ | E φ

φ, . . . ∈ PathProp ∈ Set ::=
X (injs ψ) | F (injs ψ) | G (injs ψ) | (injs ψ1) U (injs ψ2)

20



Limits of CTL

¬

(
∀p ∈ AP .∃ψCTL ∈ StatePropCTL.

∀M ∈ TModel. (M � F (G p)) ↔ (M � ψCTL)

)

21



Fragments: LTL



LTL

LTL restricts CTL∗ so that properties are only (universally
quantified) path properties:

ψ, . . . ∈ StateProp ::= A φ

φ, . . . ∈ PathProp ::=

¬p φ | φ1 ∧p φ2 | φ1 ∨p φ2 | φ1 →p φ2 |
injs-injpWI p | X φ | F φ | G φ | φ1 U φ2

The leading A is kept implicit.

22



Limits of LTL

LTL cannot express things like “whenever p holds, it is possible to
reach a state where q holds”:

¬

 ∀AP ∈ Set.∀p, q ∈ AP . ∃ψLTL ∈ StatePropLTL AP .
∀M ∈ TModel AP .
(M � A (G (p → E (F q)))) ↔ (M � ψLTL)



23



CTL vs. LTL: Milner’s tea & coffee machines

These can be used to tell the difference between CTL (can
distinguish) and LTL (cannot distinguish), because their difference
is about their branching structure

24



Limits of CTL∗

CTL∗ cannot express things like “p holds at even steps”.

CTL∗ also has lots of moving parts. The linear µ-calculus (itself a
special case of the modal µ-calculus) is more expressive than
CTL∗, and has far fewer moving parts, but is quite fiddly.

25



ACTL∗ and ECTL∗

The universal fragment of CTL∗, ACTL∗, where all E are under
odd numbers of negations, and all A are under even numbers of
negations, is well-behaved with respect to abstraction (see lecture
11).

ACTL∗ contains LTL, and ACTL, the intersection of ACTL∗ and
CTL.
ACTL∗ is dual (for the negation operation) to the existential
fragment of CTL∗, ECTL∗.

26



Quantifiers

Unlike in Hoare logic, there are no quantifiers, as they would make
it difficult to mechanically check properties.

To make up for this, we can use property schemas with big
operators or bounded quantifiers, and indexed atomic propositions,
which stand for the expanded property.

For example
n∧

i=0
pi , for n = 3, is expanded to p1 ∧ p2 ∧ p3.

So is
∧
i∈S

pi , for S = {1, 2, 3}.

This is is not as general as quantifiers, as the value of n or S has
to be known. Because this is done as a preprocessing phase, and
does not change the language of properties.

27



Summary

Temporal logics can be used to specify temporal models.

In the next lecture, we will look at how model checking is used in
practice.

28


	Implication
	Fragments
	Fragments: CTL
	Fragments: LTL

