Hoare logic and Model checking
Part Il: Model checking

Lecture 7: Introduction to model checking

Jean Pichon-Pharabod
University of Cambridge

CST Part Il — 2019/20

Acknowledgements

These slides are heavily based on previous versions by Mike
Gordon, Dominic Mulligan, Alan Mycroft, and Conrad Watt.

They are also inspired by slides and lecture notes by John
Gallagher, Gourinath Banda, and Pierre Ganty, by Paul Gastin, by
Orna Grumberg, by Arie Gurfinkel, by Daniel Kroening, by Antoine
Miné, by Julien Schmaltz, by David A. Schmidt, and by Carsten
Sinz and Tom4as$ Balyo.

Thanks to Neel Krishnaswami, David Kaloper Mersinjak, Peter
Rugg, and Ben Simner for remarks and reporting mistakes.

Warning about terminology and notation

The field of model checking is a terminological and notational
nightmare.

In violation of the Countryside Code, we leave the field in a state
worse than the one we found it in.

We also write meta-level and object-level constructors with the
same symbols when not ambiguous.

Model checking

human

expert

model

checker

@

artefact desired goal

® specification

temporal model M))
in temporal logic

OK (M E) | NO (+maybe a counterexample)

This diagram gives a very static, top-down picture, but it is the
feedback that provides the value.

Example

Suppose we are given an algorithm that is supposed to transfer,
from one bank of the Cam to the other, using only a punt with
seat for one, a wolf, a goat, and a cabbage?.

The success criteria are

= safety: the cabbage and the goat, and the wolf and the goat,
cannot be left alone on a bank;

= |iveness: all three items are moved to the other bank.

lit is a large cabbage, so it takes up the whole seat

Example

How to model the problem?
= Option 1:
1 .7 -

u Optlon 2: (G. Doré, anonymous (Wellcome coll.), G. Waddington)

u Optlon 3: (apologies to the Phaistos cat)

Side::z‘??“???' Item:::%|@|®|@

State Z Item — Side

How to find good models

A pretty good model of the The need to go beyond exces-
solar system sively simple models
Encyclopédie, Diderot, d'Alembert, et al. Flammarion engraving, anonymous

“All models are wrong, some are useful” applies. The designer
must ensure the model captures the significant aspects of the real
system. Achieving it is a special skill, the acquisition of which
requires thoughtful practice

— How Amazon Web Services Uses Formal Methods

Temporal models

A temporal model over atomic propositions AP is a left-total
transition system where states are labelled with some of AP, and
where some states are distinguished as initial:

M, ... € TModel &

(S € Set) x states
(So € sub S) x initial states
(o T @ € relation S S) x transition
(£ €S —sub AP) x state labelling

(Vse€S5.38 € S.s Ts') left-total

Elements of S are denoted s.

A We interpret not being labelled as a lack of information, not as
a negation.

Temporal model of traffic lights

AP =% |e|%|o|% |0
{=, {e,

k/

Temporal model of Cambridge weather

(%4} - *ie)

N

s {%.73} {%.'I'}
\ {{f i,@} /
{7+ e} [

Y~

Temporal models of indicating

AP =% |01 0©

Mhighway code MCambridge M
" (1 (1
/ A - U
()

- {B N}

\ 0.0} {6, {6}

10

Milner’s tea & coffee machines

Mnice Mbad

l ¢ N
AL

{€P} (=} {€r} (=}

11

Corner case: the initial temporal model

0 € TModel

0,

0, (it is empty)
o=|{ 0

12

Corner case: the terminal temporal model

1 € TModel
AP — B,
{s|T},

1E({so,s1| T},
s {p|sp},

T

13

Temporal model of a terrible punter

A punter with no concern for goat welfare or cabbage welfare:

AP = State
State,

{S‘Vi.si:‘?},

M = {s,s’

s—{i|s=i},

(moveone s s’ V movezero s s’)

<s@:ﬂip(s'@m)}

14

Temporal model of a terrible punter

flip 1< flip I 2]

) def
moveone s s =

auxss’%@@\/
auxss’@%@\/
auxss’@%@

/ def 5325@/\5,3:5/@/\
aux ss'abc= , ,
s b=sbAs c=sc

movezeross’d:efs‘%’:s"%’/\5@5:5’@Asézs’@

15

Temporal model of a terrible punter

FenI>a Fle>A

Il

Safety: we never go through a red state.
Liveness: we eventually reach the blue state.
Both are pretty clearly false! :-(

16

Informal temporal model of an elevator

Let us try to describe how an elevator
for a building with 3 levels works:

= it starts at the ground floor,
with the door closed, and goes
back there when it is not called;

= if going through a level where it
is called, it stops there and

opens its door;

Textual descriptions do not scale very well.

17

Temporal model of an elevator: statics and specification

Direction ::= home | up | down
Level :=0]1]2

Location :=01]1/2|1]3/2|2
Called £ Level — B

DoorStatus ::= open | closed

ElevatorStatus & Direction x Location x Called x DoorStatus

Desired goals:

= the door is not open at half-levels;
= if the elevator is called to a level, then it eventually gets there;
= the elevator does not lock people in;

= the path of the elevator is not entirely idiotic.

18

Temporal model of an elevator: partial dynamics

— start

going up

timel \%)
moving up reopen door
time
timel

arrived
timel

open door

timel

going down

timel

moving down

19

Temporal model of an elevator: complete (?) dynamics

('rlEﬁ'&lE)
tpre pis ¢

(uaﬁ b

{A.cag) {Acaa) {hla} {A.can] holE_yClg
(fohs) (fors) (afohs) | o.! pts u 1o
{ ‘,' LTINS cui) { ‘,' LET fug E) 18
W N '
(foss) (foss) (oks (Plor uﬁ <uﬁ)
<r) !"") [,“ bl m" ” ‘
y] L1} tli ’]‘| (I! IE) oE
10
Aoba (Bloss) (pfose) (fHloss "I m
My N ‘
il 28} (o) (L {tu: E)H L]
I m [‘..v W! ,’
M"‘ 25 Nv‘ v8} "y‘ 25} (“ pea w R
4(a (plesn) (fpics) { CIE IE) IE)
I m b 0 im
ﬁ o e ks “ = e ke e
(b ,h 5} ‘m o “, 85 I' E>,9“'
| l\ I] |y
vh EH““ ”E " E A
\\y a8} \\y Ei \\y & { W,; “‘
h (i (e H i "
\I' b} \“ 058} \i (. ‘E‘ «as»
G I
{

How to have any confidence that this is correct?

GCUB__((LChE {iC

CE
§ (::: i

;a

ey Il
\\:?‘&\.?;
ﬁ::, \';T

(LoBE] (LoEE] (,LOBE)

house by Petr Olssak

20

Definitions

(Infinite) Paths

stream € Set — Set
m,... € stream AEN 5 A

IsPath € (M € TModel) — stream M.S — Prop
IsPath M ©# £V¥n e N. (7 n) M.T (x (n+1))

Path € TModel — Set
Path M £ (7 € stream M.S) x IsPath M

21

Reachable states & the tail operation

Because the transition relation is left-total, these infinite paths are
“complete”, in the sense that they capture reachability:

Reachable € (M € TModel) — M.S — Prop
Reachable M s £ 37 € stream M.S5,n e N.
IsPath M 7 AM.So (T O)As=mn

tailn € (A € Set) — N — stream A — stream A
tailn An =i (i +n)

22

Stuttering

A temporal model is stuttering when all states loop back to
themselves:

stuttering € TModel — Prop
stuttering M Vs e M.S.s M.T s

A If the temporal model is not stuttering, then we can count
transitions. This is only sound if they exactly match those of the
system being analysed.

See “What good is temporal logic” §2.3, by Leslie Lamport
https://lamport.azurewebsites.net/pubs/what-good.pdf

23

https://lamport.azurewebsites.net/pubs/what-good.pdf

More abstract temporal model of traffic lights
Somewhat unusually, we do not interpret a state not being labelled

with a given label as that state being labelled with the negation of
that label.

AP =% | »|#»

{#,#}

— {*} {*}

.

{#} 24

Applications of model checking

Applications of model checking

= Hardware:

= circuits (with memory) directly translate to temporal models
= |ots of protocols

= cache protocols

= bus protocols

their specification involves lots of temporal “liveness”
(“eventually something good") properties

» Software: often not finite a priori, but “proper modelling”, or
bounded model-checking

= Security protocols

= Distributed systems

The common denominator of many of these is the “killer app” of
model checking: concurrency.

25

Examples

In the rest of this lecture, we will sketch how some of these are

approached.

The point is not the details of any individual temporal model, but

the overall approach.

26

Temporal model from operational
semantics

Temporal model from operational semantics

An initial configuration for a small-step operational semantics
naturally leads to a temporal model: take

= configurations as states,
= the initial configuration as the (only) initial state,
= steps as transitions, and

= some interesting properties as atomic propositions, for

example
X.Y,Z,... € Var
v e 7
AP = X=v [X=YI[X<Y

X+Y<Z|XxY<Z]

27

Temporal model from operational semantics

For example, for a language with a concurrent composition with

interleaving dynamics (as in lecture 6):

GG C, se
(GGG, sp) —— (][I G| G3, 57

/ GG ICause

{)
{)
{)
(GGG m)

(GllIClIG, s) — (GGG, 50) —— (GGG, 1)
{ Sh)
{ Sk)
(¢)
{

\ Gl GIICS, 5n

Gl GG, sk
(GGG, sq) —— (G| GG, s

GlICGIG, sm)

28

Dealing with the size of temporal model from operational se-
mantics

These temporal models are very often infinite or intractably large!

Many approaches:

= bounded model checking (see lecture 9):

= assume (and possibly check whether) loops execute no more
than n times
= consider executions of length smaller than n

= use a model checking DSL to write an idealised version of the
program (see lecture 9)

= use abstraction (see lecture 10)

29

Temporal model from circuits

Example circuit

Synchronous (the clock is left implicit) counter that goes
0,1,2,0,1,2,... (assuming all registers are initially 0):

n

o

n
X0

o>

C 1

Registers make the circuit not be a simple function, which
motivates using a temporal model.

30

Example circuit temporal model

The states of the temporal model are the state of the registers,
and the labels are which registers are set to 1:

) ——— {ro}

{ro,n} — {n}

Safety: The state {rg, r1} should never be reached.
Liveness: all other states should be visited infinitely often.

31

Difference circuit

Given two circuits C7, G € SCircuit 7 1, we can define their
difference circuit C; © Gy

%%

G o

| >~

G 4

If the answer is always 0, then they are equivalent (see lecture 10).
The typical use case is to have a simple, clearly correct (1, and a

complex C; to verify.
32

Temporal models of distributed
algorithms

Temporal models of distributed algorithms

110 6. DISTRIBUTED CONSENSUS WITH PROCESS FAILURES

other processes; this can help to make the algorithm descriptions more uniform.
These messages are technically not permitted in the model, but there is no harm
in allowing them because the fictional transmissions could just be simulated by
local computation

1GStop atgorihns Nodes in distributed algorithms
For every string z that occurs as a label of a node of T, each process has f . f . f .

a variable val(z). Variable val(zx) is used to hold the value with which the -
process decorates the node labelled z. Initially, each process i decorates are o te ns p ecl Ied n te rms or In
the root of its tree with its own initial value, that sets its val(A) to its

initial value. 1 .

Round 1: Process i broadcasts val(A) to all processes, including i itself. teraCtI ng a Utom ata 1 the tem pora I
‘Then process i records the incoming information:

1 messse it e < Va1 1o e e ey MNOAeE] directly results from their

to v.

2. 1f no message with a value in V arrives at i from j, then i sets val(j)

1ol interaction.

Round k, 2 < k < f+1: Process i broadcasts all pairs (z,v), where z is a
level k — 1 label in T that does not contain index i, v € V, and v = val(z).!
Then process i records the incoming information:

1. If zj is a level k node label in T, where z is a string of process indices

and 3 e sl e a2 e s e i~ o v See |[B Concurrent and Dis-
arrives at i from j, then i sets val(zj) to v.
2. If zj is a level k node label and no message with a value in V for -
val(z) arrives at i from j, then i sets val(zj) to null tri b Uted Syste ms
At the end of f + 1 rounds, process i applies a decision rule. Namely,
let W be the set of non-null vals that decorate nodes of i’s tree. If W is

a singleton set, then i decides on the unique clement of W otherwise, i
decides on v.

It should not be hard to see that the trees get decorated with the values we Distributed Algorithms, by Nancy Lynch.
indicated carlier. That is, process i's root gets decorated with i's input value.
Also, if process i’s node labelled by the string iy ... ig, 1 < k < f+1, is decorated
by a value v € V, then it must be that i has told i at round k that ix_; has told

1 order to fit our formal model, in which only one message can be sent from i to each
other process at each round, all the messages with the same destination are packaged together
into one large message.

33

Models of cache algorithms

Models of cache algorithms

Cache algorithms are also often

Write miss for this block

Invalidate for this block

specified in terms of interacting
automata (they are distributed

Shared
(read only)

CPU read
Place read miss on bus

s cPuwie <) algorithms too).
H E P/aa::;d
ﬂ E ‘miss on bus
43 See Section 21.5.2.1 German's

Write miss
for block

Protocol in the Handbook of
S Model Checking.

Write-back data
Place write miss on bus

Exclusive
(read/write)

CPU write hit
CPU read hit

Figure 5.7 Cache coherence state diagram with the state transitions induced bythe _OMPUter Architecture: A Quantitative Approach,
local processor shown in black and by the bus activities shown in gray. As in
Figure 5.6, the activities on a transition are shown in bold. by Hennessy & Patterson.

34

Models of security protocols

Models of security protocols

Given a security protocol, define a temporal model where a state
contains:

= the state of each agent

= the set of messages sent

= the set of all the messages that can be deduced from the
messages sent; this includes taking messages apart, and

reassembling them, including via hashing or encrypting using
known keys

and where there is a transition from one state to another when

= an agent sends a message

= an adversary sends a deducible message to an agent

See Chapter 22 Model Checking Security Protocols, in the Handbook of Model
Checking.

35

Remark on examples

As illustrated, interesting programs are big, often too big to work
on by hand.

This is why we use model checkers, but it also means we cannot
easily work with these examples.

Instead, we will mostly look at games and puzzles like the
cabbage-goat-wolf puzzle.

36

Summary

Temporal models make it possible to describe systems that evolve
in time.

Temporal models can be extracted directly, for example from
circuits, or hand-crafted to capture the relevant parts of an
artefact.

In the next lecture, we will see how to use temporal logic(s) to
specify the behaviour of temporal models.

37

	Definitions
	Applications of model checking
	Temporal model from operational semantics
	Temporal model from circuits
	Temporal models of distributed algorithms
	Models of cache algorithms
	Models of security protocols

