
Hoare logic and Model checking
Part II: Model checking

Lecture 11: Implementing model checking

Jean Pichon-Pharabod
University of Cambridge

CST Part II – 2019/20



Definite temporal models

For the model checker to be effective, the input temporal model
needs to be effective.

A definite temporal model:

DTModel ∈ Set
DM, . . . ∈ DTModel def

=

(S ∈ Set)×
(F ∈ Fintype S)×

(S0 ∈ S → B)×
(À T Á ∈ S → S → B)×
(` ∈ S → AP → B)×
(∀s ∈ S. ∃s ′ ∈ S. s T s ′ = >B)

1



Specifying a CTL model checker

We will see how to implement the world’s worst CTL model
checker:

mc ∈ (AP ∈ Set) → DTModel AP → StatePropCTL AP → B

which has the following specification:

∀AP ∈ Set,DM ∈ DTModel AP , ψCTL ∈ StatePropCTL AP .
reflect (mc AP DM ψCTL) (DM �WI

AP ψCTL)

where satisfaction in a definite model is as expected.

2



Defining a CTL model checker

To check whether the model satisfies a property, it suffices to
check whether all the initial states satisfy the property, which we
check using an auxiliary function mca that checks whether a state
satisfies a given property.

mc AP DM ψCTL def
=

forall-fin DM�S (s 7→ DM�S0 s →B mca DM ψCTL s)

mca ∈ (AP ∈ Set) → (DM ∈ DTModel AP) →
StatePropCTL AP → (DM�S → B)

This mca function works by recursion on the proposition, calling
itself on the sub-propositions.

3



CTL model checker: propositional fragment

mca AP DM p def
= s 7→ DM�` s p

mca AP DM (¬̂φCTL)
def
= let V = mca AP DM φCTL in

s 7→ ¬B(V s)

mca AP DM (φCTL
1 ∧̂φCTL

2 )
def
= let V1 = mca AP DM φCTL

1 in
let V2 = mca AP DM φCTL

2 in
s 7→ V1 s ∧B V2 s

mca AP DM (φCTL
1 ∨̂φCTL

2 )
def
= let V1 = mca AP DM φCTL

1 in
let V2 = mca AP DM φCTL

2 in
s 7→ V1 s ∨B V2 s

mca AP DM (φCTL
1 →̂φCTL

2 )
def
= let V1 = mca AP DM φCTL

1 in
let V2 = mca AP DM φCTL

2 in
s 7→ V1 s →B V2 s 4



CTL model checker: next

If we know in which states φCTL holds, then we know in which states
X φCTL holds: their predecessors:

mca AP DM (A X φCTL)
def
=

let V = mca AP DM φCTL in
s 7→ forall-fin DM�S (s ′ 7→ (s DM�T s ′ →B V s ′))

mca AP M (E X φCTL)
def
=

let V = mca AP DM φCTL in
s 7→ exists-fin DM�S (s ′ 7→ s(DM�T s ′ ∧B V s ′))

5



CTL model checker: small paths 1/2

The remaining temporal operators talk about infinite paths.
But it is sufficient to consider paths smaller than the diameter of
the model1:

IsSmallPathFrom ∈ (AP ∈ Set) → (DM ∈ DTModel AP) → DM�S →
list DM�S → Prop

IsSmallPathFrom AP DM s Π
def
=

(length Π ≤ size DM�F ) ∧ (nth Π 0 = some s) ∧
(nth Π (length Π− 1) = some s ′) ∧ (s ′ DM�T s) ∧(
∀n ∈ N, s ′, s ′′.

(
nth Π n = some s ′ ∧
nth Π (n + 1) = some s ′′

)
→ s ′ DM�T s ′′ = >B

)

1reminiscent of the pumping lemma for automata.

6



CTL model checker: small paths 2/2

And we can obtain all these paths:

small-paths-from ∈ (AP ∈ Set) → (DM ∈ DTModel AP) →
(s ∈ DM�S) →

Fintype (SmallPathFrom AP DM s)
small-paths-from def

= . . .

7



CTL model checker: generally

For the ‘generally’ temporal operator, we need to look at
lasso-shaped paths that are made up of a loop and a (possibly
empty) path that leads to that loop, and check that all the states
of this lasso satisfy the sub-property:

mca AP DM (A G φCTL)
def
=

let V = mca AP DM φCTL in
s 7→ forall-fin

(small-paths-from AP DM s)
(Π 7→ forall-list Π (s ′ 7→ V s ′))

mca AP DM (E G φCTL)
def
=

let V = mca AP DM φCTL in
s 7→ exists-fin

(small-paths-from AP DM s)
(Π 7→ forall-list Π (s ′ 7→ V s ′))

8



CTL model checker: future

mca AP DM (A F φCTL)
def
= . . .

mca AP DM (E F φCTL)
def
= . . .

Left as an exercise.

9



CTL model checker: until

mca AP DM (A (φCTL
1 U φCTL

2 ))
def
=

let V1 = mca AP DM φCTL
1 in

let V2 = mca AP DM φCTL
2 in

s 7→



forall-fin (small-paths-from AP DM s)
Π 7→

existi Πj s ′′ 7→(
(foralli Π (i s ′ 7→ j <B i →B V1 s ′)
∧B V2 s ′′

)






mca AP DM (E (φCTL
1 U φCTL

2 ))
def
= . . .

Left as an exercise.
10



Actually implementing model checking

This is not very efficient!

In practice,

• the V s are memoised;
• “symbolic model checking” uses binary decision diagrams (IB

Logic and proof) to represent sets of states, and performs
operations on sets-as-BDDs, instead of explicitly manipulating
the sets;

• the states can be computed lazily;
• “partial order reduction” tries to not enumerate redundant

interleavings;
• …
• 40+ years of tricks!

11



Counterexamples



Generating counterexamples

Adapted from “Tree-Like Counterexamples in Model Checking”.

If the specification is not satisfied, and is in ACTL, then we can do
better than just say “no”: we can produce a counterexample.

The idea is that M 2AP ψACTL is equivalent to M �AP ¬ψACTL, which
is itself equivalent to nf-model M �AP nf-negs AP ψACTL, where the
latter formula is (the embedding of a proposition) in ECTL: it
suffices to find a witness of that ECTL proposition.

12



Shape of ECTL witnesses

The shape of an ECTL witness:

W , . . . ∈ data Witness (AP ∈ Set) (M ∈ TModel AP) ∈ Set :=
| wap ∈ M�S → Witness AP M
| wand ∈ Witness AP M → Witness AP M → Witness AP M
| winjl ∈ Witness AP M → Witness AP M
| winjr ∈ Witness AP M → Witness AP M
| wX ∈ M�S → M�S → Witness AP M → Witness AP M
| wF ∈ list M�S → Witness AP M → Witness AP M
| wG ∈ list (M�S × Witness AP M) → Witness AP M
| wU ∈ list (M�S × Witness AP M) → M�S → Witness AP M →

Witness AP M

13



Being an ECTL witness: atomic propositions

⇐ �← ⇚ wit-by ⭅ :

(AP ∈ Set) → (M ∈ TModel AP) → M�S →
(ψ ∈ StatePropCTL AP) → Witness AP M s →

Prop

There are (on purpose) no cases for A . . ..

A witness for an atomic proposition is just that the atomic
proposition holds immediately:

s �AP,M p wit-by W def
= M�` s p ∧ W = wap AP M s

14



Being an ECTL witness: next

A witness for next is a transition from the current state, and a
witness that the sub-property holds from the end state:

s �AP,M E X ψ wit-by W def
=

∃s ′ ∈ M�S,W ′ ∈ Witness AP M.

 s M�T s ′ ∧
s ′ �AP,M ψ wit-by W ′ ∧
W = wX AP M s s ′ W ′



15



Being an ECTL witness: future

A witness for the ‘future’ temporal operator is a path that leads to
a state for which we have a witness that it satisfies the
sub-property:

s �AP,M E F ψ wit-by W def
=

∃s ′ ∈ M�S,Π ∈ list M�S,W ′ ∈ Witness AP M.
IsSmallPathFrom AP M s Π ∧
last Π = some s ′ ∧
s ′ �AP,M ψ wit-by W ′ ∧
W = wF AP M s Π W ′



16



Being an ECTL witness: generally

A witness for the ‘generally’ temporal operator is a lasso, for all the
states of which we have a witness that they satisfy the
sub-property:

s �AP,M E G ψ wit-by W def
=

let T = (M�S × Witness AP M) in
∃X ∈ list T .

IsSmallPathFrom AP M s X ∧
(∃i . (last T X) M�T (nth T X i)) ∧∀i ∈ N, s ′ ∈ M�S,W ′ ∈ Witness AP M s ′.(

nth T X i = some 〈s ′,W ′〉 →
s ′ �AP,M ψ wit-by W ′

)  ∧

W = wG AP M X)


17



Being an ECTL witness: until

s �AP,M E ψ1 U ψ2 wit-by W def
=

let T = (M�S × Witness AP M) in
∃X ∈ list T , s ′ ∈ M�S,W ′ ∈ Witness AP M.

IsSmallPathFrom AP M s (X ++ [〈s ′,W ′〉]) ∧∀i ∈ N, s ′′ ∈ M�S,W ′′ ∈ Witness AP M s ′.(
nth T X i = some 〈s ′′,W ′′′〉 →

s ′′ �AP,M ψ1 wit-by W ′′

)  ∧

(s ′ �AP,M ψ2 wit-by W ′) ∧
W = wU AP M X s ′ W ′)



18



Being an ECTL witness: conjunction

s �AP,M ψ1 ∧̂ψ2 wit-by W def
=

∃W1 ∈ Witness AP M,W2 ∈ Witness AP M.(
s �AP,M ψ1 wit-by W1 ∧ s �AP,M ψ2 wit-by W2 ∧
W = wand AP M W1 W2

)

19



Being an ECTL witness: disjunction

s �AP,M ψ1 ∨̂ψ2 wit-by W def
= ∃W1 ∈ Witness AP M.(

s �AP,M ψ1 wit-by W1 ∧
W = winjl AP M W1

)  ∨

 ∃W2 ∈ Witness AP M.(
s �AP,M ψ2 wit-by W2 ∧
W = winjr AP M W2

) 

20



Satisfiability and existence of witnesses

The requirement for a DTModel is just a brutal way to require M
to be finite (otherwise, the witness could be infinite, and we would
need a coinductive definition of a witness)

∀AP ∈ Set,M ∈ TModel AP ,DM ∈ DTModel AP ,
s ∈ M�S, ψ ∈ StatePropCTL AP .

es ψ → reflect-model AP M DM → (s �WI-s
AP,M ψ) ↔(
∃W ∈ Witness (split AP) (nf-model AP M).

s �(split AP),(nf-model AP M) (nf s AP ψ) wit-by W

) 
Now, if we have M 2AP ψACTL, there exists a corresponding W —
and we can effectively find it by tweaking our model checking
algorithm above (details elided).

21



Witnesses beyond ECTL

Can we have witnesses for more than just ECTL?

Yes, for example, one of the nice things about LTL is that
counterexamples are just paths.

But if we look at fragments of CTL∗ that are to expressive, then
these witnesses are often difficult to understand and use.

Instead, focus has been mostly on making better counterexamples
for common subsets of ECTL.

22



Model checking LTL and CTL∗

Requires a bit of machinery to check whether a state is visited
infinitely often: Büchi automata.

We will not consider this further.

23



Summary

We saw a model checking algorithm for CTL, and sketched how it
could be modified to generate counterexamples for ACTL formulas.

24



CEGAR
not examinable



CEGAR

Assume that we have a way to automatically generate abstract
models. Then we can take the following approach: recursively:
pick an abstraction of the model
check the property in the abstract model
if it is true, happy
if it is false, is it a genuine counterexample?
try it on the base model: if it works, we have found a genuine
counterexample
if it does not work, build an abstraction.

25



Model checking hybrid systems

Modelling physical systems is often best done with continuous
variables. Is it possible apply model checking to these?

Yes! It has been done for example for ACAS X, the
Next-Generation Airborne Collision Avoidance System
https://doi.org/10.1007/s10009-016-0434-1

26

https://doi.org/10.1007/s10009-016-0434-1


Summary

• How temporal models can be used to describe systems that
evolve in time.

• How temporal logics (CTL∗, etc.) can be used to specify
those systems.

• How to use model checking in practice.
• How to relate a concrete temporal model to an abstract

temporal model with simulation.
• How to implement model-checking for CTL, and

counterexample generation for ACTL.

27


