

Introduction to Graphics

Computer Science Tripos Part 1A/1B Michaelmas Term 2019/2020

Department of Computer Science and Technology The Computer Laboratory

> William Gates Building 15 JJ Thomson Avenue Cambridge CB3 0FD

> > www.cst.cam.ac.uk

This handout includes copies of the slides that will be used in lectures. These notes do not constitute a complete transcript of all the lectures and they are not a substitute for text books. They are intended to give a reasonable synopsis of the subjects discussed, but they give neither complete descriptions nor all the background material.

Selected slides contain a reference to the relevant section in the recommended textbook for this course: *Fundamentals of Computer Graphics* by Marschner & Shirley, CRC Press 2015 (4th edition). The references are in the format [FCG N.M], where N.M is the section number.

Material is copyright © Neil A Dodgson, Peter Robinson & Rafał Mantiuk, 1996-2019, except where otherwise noted.

All other copyright material is made available under the University's licence. All rights reserved.

Introduction to Computer Graphics Rafał Mantiuk

www.cl.cam.ac.uk/~rkm38

Eight lectures & two practical tasks

Part IA 75% CST, Part IB 50% CST

Two supervisions suggested

Two exam questions on Paper 3

What are Computer Graphics & Image Processing?

Why bother with CG & IP?

+All visual computer output depends on CG

- printed output (laser/ink jet/phototypesetter)
- monitor (CRT/LCD/OLED/DMD)
- all visual computer output consists of real images generated by the computer from some internal digital image

+ Much other visual imagery depends on CG & IP

- TV & movie special effects & post-production
- most books, magazines, catalogues, brochures, junk mail, newspapers, packaging, posters, flyers

Course Structure

+ Background

 What is an image? Resolution and quantisation. Storage of images in memory. [I lecture]

Rendering

 Perspective. Reflection of light from surfaces and shading. Geometric models. Ray tracing. [2 lectures]

Graphics pipeline

 Polygonal mesh models. Transformations using matrices in 2D and 3D. Homogeneous coordinates. Projection: orthographic and perspective. Rasterisation. [2 lectures]

Graphics hardware and modern OpenGL

 GPU APIs. Vertex processing. Fragment processing. Working with meshes and textures. [I lectures]

+ Human vision, colour and tone mapping

Colour perception. Colour spaces. Tone mapping [2 lectures]

Course books

- + Fundamentals of Computer Graphics
 - Shirley & Marschner CRC Press 2015 (4th edition)
 - [FCG 3.1] reference to section 3.1
- + Computer Graphics: Principles & Practice
 - Hughes, van Dam, McGuire, Sklar et al. Addison-Wesley 2013 (3rd edition)

 OpenGL Programming Guide: The Official Guide to Learning OpenGL Version 4.5 with SPIR-V

Kessenich, Sellers & Shreiner
 Addison Wesley 2016 (7th edition and later)

COMPUTER GRAPHICS

JOHN F. HUGHES • ANDRIES VAN DAM • MORGAN MCGUIRE DAVID F. SKLAR • JAMES D. FOLEY • STEVEN K. FEINER • KURT AKELEY

John Kessenich * Graham Sellers * Dave Shreiner The Khronot OpenGL ARL Working Group

Computer Graphics & Image Processing

+ Background

- What is an image?
- Resolution and quantisation
- Storage of images in memory
- + Rendering
- + Graphics pipeline
- + Rasterization
- + Graphics hardware and modern OpenGL
- +Human vision and colour & tone mapping

What is a (digital) image?

- •To represent images in memory
- •To create image processing software

•To express image processing as a mathematical problem

•To develop (and understand) algorithms

Image

- + 2D array of pixels
- + In most cases, each pixel takes 3 bytes: one for each red, green and blue
- + But how to store a 2D array in memory?

Stride

+ Calculating the pixel component index in memory

For row-major order (grayscale)

 $i(x, y) = x + y \cdot n_{cols}$

- For column-major order (grayscale) $i(x, y) = x \cdot n_{rows} + y$
- For interleaved row-major (colour) $i(x, y, c) = x \cdot 3 + y \cdot 3 \cdot n_{cols} + c$
- General case

$$i(x, y, c) = x \cdot s_x + y \cdot s_y + c \cdot s_c$$

where s_x , s_y and s_c are the strides for the x, y and colour dimensions

Padded images and stride

+ Sometimes it is desirable to "pad" image with extra pixels

- for example when using operators that need to access pixels outside the image border
- + Or to define a region of interest (ROI)

+ How to address pixels for such an image and the ROI?

Padded images and stride

$$i(x, y, c) = i_{first} + x \cdot s_x + y \cdot s_y + c \cdot s_c$$

+ For row-major, interleaved

Pixel (Plcture ELement)

 Each pixel (usually) consist of three values describing the color

(red, green, blue)

+ For example

- (255, 255, 255) for white
- (0, 0, 0) for black
- (255, 0, 0) for red

+Why are the values in the 0-255 range?

 How many bytes are needed to store 5MPixel image? (uncompressed)

Pixel formats, bits per pixel, bit-depth

+ Grayscale – single color channel, 8 bits (1 byte)

+ Highcolor $-2^{16}=65,536$ colors (2 bytes)

+Truecolor – 2^{24} = 16,8 million colors (3 bytes)

Deepcolor – even more colors (>= 4 bytes)

Color banding

- If there are not enough bits to represent color
- Looks worse
 because of the
 Mach band illusion
- Dithering (added noise) can reduce banding
 - Printers but also some LCD displays

What is a (computer) image?

A digital photograph? ("JPEG")
A snapshot of real-world lighting?

- •To represent images in memory
- •To create image processing software

- •To express image processing as a mathematical problem
- •To develop (and understand) algorithms

Image – 2D function

Image can be seen as a function l(x,y), that gives intensity value for any given coordinate (x,y)

Sampling an image

 The image can be sampled on a rectangular sampling grid to yield a set of samples. These samples are pixels.

What is a pixel? (math)

+A pixel is not

- 🔹 a box
- 🔶 a disk
- a teeny light
- + A pixel is a point
 - it has no dimension
 - it occupies no area
 - it cannot be seen
 - it has coordinates
- + A pixel is a **sample**

From: http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture05/lecture05.pdf

Sampling and quantization

- + Physical world is described in terms of continuous quantities
- + But computers work only with discrete numbers
- Sampling process of mapping continuous function to a discrete one
- Quantization process of mapping continuous variable to a discrete one

Computer Graphics & Image Processing

+ Background

+ Rendering

- Perspective
- Reflection of light from surfaces and shading
- Geometric models
- Ray tracing
- + Graphics pipeline
- + Graphics hardware and modern OpenGL
- + Human vision and colour & tone mapping

Depth cues

Shadow and Foreshortening

Colour

Atmosphere

Familiar Size

Texture Gradient

Distance to Horizon

Rendering depth

Perspective in photographs

Gates Building – the rounded version (Stanford)

Gates Building – the rectilinear version (Cambridge)

Early perspective

- Presentation at the Temple
- Ambrogio Lorenzetti 1342
 Uffizi Gallery Florence

Wrong perspective

 Adoring saints
 Lorenzo Monaco 1407-09
 National Gallery London

Renaissance perspective

- Geometrical perspective
 Filippo Brunelleschi 1413
- Holy Trinity fresco
- Masaccio (Tommaso di Ser Giovanni di Simone) 1425
- Santa Maria Novella
 Florence
- De pictura (On painting)
 textbook by Leon Battista Alberti
 1435

More perspective

- The Annunciation with Saint Emidius
- + Carlo Crivelli 1486
- National Gallery London

False perspective

Calculating perspective

9

Ray tracing

Identify point on surface and calculate illumination
 Given a set of 3D objects, shoot a ray from the eye through the centre of every pixel and see what surfaces it hits

shoot a ray through each pixel

whatever the ray hits determines the colour of that pixel

Ray tracing: examples

ray tracing easily handles reflection, refraction, shadows and blur

ray tracing is computationally expensive

Ray tracing algorithm

Intersection of a ray with an object I

polygon or disc

intersection the ray with the plane of the polygon

as above

then check to see whether the intersection point lies inside the polygon

a 2D geometry problem (which is simple for a disc)

Intersection of a ray with an object 2

try them as an exercise
Ray tracing: shading

- once you have the intersection of a ray with the nearest object you can also:
 - calculate the normal to the object at that intersection point
 - shoot rays from that point to all of the light sources, and calculate the diffuse and specular reflections off the object at that point
 - this (plus ambient illumination) gives the colour of the object (at that point)

Ray tracing: shadows

- because you are tracing rays from the intersection point to the light, you can check whether another object is between the intersection and the light and is hence casting a shadow
 - also need to watch for selfshadowing

Ray tracing: reflection

 if a surface is totally or partially reflective then new rays can be spawned to find the contribution to the pixel's colour given by the reflection

> this is perfect (mirror) reflection

Ray tracing: transparency & refraction

- objects can be totally or partially transparent
 - this allows objects behind the current one to be seen through it
- transparent objects can have refractive indices
 - bending the rays as they pass through the objects
- transparency + reflection
 means that a ray can split into
 two parts

Illumination and shading

- Dürer's method allows us to calculate what part of the scene is visible in any pixel
- But what colour should it be?
- + Depends on:
 - lighting
 - shadows
 - properties of surface material

How do surfaces reflect light?

Johann Lambert, 18th century German mathematician

Comments on reflection

the surface can absorb some wavelengths of light

e.g. shiny gold or shiny copper

 specular reflection has "interesting" properties at glancing angles owing to occlusion of micro-facets by one another

plastics are good examples of surfaces with:

- specular reflection in the light's colour
- diffuse reflection in the plastic's colour

Calculating the shading of a surface

gross assumptions:

- there is only diffuse (Lambertian) reflection
- all light falling on a surface comes directly from a light source
 - there is no interaction between objects
- no object casts shadows on any other
 - so can treat each surface as if it were the only object in the scene
- light sources are considered to be infinitely distant from the object
 - the vector to the light is the same across the whole surface
- observation:
 - the colour of a flat surface will be uniform across it, dependent only on the colour & position of the object and the colour & position of the light sources

Diffuse shading calculation

$$I = I_l k_d \cos \theta$$
$$= I_l k_d (N \cdot L)$$

- *L* is a normalised vector pointing in the direction of the light source
- ${\it N}\xspace$ is the normal to the surface
- I_l is the intensity of the light source
- k_d is the proportion of light which is diffusely reflected by the surface
- *I* is the intensity of the light reflected by the surface

use this equation to calculate the colour of a pixel

Diffuse shading: comments

- can have different I_l and different k_d for different wavelengths (colours)
- watch out for $\cos\theta < 0$
 - implies that the light is behind the polygon and so it cannot illuminate this side of the polygon
- do you use one-sided or two-sided surfaces?
 - one sided: only the side in the direction of the normal vector can be illuminated
 - if $\cos\theta < 0$ then both sides are black
 - two sided: the sign of cosθ determines which side of the polygon is illuminated
 - need to invert the sign of the intensity for the back side
- this is essentially a simple one-parameter (θ) BRDF

Specular reflection

 Phong developed an easy-tocalculate *approximation* to specular reflection

$$I = I_l k_s \cos^n \alpha$$

= $I_l k_s (R \cdot V)^n$

Phong Bui-Tuong, "Illumination for computer generated pictures", *CACM*, **18**(6), 1975, 311–7

- *L* is a normalised vector pointing in the direction of the light source
- *R* is the vector of perfect reflection
- N is the normal to the surface
- *V* is a normalised vector pointing at the viewer
- I_l is the intensity of the light source
- k_s is the proportion of light which is specularly reflected by the surface
- n is Phong's ad hoc "roughness" coefficient
- *I* is the intensity of the specularly reflected light

Shading: overall equation

 the overall shading equation can thus be considered to be the ambient illumination plus the diffuse and specular reflections from each light source

$$I = I_a k_a + \sum_i I_i k_d (L_i \cdot N) + \sum_i I_i k_s (R_i \cdot V)^n$$

the more lights there are in the scene, the longer this calculation will take

The gross assumptions revisited

- diffuse reflection
- approximate specular reflection
- no shadows
 - need to do ray tracing or shadow mapping to get shadows
- lights at infinity
 - can add local lights at the expense of more calculation
 - \bullet need to interpolate the L vector
- no interaction between surfaces
 - cheat!
 - assume that all light reflected off all other surfaces onto a given surface can be amalgamated into a single constant term: "ambient illumination", add this onto the diffuse and specular illumination

Sampling

- we have assumed so far that each ray passes through the centre of a pixel
 - i.e. the value for each pixel is the colour of the object which happens to lie exactly under the centre of the pixel
- this leads to:
 - stair step (jagged) edges to objects
 - small objects being missed completely
 - thin objects being missed completely or split into small pieces

Anti-aliasing

- these artefacts (and others) are jointly known as aliasing
- methods of ameliorating the effects of aliasing are known as anti-aliasing
 - in signal processing aliasing is a precisely defined technical term for a particular kind of artefact
 - in computer graphics its meaning has expanded to include most undesirable effects that can occur in the image
 - this is because the same anti-aliasing techniques which ameliorate true aliasing artefacts also ameliorate most of the other artefacts

Sampling in ray tracing

single point

- shoot a single ray through the pixel's centre
- super-sampling for anti-aliasing
 - shoot multiple rays through the pixel and average the result
 - regular grid, random, jittered, Poisson disc
- adaptive super-sampling
 - shoot a few rays through the pixel, check the variance of the resulting values, if similar enough stop, otherwise shoot some more rays

Types of super-sampling I

- regular grid
 - divide the pixel into a number of sub-pixels and shoot a ray through the centre of each
 - problem: can still lead to noticable aliasing unless a very high resolution sub-pixel grid is used
- random
 - shoot N rays at random points in the pixel
 - replaces aliasing artefacts with noise artefacts
 - the eye is far less sensitive to noise than to aliasing

Types of super-sampling 2

Poisson disc

- shoot N rays at random points in the pixel with the proviso that no two rays shall pass through the pixel closer than ε to one another
- for N rays this produces a better looking image than pure random sampling
- very hard to implement properly

Poisson disc

pure random

Types of super-sampling 3

jittered

- divide pixel into N sub-pixels and shoot one ray at a random point in each sub-pixel
- an approximation to Poisson disc sampling
- for N rays it is better than pure random sampling
- easy to implement

jittered

Poisson disc

pure random

More reasons for wanting to take multiple samples per pixel

- super-sampling is only one reason why we might want to take multiple samples per pixel
- many effects can be achieved by distributing the multiple samples over some range
 - called distributed ray tracing
 - N.B. distributed means distributed over a range of values
- can work in two ways
 - Deach of the multiple rays shot through a pixel is allocated a random value from the relevant distribution(s)
 - all effects can be achieved this way with sufficient rays per pixel
 - 2 each ray spawns multiple rays when it hits an object
 - this alternative can be used, for example, for area lights

Examples of distributed ray tracing

- distribute the samples for a pixel over the pixel area
 - get random (or jittered) super-sampling
 - used for anti-aliasing
- distribute the rays going to a light source over some area
 - allows area light sources in addition to point and directional light sources
 - produces soft shadows with penumbrae
- distribute the camera position over some area
 - allows simulation of a camera with a finite aperture lens
 - produces depth of field effects
- distribute the samples in time
 - produces motion blur effects on any moving objects

Anti-aliasing

one sample per pixel

multiple samples per pixel

Area vs point light source

an area light source produces soft shadows

a point light source produces hard shadows

Finite aperture

left, a pinhole camera below, a finite aperture camera below left, 12 samples per pixel below right, 120 samples per pixel note the depth of field blur: only objects at the correct distance are in focus

Computer Graphics & Image Processing

+ Background

+ Rendering

+ Graphics pipeline

- Polygonal mesh models
- Transformations using matrices in 2D and 3D
- Homogeneous coordinates
- Projection: orthographic and perspective

+ Rasterization

- + Graphics hardware and modern OpenGL
- + Human vision and colour & tone mapping

Unfortunately...

+ Ray tracing is computationally expensive

- used for super-high visual quality
- + Video games and user interfaces need something faster
- + Most real-time applications rely on **rasterization**
 - Model surfaces as polyhedra meshes of polygons
 - Use composition to build scenes
 - Apply perspective transformation and project into plane of screen
 - Work out which surface was closest
 - Fill pixels with colour of nearest visible polygon
- Modern graphics cards have hardware to support this
- + Ray tracing starts to appear in real-time rendering
 - The latest generation of GPUs offers accelerated ray-tracing
 - But it still not as efficient as rasterization

Three-dimensional objects

 Polyhedral surfaces are made up from meshes of multiple connected polygons

- Polygonal meshes
 - open or closed
 - manifold or non-manifold

Curved surfaces

must be converted to polygons to be drawn

Surfaces in 3D: polygons

63

- ♦ 3 vertices (triangle) must be planar
- > 3 vertices, not necessarily planar

Splitting polygons into triangles

- Most Graphics Processing Units (GPUs) are optimised to draw triangles
- Split polygons with more than three vertices into triangles

which is preferable?

2D transformations

+ why?

- it is extremely useful to be able to transform predefined objects to an arbitrary location, orientation, and size
- any reasonable graphics package will include transforms
 - 2D → Postscript
 - 3D → OpenGL

Basic 2D transformations

scale

- about origin
- by factor *m*

rotate

- about origin
- by angle θ
- translate
 - along vector (x_o, y_o)

x' = mxy' = my

 $x' = x \cos \theta - y \sin \theta$ $y' = x \sin \theta + y \cos \theta$

$$x' = x + x_o$$
$$y' = y + y_o$$

shear

- parallel to x axis
- by factor *a*

$$x' = x + ay$$
$$y' = y$$

Matrix representation of transformations

+ scale

about origin, factor *m*

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

+ do nothing

identity

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

+ rotate

about origin, angle θ

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

+ shear

• parallel to x axis, factor a

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Homogeneous 2D co-ordinates

 translations cannot be represented using simple 2D matrix multiplication on 2D vectors, so we switch to homogeneous co-ordinates

$$(x, y, w) \equiv \left(\frac{x}{w}, \frac{y}{w}\right)$$

- an infinite number of homogeneous co-ordinates map to every 2D point
- w=0 represents a point at infinity
- usually take the inverse transform to be: $(x, y) \equiv (x, y, 1)$

Matrices in homogeneous co-ordinates

+ scale

about origin, factor m

$\begin{bmatrix} x' \end{bmatrix}$		m	0	0	$\begin{bmatrix} x \end{bmatrix}$
\mathcal{Y}'	=	0	т	0	У
w'		0	0	1	W

+ do nothing

identity

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

• about origin, angle θ

$\begin{bmatrix} x' \end{bmatrix}$		$\cos\theta$	$-\sin\theta$	0	$\begin{bmatrix} x \end{bmatrix}$
<i>y</i> '	=	$\sin \theta$	$\cos\theta$	0	У
w'		0	0	1	$\lfloor w \rfloor$

+ shear

+ rotate

• parallel to x axis, factor a $\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$

Translation by matrix algebra

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_o \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

In homogeneous coordinates

$$x' = x + wx_o \qquad \qquad y' = y + wy_o \qquad \qquad w' = w$$

In conventional coordinates

$$\frac{x'}{w'} = \frac{x}{w} + x_0 \qquad \qquad \frac{y'}{w'} = \frac{y}{w} + y_0$$
Concatenating transformations

- often necessary to perform more than one transformation on the same object
- can concatenate transformations by multiplying their matrices e.g. a shear followed by a scaling:

		S	scal	e	S	hea	ar				both			
$\begin{bmatrix} x'' \end{bmatrix}$		m	0	0	[1	а	0	$\begin{bmatrix} x \end{bmatrix}$		m	та	0	$\begin{bmatrix} x \end{bmatrix}$	
<i>y</i> ''	=	0	т	0	0	1	0	<i>y</i>	=	0	т	0	<i>y</i>	
w''		0	0	1	0	0	1	$\lfloor w \rfloor$		0	0	1	$\lfloor w \rfloor$	

Transformation are not commutative

 be careful of the order in which you concatenate transformations

Scaling about an arbitrary point

scale by a factor *m* about point (x_o,y_o)
translate point (x_o,y_o) to the origin
scale by a factor *m* about the origin
translate the origin to (x_o,y_o)

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & -x_o \\ 0 & 1 & -y_o \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} \qquad 2 \begin{bmatrix} x'' \\ y'' \\ w'' \end{bmatrix} = \begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix}$$

$$\begin{bmatrix} x''' \\ y''' \\ w''' \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_o \\ 0 & 1 & y_o \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_o \\ 0 & 1 & -y_o \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\begin{bmatrix} x''' \\ y''' \\ w''' \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_o \\ 0 & 1 & y_o \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x'' \\ y'' \\ w'' \end{bmatrix}$$

Exercise: show how to perform rotation about an arbitrary point

3D transformations

◆ 3D homogeneous co-ordinates (x, y, z, w) → (^x/_w, ^y/_w, ^z/_w)

3D transformation matrices

tr	ransla	ation	1	ie	identity					rotation about <i>x</i> -axis					
∏ 1	0	$0 t_x$,]	[1	0 0	0			[1	0		0	0		
0	1	$0 t_{v}$,	0	1 0	0			0	$\cos\theta$	_	- sin θ	0		
0	0	$1 t_z$,	0	0 1	0			0	$\sin\theta$	($\cos\theta$	0		
_0	0	0 1		0	0 0	1			0	0		0	1		
				_		_									
	sca	le		rotatior	n abou	tz-	axis	5	rota	ation	abo	out y-a	axis		
$\int m_x$	0	0	0	$\int \cos \theta$	$-\sin\theta$	0	0		cc	θ	0	sinθ	0		
0	m_{v}	0	0	$\sin \theta$	$\cos\theta$	0	0			0	1	0	0		
0	0	m_{z}	0	0	0	1	0		-s	inθ	0	$\cos\theta$	0		
0	0	0	1		0	0	1			0	0	0	1		

3D transformations are not commutative

the graphics package Open Inventor defines a cylinder to be:

- centre at the origin, (0,0,0)
- radius I unit

height 2 units, aligned along the y-axis

- this is the only cylinder that can be drawn, but the package has a complete set of 3D transformations
- we want to draw a cylinder of:

radius 2 units

• the centres of its two ends located at (1,2,3) and (2,4,5)

* its length is thus 3 units

what transforms are required?

and in what order should they be applied?

76

+ rotation is a multi-step process

- break the rotation into steps, each of which is rotation about a principal axis
- work these out by taking the desired orientation back to the original axis-aligned position

• the centres of its two ends located at (1,2,3) and (2,4,5)

desired axis: (2,4,5)-(1,2,3) = (1,2,2)

original axis: y-axis = (0,1,0)

- desired axis: (2,4,5)–(1,2,3) = (1,2,2)
- original axis: y-axis = (0,1,0)
- zero the z-coordinate by rotating about the x-axis

$$\mathbf{R}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\theta = -\arcsin \frac{2}{\sqrt{2^{2} + 2^{2}}}$$

$$(1,2,2)$$

$$(1,2,2)$$

$$(1,\sqrt{2^{2} + 2^{2}},0)^{\nu}$$

$$=(1,\sqrt{8},0)$$

then zero the x-coordinate by rotating about the z-axis
we now have the object's axis pointing along the y-axis

$$\mathbf{R}_{2} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 & 0 \\ \sin \varphi & \cos \varphi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\varphi = \arcsin \frac{1}{\sqrt{1^{2} + \sqrt{8}^{2}}}$$

$$\begin{pmatrix} 0, \sqrt{1^2 + \sqrt{8}^2}, 0 \end{pmatrix} \xrightarrow{\gamma} (1, \sqrt{8}, 0)$$

= (0,3,0) φ

+ the overall transformation is:

- first scale
- then take the inverse of the rotation we just calculated
- finally translate to the correct position

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \mathbf{T} \times \mathbf{R}_1^{-1} \times \mathbf{R}_2^{-1} \times \mathbf{S} \times \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Application: display multiple instances

 transformations allow you to define an object at one location and then place multiple instances in your scene

3D ⇒ **2D** projection

+to make a picture

- ♦ 3D world is projected to a 2D image
 - like a camera taking a photograph
 - the three dimensional world is projected onto a plane

The 3D world is described as a set of (mathematical) objects

e.g. sphere	radius (3.4) centre (0,2,9)
e.g. box	size (2,4,3) centre (7, 2, 9) orientation (27°, 156°)

Types of projection

+ parallel

- e.g. $(x, y, z) \rightarrow (x, y)$
- useful in CAD, architecture, etc
- looks unrealistic
- + perspective
 - e.g. $(x, y, z) \rightarrow (\frac{x}{z}, \frac{y}{z})$
 - things get smaller as they get farther away
 - looks realistic
 - this is how cameras work

Cavalier projection

Parallel to X axis

Parallel to Y axis

Parallel to Z axis

Geometry of perspective projection

Projection as a matrix operation

This is useful in the z-buffer algorithm where we need to interpolate 1/z values rather than z values.

Perspective projection with an arbitrary camera

- we have assumed that:
 - screen centre at (0,0,d)
 - screen parallel to xy-plane
 - *z*-axis into screen
 - y-axis up and x-axis to the right
 - eye (camera) at origin (0,0,0)
- for an arbitrary camera we can either:
 - work out equations for projecting objects about an arbitrary point onto an arbitrary plane
 - transform all objects into our standard co-ordinate system (viewing co-ordinates) and use the above assumptions

A variety of transformations

- the modelling transform and viewing transform can be multiplied together to produce a single matrix taking an object directly from object co-ordinates into viewing co-ordinates
- either or both of the modelling transform and viewing transform matrices can be the identity matrix
 - e.g. objects can be specified directly in viewing co-ordinates, or directly in world co-ordinates
- this is a useful set of transforms, not a hard and fast model of how things should be done

Model, View, Projection matrices

origin

Model, View, Projection matrices

Model, View, Projection matrices

All together

+ the problem:

 to transform an arbitrary co-ordinate system to the default viewing co-ordinate system

+ camera specification in world co-ordinates

- eye (camera) at (e_x, e_y, e_z)
- look point (centre of screen) at (l_x, l_y, l_z)
- up along vector (u_x, u_y, u_z)
 - perpendicular to el

• translate eye point, (e_x, e_y, e_z) , to origin, (0, 0, 0)

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

scale so that eye point to look point distance, $|\mathbf{el}|$, is distance from origin to screen centre, *d*

$$\overline{\mathbf{el}} = \sqrt{(l_x - e_x)^2 + (l_y - e_y)^2 + (l_z - e_z)^2} \qquad \mathbf{S} = \begin{bmatrix} \frac{d}{|\mathbf{el}|} & 0 & 0 & 0\\ 0 & \frac{d}{|\mathbf{el}|} & 0 & 0\\ 0 & 0 & \frac{d}{|\mathbf{el}|} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- \bullet need to align line **el** with *z*-axis
 - first transform e and 1 into new co-ordinate system

 $e'' = S \times T \times e = 0$ $l'' = S \times T \times l$

• then rotate e''l'' into yz-plane, rotating about y-axis

$$\mathbf{R}_{1} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(0, l''_{y}, \sqrt{l''_{x}^{2} + l''_{z}^{2}}) \xrightarrow{\epsilon} (l''_{x}, l''_{y}, l''_{z})$$

$$\theta = \arccos \frac{l''_z}{\sqrt{l''_x^2 + l''_z^2}}$$

 having rotated the viewing vector onto the yz plane, rotate it about the x-axis so that it aligns with the z-axis

$$\mathbf{l}^{\prime\prime\prime\prime} = \mathbf{R}_1 \times \mathbf{l}^{\prime\prime}$$

- the final step is to ensure that the up vector actually points up,
 i.e. along the positive y-axis
 - actually need to rotate the up vector about the z-axis so that it lies in the positive y half of the yz plane

$$\mathbf{u}^{\prime\prime\prime\prime\prime} = \mathbf{R}_2 \times \mathbf{R}_1 \times \mathbf{u}$$

$$\mathbf{R}_{3} = \begin{bmatrix} \cos \psi & -\sin \psi & 0 & 0 \\ \sin \psi & \cos \psi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\psi = \arccos \frac{u'''_{y}}{\sqrt{u'''_{x}}^{2} + u'''_{y}}$$

why don't we need to multiply **u** by **S** or **T**?

u is a vector rather than a point, vectors do not get translated

scaling **u** by a uniform scaling matrix would make no difference to the direction in which it points

 we can now transform any point in world co-ordinates to the equivalent point in viewing co-ordinate

$$\begin{bmatrix} x'\\y'\\z'\\w' \end{bmatrix} = \mathbf{R}_3 \times \mathbf{R}_2 \times \mathbf{R}_1 \times \mathbf{S} \times \mathbf{T} \times \begin{bmatrix} x\\y\\z\\w \end{bmatrix}$$

- in particular: $\mathbf{e} \rightarrow (0,0,0) \quad \mathbf{l} \rightarrow (0,0,d)$
- the matrices depend only on e, l, and u, so they can be premultiplied together

$$\mathbf{M} = \mathbf{R}_3 \times \mathbf{R}_2 \times \mathbf{R}_1 \times \mathbf{S} \times \mathbf{T}$$

Transforming normal vectors

+ We can find that: $G = (M^{-1})^T$

Derivation shown on the visualizer

[FCG 6.2.2]

99

Scene construction

00

Scene construction

► Body transformation

$$E_{body} = scale \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

 $T_{body} = translate \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \cdot rotate(30^{\circ})$
 $M_{body} = T_{body} E_{body}$

★ Arm1 transformation $T_{arm1} = translate \begin{bmatrix} 1\\ 1.75 \end{bmatrix} \cdot rotate(-90^{o})$ $M_{arm1} = T_{body}T_{arm1}$

$$Arm2 transformation T_{arm} = translate \begin{bmatrix} 0 \\ 2 \end{bmatrix} \cdot rotate(-90^{\circ}) \\ M_{ar} = T_{body}T_{arm1}T_{arm2}$$

Scene Graph

Scene can be drawn by traversing a scene graph:

```
traverse( node, T_parent ) {
    M = T_parent * node.T * node.E
    node.draw(M)
    for each child {
        traverse( child, T_parent * node.T )
    }
}
```


[FCG 12.2]

Introduction to Computer Graphics

- + Background
- **+**Rendering
- + Graphics pipeline
- Rasterization
- Graphics hardware and modern OpenGL
 Human vision and colour & tone mapping

Rasterization algorithm(*)

(*) simplified

Illumination & shading

- + Drawing polygons with uniform colours gives poor results
- Interpolate colours across polygons

Rasterization

Efficiently draw (thousands of) triangles

- Interpolate vertex attributes inside the triangle
- Homogenous barycentric $\alpha = 0; \beta = 0; \gamma = 1$ **coordinates** are RGB=[1 0 0] used to RGB=[???] $\alpha + \beta + \gamma = 1$ interpolate colours, normals, RGB=[1 0.5 0] texture $\alpha = 0; \beta = 1; \gamma = 0$ coordinates and RGB=[1 1 0] other attributes $\alpha = 1; \beta = 0; \gamma = 0$ inside the triangle
Homogenous barycentric coordinates

- Find barycentric coordinates of the point (x,y)
 - Given the coordinates of the vertices
 - Derivation in the lecture

$$\alpha = \frac{f_{cb}(x,y)}{f_{cb}(x_a,y_a)} \quad \beta = \frac{f_{ac}(x,y)}{f_{ac}(x_b,y_b)}$$

 $f_{ab}(x, y)$ is the implicit line equation: $f_{ab}(x, y) = (y_a - y_b)x + (x_b - x_a)y + x_ay_b - x_by_a$

Triangle rasterization

for
$$y=y_{min}$$
 to y_{max} do
for $x=x_{min}$ to x_{max} do
 $\alpha = f_{cb}(x,y)/f_{cb}(x_a, y_a)$
 $\beta = f_{ac}(x,y)/f_{ac}(x_b, y_b)$
 $\gamma = 1 - \alpha - \beta$
if $(\alpha > 0 \text{ and } \beta > 0 \text{ and } \gamma > 0$) then
 $c = \alpha c_a + \beta c_b + \gamma c_c$
draw pixels (x,y) with colour c

- Optimization: the barycentric coordinates will change by the same amount when moving one pixel right (or one pixel down) regardless of the position
 - Precompute increments $\Delta \alpha$, $\Delta \beta$, $\Delta \gamma$ and use them instead of computing barycentric coordinates when drawing pixels sequentially

Surface normal vector interpolation

- for a polygonal model, interpolate normal vector between the vertices
 - Calculate colour (Phong reflection model) for each pixel
 - Diffuse component can be either interpolated or computed for each pixel

 N.B. Phong's approximation to specular reflection ignores (amongst other things) the effects of glancing incidence (the Fresnel term)

[FCG 8.2.3]

- Initialize the depth buffer and image buffer for all pixels colour(x, y) = Background_colour, depth(x, y) = z_{max} // position of the far clipping plane
- For every triangle in a scene do
 - For every fragment (x, y) in this triangle do
 - Calculate z for current (x, y)
 - if (z < depth(x, y)) and (z > z_{min}) then
 □ depth(x, y) = z
 - \Box colour(x, y) = fragment_colour(x, y)

View frustum

Controlled by camera parameters: near-, far-clipping planes and field-of-view

Introduction to Computer Graphics

- + Background
- + Rendering
- Graphics pipeline
- + Rasterization
- Graphics hardware and modern OpenGL
 - GPU & APIs
 - OpenGL Rendering pipeline
 - Example OpenGL code
 - GLSL
 - Textures
 - Raster buffers

+ Human vision, colour & tone mapping

What is a GPU?

- Graphics Processing Unit
- Like CPU (Central Processing Unit) but for processing graphics
- Optimized for floating point operations on large arrays of data
 - Vertices, normals, pixels, etc.

What does a GPU do

- Performs all low-level tasks & a lot of high-level tasks
 - Clipping, rasterisation, hidden surface removal, ...
 - Essentially draws millions of triangles very efficiently
 - Procedural shading, texturing, animation, simulation, ...
 - Video rendering, de- and encoding, deinterlacing, ...
 - Physics engines
- Full programmability at several pipeline stages
 - fully programmable
 - but optimized for massively parallel operations

What makes GPU so fast?

- > 3D rendering can be very efficiently parallelized
 - Millions of pixels
 - Millions of triangles
 - Many operations executed independently at the same time
- This is why modern GPUs
 - Contain between hundreds and thousands of SIMD processors
 - Single Instruction Multiple Data operate on large arrays of data
 - >>400 GB/s memory access
 - This is much higher bandwidth than CPU
 - But peak performance can be expected for very specific operations

GPU APIs (Application Programming Interfaces)

OpenGL

- Multi-platform
- Open standard API
- Focus on general 3D applications
 - Open GL driver manages the resources

DirectX

- Microsoft Windows / Xbox
- Proprietary API
- Focus on games
 - Application manages resources

One more API

- Vulkan cross platform, open standard
- Low-overhead API for high performance 3D graphics
- Compared to OpenGL / DirectX
 - Reduces CPU load
 - Better support of multi-CPU-core architectures
 - Finer control of GPU
- **But**
 - The code for drawing a few primitives can take 1000s line of code
 - Intended for game engines and code that must be very well optimized

And one more

- Metal (Apple iOS8)
 - Iow-level, low-overhead 3D GFX and compute shaders API
 - Support for Apple A7, Intel HD and Iris, AMD, Nvidia
 - Similar design as modern APIs, such as Vulcan
 - Swift or Objective-C API
 - Used mostly on iOS

GPGPU - general purpose computing

- OpenGL and DirectX are not meant to be used for general purpose computing
 - Example: physical simulation, machine learning
- CUDA Nvidia's architecture for parallel computing
 - C-like programming language
 - With special API for parallel instructions
 - Requires Nvidia GPU
- OpenCL Similar to CUDA, but open standard
 - Can run on both GPU and CPU
 - Supported by AMD, Intel and NVidia, Qualcomm, Apple, ...

OpenCL

GPU and mobile devices

- OpenGL ES 1.0-3.2
 - Stripped version of OpenGL

Removed functionality that is not strictly necessary on mobile devices

Devices

- ▶ iOS: iPhone, iPad
- Android phones
- PlayStation 3
- Nintendo 3DS
- and many more

OpenGL ES 2.0 rendering (iOS)

WebGL

- JavaScript library for 3D rendering in a web browser
- WebGL I.0 based on OpenGL ES 2.0
- WebGL 2.0 based on OpenGL ES 3.0
 - Chrome and Firefox (2017)
- Most modern browsers support WebGL
- Potentially could be used to create
 3D games in a browser
 - and replace Adobe Flash

http://zygotebody.com/

OpenGL in Java

- Standard Java API does not include OpenGL interface
- But several wrapper libraries exist
 - Java OpenGL JOGL
 - Lightweight Java Game Library LWJGL
- We will use LWJGL 3
 - Seems to be better maintained
 - Access to other APIs (OpenCL, OpenAL, ...)
- We also need a linear algebra library
 - JOML Java OpenGL Math Library
 - Operations on 2, 3, 4-dimensional vectors and matrices

OpenGL History

- Proprietary library IRIS GL by SGI
- OpenGL 1.0 (1992)
- OpenGL I.2 (1998)
- OpenGL 2.0 (2004)
 - ► GLSL
 - Non-power-of-two (NPOT) textures
- OpenGL 3.0 (2008)
 - Major overhaul of the API
 - Many features from previous versions depreciated
- OpenGL 3.2 (2009)
 - Core and Compatibility profiles

- Geometry shaders
- OpenGL 4.0 (2010)
 - Catching up with Direct3D 11
- OpenGL 4.5 (2014)
- OpenGL 4.6 (2017)
 - SPIR-V shaders

How to learn OpenGL?

- Lectures algorithms behind OpenGL, general principles
- Tick 2 detailed tutorial, learning by doing
- References
 - OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 4.5 with SPIR-V by John Kessenich, Graham Sellers, Dave Shreiner ISBN-10: 0134495497
 - OpenGL quick reference guide <u>https://www.opengl.org/documentation/glsl/</u>
 - Google search: "man gl....."

John Kessenich * Graham Sellers * Dave Shreiner The Khronos OpenGL ARB Working Group

OpenGL programming model

CPU code

- ▶ gl* functions that
 - Create OpenGL objects
 - Copy data CPU<->GPU
 - Modify OpenGL state
 - Enqueue operations
 - Synchronize CPU & GPU
- C99 library
- Wrappers in most programming language

GPU code

- Fragment shaders
- Vertex shaders
- and other shaders
- Written in GLSL
 - Similar to C
 - From OpenGL 4.6 could be written in other language and compiled to SPIR-V

Example: preparing vertex data for a cube

Geometry objects in OpenGL (OO view)

GLSL - fundamentals

Shaders

- Shaders are small programs executed on a GPU
 - Executed for each vertex, each pixel (fragment), etc.
- They are written in GLSL (OpenGL Shading Language)
 - Similar to C and Java
 - Primitive (int, float) and aggregate data types (ivec3, vec3)
 - Structures and arrays
 - Arithmetic operations on scalars, vectors and matrices
 - Flow control: if, switch, for, while
 - Functions

Example of a vertex shader

#version 330
in vec3 position;
in vec3 normal;
out vec3 frag_normal;
uniform mat4 mvp_matrix;

// vertex position in local space// vertex normal in local space// fragment normal in world space// model-view-projection matrix

```
void main()
```

```
{
```

// Typicaly normal is transformed by the model matrix
// Since the model matrix is identity in our case, we do not modify normals
frag_normal = normal;

// The position is projected to the screen coordinates using mvp_matrix

```
gl_Position = mvp_matrix * vec4(position, 1.0);
}
Why is this piece
of code needed?
```

Data types

Basic types

float, double, int, uint, bool

Aggregate types

- float: vec2, vec3, vec4; mat2, mat3, mat4
- double: dvec2, dvec3, dvec4; dmat2, dmat3, dmat4
- int: ivec2, ivec3, ivec4
- uint: uvec2, uvec3, uvec4
- bool: bvec2, bvec3, bvec4

vec3V = vec3(1.0, 2.0, 3.0); mat3M = mat3(1.0, 2.0, 3.0)

4.0, 5.0, 6.0,

7.0, 8.0, 9.0);

Indexing components in aggregate types

- Subscripts: rgba, xyzw, stpq (work exactly the same)
 - float red = color.r;
 - float v_y = velocity.y;

but also

- float red = color.x;
- float v_y = velocity.g;
- With 0-base index:
 - float red = color[0];
 - float m22 = M[1][1]; // second row and column

// of matrix M
```
Swizzling
```

```
You can select the elements of the aggregate type:
vec4 rgba_color( 1.0, 1.0, 0.0, 1.0 );
vec3 rgb_color = rgba_color.rgb;
vec3 bgr_color = rgba_color.bgr;
vec3 luma = rgba_color.ggg;
```

```
Arrays
```

```
Similar to C
float lut[5] = float[5]( 1.0, 1.42, 1.73, 2.0, 2.23 );
```

```
> Size can be checked with "length()"
for( int i = 0; i < lut.length(); i++ ) {
    lut[i] *= 2;
}</pre>
```

Storage qualifiers

- const read-only, fixed at compile time
- ▶ in input to the shader
- out output from the shader
- uniform parameter passed from the application (Java), constant for the primitive
- buffer shared with the application
- shared shared with local work group (compute shaders only)
- Example: const float pi=3.14;

Shader inputs and outputs

GLSL Operators

- Arithmetic: + ++ --
 - Multiplication:
 - vec3 * vec3 element-wise
 - mat4 * vec4 matrix multiplication (with a column vector)
- Bitwise (integer): <<, >>, &, |, ^
- Logical (bool): &&, ||, ^^
- Assignment:

float a=0;

a += 2.0; // Equivalent to a = a + 2.0

• See the quick reference guide at:

https://www.opengl.org/documentation/glsl/

GLSL Math

Trigonometric:

- radians(deg), degrees(rad), sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh
- Exponential:
 - > pow, exp, log, exp2, log2, sqrt, inversesqrt
- Common functions:
 - ▶ abs, round, floor, ceil, min, max, clamp, …
- And many more
- See the quick reference guide at: <u>https://www.opengl.org/documentation/glsl/</u>

148

GLSL flow control

```
if( bool ) {
 // true
} else {
 // false
}
switch( int_value ) {
  case n:
    // statements
    break;
  case m:
```

// statements

```
for( int i = 0; i<10; i++ ) {</pre>
}
while( n < 10 ) {</pre>
 . . .
}
do {
} while ( n < 10 )</pre>
```

}

default:

break;

Simple OpenGL application - flow

- Initialize rendering window & OpenGL context
- Send the geometry (vertices, triangles, normals) to the GPU
- Load and compile Shaders

- Clear the screen buffer
- Set the model-view-projection matrix
- Render geometry
- Flip the screen buffers

Rendering geometry

- To render a single object with OpenGL
- I.glUseProgram() to activate vertex & fragment shaders
- 2. glVertexAttribPointer() to indicate which Buffers with vertices and normal should be input to fragment shader
- 3.glUniform*() to set uniforms (parameters of the fragment/vertex shader)
- 4.glBindTexture() to bind the texture
- 5.glBindVertexArray() to bind the vertex array
- 6.glDrawElements() to queue drawing the geometry
- 7. Unbind all objects
- OpenGLAPI is designed around the idea of a state-machine set the state & queue drawing command

Textures

(Most important) OpenGL texture types

Texture mapping

- I. Define your texture function (image) T(u,v)
- (u,v) are texture coordinates

Texture mapping

 2. Define the correspondence between the vertices on the 3D object and the texture coordinates

Texture mapping

 3.When rendering, for every surface point compute texture coordinates. Use the texture function to get texture value. Use as color or reflectance.

Sampling

Texture

Up-sampling More pixels than texels Values need to be interpolated

Down-sampling Fewer pixels than texels Values need to be averaged over an area of the texture (usually using a mipmap)

Nearest neighbor vs. bilinear interpolation (upsampling)

Pick the nearest texel: D

Interpolate first along x-axis between AB and CD, then along y-axis between the interpolated points.

Up-sampling

nearestneighbour

blocky artefacts

- if one pixel in the texture map covers several pixels in the final image, you get visible artefacts
- only practical way to prevent this is to ensure that texture map is of sufficiently high resolution that it does not happen

bilinear *blurry* artefacts

Down-sampling

 if the pixel covers quite a large area of the texture, then it will be necessary to average the texture across that area, not just take a sample in the middle of the area

161

MipmapTextures are

- Textures are often stored at multiple resolutions as a mipmap
 - Each level of the pyramid is half the size of the lower level
 - Mipmap resolution is always power-of-two (1024, 512, 256, 128, ...)
- It provides pre-filtered texture (areaaveraged) when screen pixels are larger than the full resolution texels
- Mipmap requires just an additional 1/3 of the original texture size to store
- OpenGL can generate a mipmap with glGenerateMipmap(GL_TEXTURE_2D)

without area averaging

with area averaging

Texture tiling

- Repetitive patterns can be represented as texture tiles.
- The texture folds over, so that
 - T(u=1.1, v=0) = T(u=0.1, v=0)

Multi-surface UV maps

A single texture is often used for multiple surfaces and objects

Example from: http://awshub.com/blog/blog/2011/11/01/hi-poly-vslow-poly/

Bump (normal) mapping

- Special kind of texture that modifies surface normal
 - Surface normal is a vector that is perpendicular to a surface
- The surface is still flat but shading appears as on an uneven surface
- Easily done in fragment shaders

From Computer Desktop Encyclopedia Reproduced with permission. @ 2001 Intergraph Computer Systems

Displacement mapping

- Texture that modifies surface
- Better results than bump mapping since the surface is not flat
- Requires geometry shaders

Environment mapping

 To show environment reflected by an object

Environment mapping

- Environment cube
- Each face captures environment in that direction

Texture objects in OpenGL

Texture parameters

//Setup filtering, i.e. how OpenGL will interpolate the pixels
when scaling up or down

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);

//Setup wrap mode, i.e. how OpenGL will handle pixels outside of
the expected range

```
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);
```

```
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);
```

Raster buffers (colour, depth, stencil)

Render buffers in OpenGL

Double buffering

- To avoid flicker, tearing
- Use two buffers (rasters):
 - Front buffer what is shown on the screen
 - Back buffer not shown, GPU draws into that buffer
- When drawing is finished, swap front- and back-buffers

Triple buffering

Do not wait for swapping to start drawing the next frame

Vertical Synchronization: V-Sync

- Pixels are copied from colour buffer to monitor row-by-row
- If front & back buffer are swapped during this process:
 - Upper part of the screen contains previous frame
 - Lower part of the screen contains current frame
 - Result: tearing artefact
- Solution: When V-Sync is enabled
 - glwfSwapInterval(1);

glSwapBuffers() waits until the last raw is copied to the display.

No V-Sync vs. V-Sync

FreeSync (AMD) & G-Sync (Nvidia)

Adaptive sync

- Graphics card controls timing of the frames on the display
- Can save power for 30fps video of when the screen is static
- Can reduce lag for real-time graphics

Vision, colour and colour spaces

The workings of the human visual system

to understand the requirements of displays (resolution, quantisation and colour) we need to know how the human eye works...

Structure of the human eye

See Animagraffs web page for an animated visualization https://animagraffs.com/human-eye/

- the retina is an array of light detection cells
- the fovea is the high resolution area of the retina
- the optic nerve takes signals from the retina to the visual cortex in the brain
- cornea and lens focus the light on the retina
- pupil shrinks and expands to control the amount of light

Retina, cones and rods

2 classes of photoreceptors

- Cones are responsible for daylight vision and colour perception
 - Three types of cones: sensitive to short, medium and long wavelengths
- Rods are responsible for night vison

Fovea, distribution of photoreceptors

- the fovea is a densely packed region in the centre of the macula
 - contains the highest density of cones
 - provides the highest resolution vision

Electromagnetic spectrum

- Visible light
 - Electromagnetic waves of wavelength in the range 380nm to 730nm
 - Earth's atmosphere lets through a lot of light in this wavelength band
 - Higher in energy than thermal infrared, so heat does not interfere with vision

Colour

- There is no physical definition of colour colour is the result of our perception
- For emissive displays / objects
 - colour = perception(spectral_emission)
- For reflective displays / objects

colour = perception(illumination * reflectance)

Reflectance

- Most of the light we see is reflected from objects
- These objects absorb a certain part of the light spectrum

Reflected light

 $L(\lambda) = I(\lambda)R(\lambda)$

Reflected light = illumination × reflectance

400

500

600

WAVELENGTH & (nm)

700

The same object may appear to have different color under different illumination.

Colour vision

- Cones are the photreceptors responsible for color vision
 - Only daylight, we see no colors when there is not enough light
- Three types of cones
 - S sensitive to short wavelengths
 - M sensitive to medium wavelengths
 - L sensitive to long wavelengths

Sensitivity curves – probability that a photon of that wavelengths will be absorbed by a photoreceptor. S,M and L curves are normalized in this plot.

Perceived light

cone response = sum(sensitivity × reflected light)

Although there is an infinite number of wavelengths, we have only three photoreceptor types to sense differences between light spectra Formally

$$R_{S} = \int_{380}^{730} S_{S}(\lambda) \cdot L(\lambda) d\lambda$$

Index S for S-cones

Metamers

- Even if two light spectra are different, they may appear to have the same colour
- The light spectra that appear to have the same colour are called metamers
- Example:

Practical application of metamerism

- Displays do not emit the same light spectra as real-world objects
- > Yet, the colours on a display look almost identical

On the display

Tristimulus Colour Representation

Observation

- Any colour can be matched using three linear independent reference colours
- May require "negative" contribution to test colour
- Matching curves describe the value for matching monochromatic spectral colours of equal intensity
 - With respect to a certain set of primary colours

Standard Colour Space CIE-XYZ

CIE Experiments [Guild and Wright, 1931]

- Colour matching experiments
- Group ~12 people with ,,normal" colour vision
- 2 degree visual field (fovea only)

CIE 2006 XYZ

- Derived from LMS color matching functions by Stockman & Sharpe
- S-cone response differs the most from CIE 1931

CIE-XYZ Colour Space

- Goals
 - Abstract from concrete primaries used in experiment
 - All matching functions are positive
 - Primary "Y" is roughly proportionally to light intensity (luminance)

Standard Colour Space CIE-XYZ

- Standardized imaginary primaries CIE XYZ (1931)
 - Could match all physically realizable colour stimuli
 - Y is roughly equivalent to luminance
 - Shape similar to luminous efficiency curve
 - Monochromatic spectral colours form a curve in 3D XYZ-space

Cone sensitivity curves can be obtained by a linear transformation of CIE XYZ

CIE chromaticity diagram

chromaticity values are defined in terms of x, y, z

$$x = \frac{X}{X + Y + Z}, \quad y = \frac{Y}{X + Y + Z}, \quad z = \frac{Z}{X + Y + Z} \qquad x + y + z = 1$$

- ignores luminance
- can be plotted as a 2D function
- pure colours (single wavelength)
 lie along the outer curve
- all other colours are a mix of pure colours and hence lie inside the curve
- points outside the curve do not exist as colours

Achromatic/chromatic vision mechanisms

Luminance

Luminance – measure of light weighted by the response of the achromatic mechanism. Units: cd/m²

Visible vs. displayable colours

- All physically possible and visible colours form a solid in XYZ space
- Each display device can reproduce a subspace of that space
- A chromacity diagram is a slice taken from a 3D solid in XYZ space
- Colour Gamut the solid in a colour space
 - Usually defined in XYZ to be deviceindependent

Standard vs. High Dynamic Range

- HDR cameras/formats/displays attempt capture/represent/reproduce (almost) all visible colours
 - They represent scene colours and therefore we often call this representation scene-referred
- SDR cameras/formats/devices attempt to capture/represent/reproduce only colours of a standard sRGB colour gamut, mimicking the capabilities of CRTs monitors
 - They represent display colours and therefore we often call this representation display-referred

From rendering to display

Display encoding for SDR: gamma correction

 Gamma correction is often used to encode luminance or tri-stimulus color values (RGB) in imaging systems (displays, printers, cameras, etc.)

Why is gamma needed?

Linear encoding $V_S =$ 0.00.10.20.30.40.60.70.80.91.0Linear intensityI =0.00.10.30.40.50.60.70.80.91.0

<- Pixel value (luma)

<- Luminance

- Gamma-corrected pixel values give a scale of brightness levels that is more perceptually uniform
- At least 12 bits (instead of 8) would be needed to encode each color channel without gamma correction
- And accidentally it was also the response of the CRT gun

Luma – gray-scale pixel value

Luma - pixel brightness in gamma corrected units L' = 0.2126R' + 0.7152G' + 0.0722B'

- ▶ *R*′, *G*′ and *B*′ are *gamma*-corrected colour values
- Prime symbol denotes gamma corrected
- Used in image/video coding
- Note that relative luminance if often approximated with L = 0.2126R + 0.7152G + 0.0722B $= 0.2126(R')^{\gamma} + 0.7152(G')^{\gamma} + 0.0722(B')^{\gamma}$
- R, G, and B are linear colour values
- Luma and luminace are different quantities despite similar formulas

Standards for display encoding

Display type	Colour space	EOTF	Bit depth
Standard Dynamic Range	ITU-R 709	2.2 gamma / sRGB	8 to 10
High Dynamic Range	ITU-R 2020	ITU-R 2100 (PQ/HLG)	10 to 12

Colour space What is the colour of "pure" red, green and blue

Electro-Optical Transfer Function

How to efficiently encode each primary colour

210

How to transform between RGB colour spaces?

From ITU-R 709 RGB to XYZ:

How to transform between RGB colour spaces?

From ITU-R 709 RGB to ITU-R 2020 RGB:

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix}_{R2020} = M_{XYZtoR2020} \cdot M_{R709toXYZ} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}_{R709}$$

From ITU-R **2020** RGB to ITU-R **709** RGB:

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix}_{R709} = M_{XYZtoR709} \cdot M_{R2020toXYZ} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}_{R2020}$$

• Where:

$$M_{R709toXYZ} = \begin{bmatrix} 0.4124 & 0.3576 & 0.1805 \\ 0.2126 & 0.7152 & 0.0722 \\ 0.0193 & 0.1192 & 0.9505 \end{bmatrix} \text{ and } M_{XYZtoR709} = M_{R709toXYZ}^{-1}$$
$$M_{R2020toXY} = \begin{bmatrix} 0.6370 & 0.1446 & 0.1689 \\ 0.2627 & 0.6780 & 0.0593 \\ 0.0000 & 0.0281 & 1.0610 \end{bmatrix} \text{ and } M_{XYZtoR2020} = M_{R2020toXYZ}^{-1}$$

Representing colour

- We need a mechanism which allows us to represent colour in the computer by some set of numbers
 - A) preferably a small set of numbers which can be quantised to a fairly small number of bits each
 - Linear and gamma corrected RGB, sRGB
 - B) a set of numbers that are **easy to interpret**
 - Munsell's artists' scheme
 - HSV, HLS
 - C) a set of numbers in a 3D space so that the (Euclidean) distance in that space corresponds to approximately perceptually uniform colour differences
 - CIE Lab, CIE Luv

RGB space

- Most display devices that output light mix red, green and blue lights to make colour
 - televisions, CRT monitors, LCD screens
- Nominally, *RGB* space is a cube
- The device puts physical limitations on:
 - the range of colours which can be displayed
 - the brightest colour which can be displayed
 - the darkest colour which can be displayed

RGB in XYZ space

- CRTs and LCDs mix red, green, and blue to make all other colours
- the red, green, and blue primaries each map to a point in CIE xy space
- any colour within the resulting triangle can be displayed
 - any colour outside the triangle cannot be displayed
 - for example: CRTs cannot display very saturated purple, turquoise, or yellow

CMY space

- printers make colour by mixing coloured inks
- the important difference between inks (CMY) and lights (RGB) is that, while lights emit light, inks absorb light
 - cyan absorbs red, reflects blue and green
 - magenta absorbs green, reflects red and blue
 - yellow absorbs blue, reflects green and red
- *CMY* is, at its simplest, the inverse of *RGB*
- CMY space is nominally a cube

CMYK space

- in real printing we use black (key) as well as CMY
- why use black?
 - inks are not perfect absorbers
 - mixing C + M + Y gives a muddy grey, not black
 - lots of text is printed in black: trying to align C, M and Y perfectly for black text would be a nightmare

Munsell's colour classification system

three axes

- hue \succ the dominant colour
- ▶ value ➤ bright colours/dark colours
- ▶ chroma ➤ vivid colours/dull colours
- can represent this as a 3D graph

Munsell's colour classification system

- any two adjacent colours are a standard "perceptual" distance apart
 - worked out by testing it on people
 - a highly irregular space
 - e.g. vivid yellow is much brighter than vivid blue

invented by Albert H. Munsell, an American artist, in 1905 in an attempt to systematically classify colours

Colour spaces for user-interfaces

- *RGB* and *CMY* are based on the physical devices which produce the coloured output
- *RGB* and *CMY* are difficult for humans to use for selecting colours
- Munsell's colour system is much more intuitive:
 - hue what is the principal colour?
 - value how light or dark is it?
 - chroma how vivid or dull is it?
- computer interface designers have developed basic transformations of *RGB* which resemble Munsell's humanfriendly system
HSV: hue saturation value

three axes, as with Munsell

- hue and value have same meaning
- the term "saturation" replaces the term "chroma"

- designed by Alvy Ray Smith in 1978
- algorithm to convert HSV to RGB and back can be found in Foley et
- al., Figs 13.33 and 13.34

HLS: hue lightness saturation

- + a simple variation of HSV
 - hue and saturation have same meaning
 - the term "lightness" replaces the term "value"
- designed to address the complaint that HSV has all pure colours having the same lightness/value as white
 - designed by Metrick in 1979
 - algorithm to convert *HLS* to *RGB* and back can be found in Foley et al., Figs 13.36 and 13.37

Perceptually uniformity

MacAdam ellipses & visually indistinguishable colours

In CIE xy chromatic coordinates

In CIE u'v' chromatic coordinates

CIE $L^*u^*v^*$ and u'v'

Approximately perceptually uniform

u'v' chromacity

$$u' = \frac{4X}{X + 15Y + 3Z} = \frac{4x}{-2x + 12y + 3}$$
$$v' = \frac{9Y}{X + 15Y + 3Z} = \frac{9y}{-2x + 12y + 3}$$
$$\bullet \text{ CIE LUV}$$

Lightness
$$L^* = \begin{cases} \left(\frac{29}{3}\right)^3 Y/Y_n, & Y/Y_n \le \left(\frac{6}{29}\right)^3 \\ 116(Y/Y_n)^{1/3} - 16, & Y/Y_n > \left(\frac{6}{29}\right)^3 \end{cases}$$
Chromacity
coordinates $u^* = 13L^* \cdot (u' - u'_n) \\ v^* = 13L^* \cdot (v' - v'_n) \end{cases}$ Colours less
distinguishable
when dark

Hue and chroma

$$egin{aligned} C_{uv}^* &= \sqrt{(u^*)^2 + (v^*)^2} \ h_{uv} &= \mathrm{atan2}(v^*, u^*), \end{aligned}$$

CIE L*a*b* colour space

 Another approximately perceptually uniform colour space

$$\begin{split} L^{\star} &= 116f\left(\frac{Y}{Y_{\rm n}}\right) - 16 & \text{Trichromatic} \\ a^{\star} &= 500\left(f\left(\frac{X}{X_{\rm n}}\right) - f\left(\frac{Y}{Y_{\rm n}}\right)\right) \\ b^{\star} &= 200\left(f\left(\frac{Y}{Y_{\rm n}}\right) - f\left(\frac{Z}{Z_{\rm n}}\right)\right) \\ b^{\star} &= 100.000, \\ I_{\rm n} &= 108.883 \end{split}$$
$$f(t) &= \begin{cases} \sqrt[3]{t} & \text{if } t > \delta^3 \\ \frac{t}{3\delta^2} + \frac{4}{29} & \text{otherwise} \\ \delta &= \frac{6}{29} \end{cases}$$

Chroma and hue

$$C^{\star} = \sqrt{{a^{\star}}^2 + {b^{\star}}^2}, \qquad h^\circ = rctaniggl(rac{b^{\star}}{a^{\star}}iggr)$$

Lab space

- this visualization shows those colours in *Lab* space which a human can perceive
- again we see that human perception of colour is not uniform
 - perception of colour
 diminishes at the white and
 black ends of the L axis
 - the maximum perceivable chroma differs for different hues

Colour - references

- Chapters ,,Light" and ,,Colour" in
 - Shirley, P. & Marschner, S., Fundamentals of Computer Graphics
- Textbook on colour appearance
 - Fairchild, M. D. (2005). Color Appearance Models (second.). John Wiley & Sons.

Tone-mapping problem

Why do we need tone mapping?

- To reduce dynamic range
- To **customize the look** (colour grading)
- To simulate human vision (for example night vision)
- To **simulate a camera** (for example motion blur)
- To adapt displayed images to a display and viewing conditions
- To make rendered images look more realistic
- To map from scene- to display-referred colours

Different tone mapping operators achieve different goals

From scene- to display-referred colours

The primary purpose of tone mapping is to transform an image from scene-referred to display-referred colours

Tone mapping and display encoding

Tone mapping is often combined with display encoding

- Display encoding can model the display and account for
 - Display contrast (dynamic range), brightness and ambient light levels

sRGB textures and display coding

- OpenGL offers sRGB textures to automate RGB to/from sRGB conversion
 - sRGB textures store data in gamma-corrected space
 - sRGB convered to (linear) RGB on texture look-up (and filtering)
 - Inverse display coding
 - RGB to sRGB conversion when writing to sRGB texture
 - with glEnable(GL_FRAMEBUFFER_SRGB)
 - Forward display coding

Tone-curve

Tone-curve

Tone-curve

Sigmoidal tone-curves

- Very common in digital cameras
 - Mimic the response of analog film
 - Analog film has been engineered over many years to produce good tone-reproductior
- Fast to compute

Sigmoidal tone mapping

Simple formula for a sigmoidal tone-curve:

$$R'(x,y) = \frac{R(x,y)^b}{\left(\frac{L_m}{a}\right)^b + R(x,y)^b}$$

where L_m is the geometric mean (or mean of logarithms): $I_m = arn \left(\frac{1}{2} \sum \ln(I(x,y))\right)$

$$L_m = exp\left(\overline{N}\sum_{(x,y)} \operatorname{III}(L(x,y))\right)$$

and L(x, y) is the luminance of the pixel (x, y).

Sigmoidal tone mapping example

a=1

Glare Illusion

"Alan Wake" © Remedy Entertainment

Glare Illusion

Photography

Painting

241 Computer Graphics HDR rendering in games

Scattering of the light in the eye

From: Sekuler, R., and Blake, R. Perception, second ed. McGraw- Hill, New York, 1990

Point Spread Function of the eye

What portion of the light is scattered towards a certain visual angle

To simulate:

- construct a digital filter
- convolve the image with that filter

From: Spencer, G. et al. 1995. Proc. of

Selective application of glare

- A) Glare applied to the entire image $I_g = I * G$ Glare kernel (PSF)
- Reduces image contrast and sharpness

B) Glare applied only to the clipped pixels $I_g = I + I_{cliped} * G - I_{cliped}$ where $I_{cliped} = \begin{cases} I & for I > 1 \\ 0 & otherwise \end{cases}$ Better image quality

Selective application of glare

A) Glare applied to the entire image

Original image

B) Glare applied to clipped pixels only

Glare (or bloom) in games

- Convolution with large, non-separable filters is too slow
- The effect is approximated by a combination of Gaussian filters
 - Each filter with different "sigma"
- The effect is meant to look good, not be be accurate model of light scattering
- Some games simulate
 a camera rather than the eye

References: Tone-mapping

Tone-mapping

- REINHARD, E., HEIDRICH, W., DEBEVEC, P., PATTANAIK, S., WARD, G., AND MYSZKOWSKI, K. 2010. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann.
- MANTIUK, R.K., MYSZKOWSKI, K., AND SEIDEL, H. 2015. High Dynamic Range Imaging. In: Wiley Encyclopedia of Electrical and Electronics Engineering. John Wiley & Sons, Inc., Hoboken, NJ, USA, 1–42.
 - http://www.cl.cam.ac.uk/~rkm38/pdfs/mantiuk15hdri.pdf (Chapter 5)