

Introduction to Graphics

Computer Science Tripos Part 1A/1B

Michaelmas Term 2019/2020

Department of

Computer Science

and Technology

The Computer Laboratory

William Gates Building

 15 JJ Thomson Avenue

 Cambridge

 CB3 0FD

www.cst.cam.ac.uk

This handout includes copies of the slides that will be used in lectures.

These notes do not constitute a complete transcript of all the lectures and

they are not a substitute for text books. They are intended to give a

reasonable synopsis of the subjects discussed, but they give neither

complete descriptions nor all the background material.

Selected slides contain a reference to the relevant section in the

recommended textbook for this course: Fundamentals of Computer

Graphics by Marschner & Shirley, CRC Press 2015 (4th edition). The

references are in the format [FCG N.M], where N.M is the section number.

Material is copyright © Neil A Dodgson, Peter Robinson & Rafał Mantiuk,
1996‐2019, except where otherwise noted.

All other copyright material is made available under the University’s licence.
All rights reserved.

Introduction to Computer Graphics
Rafał Mantiuk

www.cl.cam.ac.uk/~rkm38

Eight lectures & two practical tasks
Part IA 75% CST, Part IB 50% CST

Two supervisions suggested
Two exam questions on Paper 3

2
What are Computer Graphics &

Image Processing?

Scene
description

Digital
image

Computer
graphics

Image analysis &
computer vision

Image processing

Image
capture

Image
display

3

Why bother with CG & IP?
All visual computer output depends on CG

 printed output (laser/ink jet/phototypesetter)
 monitor (CRT/LCD/OLED/DMD)
 all visual computer output consists of real images generated

by the computer from some internal digital image

Much other visual imagery depends on CG & IP
 TV & movie special effects & post-production
 most books, magazines,

catalogues, brochures,
junk mail, newspapers,
packaging, posters, flyers

Course Structure
Background

 What is an image? Resolution and quantisation. Storage of images in
memory. [1 lecture]

Rendering
 Perspective. Reflection of light from surfaces and shading. Geometric

models. Ray tracing. [2 lectures]
Graphics pipeline

 Polygonal mesh models. Transformations using matrices in 2D and 3D.
Homogeneous coordinates. Projection: orthographic and perspective.
Rasterisation. [2 lectures]

Graphics hardware and modern OpenGL
 GPU APIs. Vertex processing. Fragment processing. Working with

meshes and textures. [1 lectures]
Human vision, colour and tone mapping

 Colour perception. Colour spaces. Tone mapping [2 lectures]

4

5

Course books
Fundamentals of Computer Graphics

 Shirley & Marschner
CRC Press 2015 (4th edition)

 [FCG 3.1] – reference to section 3.1

Computer Graphics: Principles & Practice
 Hughes, van Dam, McGuire, Sklar et al.

Addison-Wesley 2013 (3rd edition)

OpenGL Programming Guide:
The Official Guide to Learning OpenGL Version
4.5 with SPIR-V
 Kessenich, Sellers & Shreiner

Addison Wesley 2016 (7th edition and later)

6

Computer Graphics & Image Processing

Background
 What is an image?
 Resolution and quantisation
 Storage of images in memory

Rendering
Graphics pipeline
Rasterization
Graphics hardware and modern OpenGL
Human vision and colour & tone mapping

What is a (digital) image?
A digital photograph? (“JPEG”)
A snapshot of real-world lighting?

Image

2D array of pixels 2D function

From computing
perspective
(discrete)

From mathematical
perspective
(continuous)

•To represent images in
memory

•To create image processing
software

•To express image processing
as a mathematical problem

•To develop (and understand)
algorithms

7

Image
 2D array of pixels
 In most cases, each pixel takes 3 bytes: one for each red, green and blue
 But how to store a 2D array in memory?

8

Stride
Calculating the pixel component index in memory

 For row-major order (grayscale)

 For column-major order (grayscale)

 For interleaved row-major (colour)

 General case

where , and are the strides for the x, y and colour
dimensions

9

Padded images and stride
 Sometimes it is desirable to “pad” image with extra pixels

 for example when using operators that need to access pixels outside
the image border

Or to define a region of interest (ROI)

How to address pixels for such an image and the ROI?

Allocated memory space
Image

Region of Interest
(ROI)

10

Padded images and stride

 For row-major, interleaved

Allocated memory space
Image

Region of Interest
(ROI)

11

Pixel (PIcture ELement)
Each pixel (usually) consist of three values describing

the color
(red, green, blue)

For example
 (255, 255, 255) for white
 (0, 0, 0) for black
 (255, 0, 0) for red

Why are the values in the 0-255 range?
How many bytes are needed to store 5MPixel image?

(uncompressed)

12

Pixel formats, bits per pixel, bit-depth
Grayscale – single color channel, 8 bits (1 byte)
Highcolor – 216=65,536 colors (2 bytes)

Truecolor – 224 = 16,8 million colors (3 bytes)
Deepcolor – even more colors (>= 4 bytes)

But why? 13

Color banding
If there are not

enough bits to
represent color

Looks worse
because of the
Mach band illusion

Dithering (added
noise) can reduce
banding
 Printers but also

some LCD displays

M
ac

h
ba

nd
s

Intensity profile
14

What is a (computer) image?
A digital photograph? (“JPEG”)
A snapshot of real-world lighting?

Image

2D array of pixels 2D function

From computing
perspective
(discrete)

From mathematical
perspective
(continuous)

•To represent images in
memory

•To create image processing
software

•To express image processing
as a mathematical problem

•To develop (and understand)
algorithms

15

Image – 2D function
Image can be seen as a function I(x,y), that gives

intensity value for any given coordinate (x,y)

16

Sampling an image
The image can be sampled on a rectangular sampling

grid to yield a set of samples. These samples are
pixels.

17

What is a pixel? (math)
A pixel is not

 a box
 a disk
 a teeny light

A pixel is a point
 it has no dimension
 it occupies no area
 it cannot be seen
 it has coordinates

A pixel is a sample

From: http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture05/lecture05.pdf
18

Sampling and quantization
 Physical world is described in terms of continuous quantities
 But computers work only with discrete numbers
 Sampling – process of mapping continuous function to a

discrete one
Quantization – process of mapping continuous variable to a

discrete one

19

20

Computer Graphics & Image Processing
Background
Rendering

 Perspective
 Reflection of light from surfaces and shading
 Geometric models
 Ray tracing

Graphics pipeline
Graphics hardware and modern OpenGL
Human vision and colour & tone mapping

Depth cues
21

Rendering depth
22

23

Perspective in photographs

Gates Building – the rounded version
(Stanford)

Gates Building – the rectilinear version
(Cambridge)

Early perspective
Presentation at the

Temple
Ambrogio Lorenzetti 1342
Uffizi Gallery

Florence

24

Wrong perspective
Adoring saints
Lorenzo Monaco

1407-09
National Gallery

London

25

Renaissance perspective
Geometrical perspective

Filippo Brunelleschi 1413
Holy Trinity fresco
Masaccio (Tommaso di Ser Giovanni

di Simone) 1425
Santa Maria Novella

Florence
De pictura (On painting)

textbook by Leon Battista Alberti
1435

26

More perspective
The Annunciation

with Saint Emidius
Carlo Crivelli 1486
National Gallery London

27

False perspective
28

Calculating
perspective

29

Ray tracing
Identify point on surface and calculate illumination
Given a set of 3D objects, shoot a ray from the eye

through the centre of every pixel and see what
surfaces it hits

30

shoot a ray through each pixel whatever the ray hits determines the colour of
that pixel

[FCG 4]

31Ray tracing: examples

ray tracing easily handles reflection, refraction,
shadows and blur

ray tracing is computationally expensive

32

Ray tracing algorithm

select an eye point and a screen plane

FOR every pixel in the screen plane
determine the ray from the eye through the pixel’s centre
FOR each object in the scene

IF the object is intersected by the ray
IF the intersection is the closest (so far) to the eye

record intersection point and object
END IF ;

END IF ;
END FOR ;
set pixel’s colour to that of the object at the closest intersection point

END FOR ;

33

Intersection of a ray with an object 1
 plane

 polygon or disc
 intersection the ray with the plane of the polygon

 as above
 then check to see whether the intersection point lies inside the polygon

 a 2D geometry problem (which is simple for a disc)

O
D

ray
plane

: ,
:
P O sD s

P N d

0
0

N

s d N O
N D

34

Intersection of a ray with an object 2
 sphere

 cylinder, cone, torus
 all similar to sphere
 try them as an exercise

O
D C

r

a
dbs

a
dbs

acbd

rCOCOc
CODb

DDa

2

2

4

2

2

1

2

2

d real d imaginary

0)()(:sphere
0,:ray

2

rCPCP
ssDOP

35

Ray tracing: shading
 once you have the intersection of a

ray with the nearest object you can
also:
 calculate the normal to the object at

that intersection point
 shoot rays from that point to all of the

light sources, and calculate the diffuse
and specular reflections off the object
at that point
 this (plus ambient illumination)

gives the colour of the object (at
that point)

O
D C

r

N

light 1

light 2

36

Ray tracing: shadows
 because you are tracing

rays from the intersection
point to the light, you can
check whether another
object is between the
intersection and the light
and is hence casting a
shadow
 also need to watch for self-

shadowing
O

D C
r

N

light 1

light 2

light 3

37

Ray tracing: reflection
 if a surface is totally or

partially reflective then
new rays can be
spawned to find the
contribution to the
pixel’s colour given by
the reflection
 this is perfect (mirror)

reflection

O

N1

light
N2

38

Ray tracing: transparency & refraction
 objects can be totally or

partially transparent
 this allows objects behind the

current one to be seen through
it

 transparent objects can have
refractive indices
 bending the rays as they pass

through the objects

 transparency + reflection
means that a ray can split into
two parts

O

light

D0

D1

D'1

D'2

D2

Illumination and shading
Dürer’s method allows us to calculate what part of

the scene is visible in any pixel
But what colour should it be?
Depends on:

 lighting
 shadows
 properties of surface material

39

[FCG 4.5-4.8]

40

How do surfaces reflect light?

perfect specular
reflection
(mirror)

Imperfect specular
reflection

diffuse reflection
(Lambertian reflection)

Johann Lambert, 18th century German mathematician

the surface of a specular reflector is facetted,
each facet reflects perfectly but in a slightly
different direction to the other facets

41

Comments on reflection

 the surface can absorb some wavelengths of light
 e.g. shiny gold or shiny copper

 specular reflection has “interesting” properties at glancing angles
owing to occlusion of micro-facets by one another

 plastics are good examples of surfaces with:
 specular reflection in the light’s colour
 diffuse reflection in the plastic’s colour

42

Calculating the shading of a surface
 gross assumptions:

 there is only diffuse (Lambertian) reflection
 all light falling on a surface comes directly from a light source

 there is no interaction between objects
 no object casts shadows on any other

 so can treat each surface as if it were the only object in the scene
 light sources are considered to be infinitely distant from the object

 the vector to the light is the same across the whole surface

 observation:
 the colour of a flat surface will be uniform across it, dependent only on the

colour & position of the object and the colour & position of the light sources

43

Diffuse shading calculation

L is a normalised vector pointing in
the direction of the light source

N is the normal to the surface

Il is the intensity of the light source

kd is the proportion of light which is
diffusely reflected by the surface

I is the intensity of the light reflected
by the surface

L
N

I I k
I k N L
l d

l d

cos
()

use this equation to calculate the colour of a pixel

44

Diffuse shading: comments
 can have different Il and different kd for different wavelengths

(colours)
 watch out for cos < 0

 implies that the light is behind the polygon and so it cannot illuminate this
side of the polygon

 do you use one-sided or two-sided surfaces?
 one sided: only the side in the direction of the normal vector can be

illuminated
 if cos < 0 then both sides are black

 two sided: the sign of cos determines which side of the polygon is
illuminated
 need to invert the sign of the intensity for the back side

 this is essentially a simple one-parameter (BRDF

45
Specular reflection

 Phong developed an easy-to-
calculate approximation to
specular reflection

N
R

V

L

L is a normalised vector pointing in the
direction of the light source

R is the vector of perfect reflection
N is the normal to the surface
V is a normalised vector pointing at the

viewer
Il is the intensity of the light source
ks is the proportion of light which is

specularly reflected by the surface
n is Phong’s ad hoc “roughness” coefficient
I is the intensity of the specularly reflected

light

I I k
I k R V
l s

n

l s
n

cos
()

Phong Bui-Tuong, “Illumination for computer
generated pictures”, CACM, 18(6), 1975, 311–7

n=1 n=3 n=7 n=20 n=40

46

Examples

diffuse reflection

specular
reflection

100% 75% 50% 25% 0%

100%

75%

50%

25%

0%

47

Shading: overall equation
 the overall shading equation can thus be considered to be the

ambient illumination plus the diffuse and specular reflections
from each light source

 the more lights there are in the scene, the longer this calculation will take

N
Ri

V

Li

I I k I k L N I k R Va a i d i i s i
n

ii

 () ()

48

The gross assumptions revisited
 diffuse reflection
 approximate specular reflection
 no shadows

 need to do ray tracing or shadow mapping to get shadows

 lights at infinity
 can add local lights at the expense of more calculation

 need to interpolate the L vector

 no interaction between surfaces
 cheat!

 assume that all light reflected off all other surfaces onto a given surface
can be amalgamated into a single constant term: “ambient illumination”,
add this onto the diffuse and specular illumination

49

Sampling
 we have assumed so far that each ray

passes through the centre of a pixel
 i.e. the value for each pixel is the colour of

the object which happens to lie exactly
under the centre of the pixel

 this leads to:
 stair step (jagged) edges to objects
 small objects being missed completely
 thin objects being missed completely or

split into small pieces

50

Anti-aliasing
 these artefacts (and others) are jointly known as aliasing
 methods of ameliorating the effects of aliasing are known as

anti-aliasing

 in signal processing aliasing is a precisely defined technical term for a
particular kind of artefact

 in computer graphics its meaning has expanded to include most
undesirable effects that can occur in the image
 this is because the same anti-aliasing techniques which ameliorate

true aliasing artefacts also ameliorate most of the other artefacts

51

Sampling in ray tracing
 single point

 shoot a single ray through the pixel’s
centre

 super-sampling for anti-aliasing
 shoot multiple rays through the pixel

and average the result
 regular grid, random, jittered, Poisson

disc

 adaptive super-sampling
 shoot a few rays through the pixel,

check the variance of the resulting
values, if similar enough stop, otherwise
shoot some more rays

52

Types of super-sampling 1
 regular grid

 divide the pixel into a number of sub-pixels and
shoot a ray through the centre of each

 problem: can still lead to noticable aliasing unless
a very high resolution sub-pixel grid is used

 random
 shoot N rays at random points in the pixel
 replaces aliasing artefacts with noise artefacts

 the eye is far less sensitive to noise than to
aliasing

12 8 4

53

Types of super-sampling 2
 Poisson disc

 shoot N rays at random points in
the pixel with the proviso that no
two rays shall pass through the
pixel closer than e to one another

 for N rays this produces a better
looking image than pure random
sampling

 very hard to implement properly

Poisson disc pure random

54

Types of super-sampling 3
 jittered

 divide pixel into N sub-pixels and
shoot one ray at a random point in
each sub-pixel

 an approximation to Poisson disc
sampling

 for N rays it is better than pure
random sampling

 easy to implement

jittered pure randomPoisson disc

55More reasons for wanting to take
multiple samples per pixel

 super-sampling is only one reason why we might want to take
multiple samples per pixel

 many effects can be achieved by distributing the multiple samples
over some range
 called distributed ray tracing

 N.B. distributed means distributed over a range of values

 can work in two ways
each of the multiple rays shot through a pixel is allocated a random value from

the relevant distribution(s)
 all effects can be achieved this way with sufficient rays per pixel

each ray spawns multiple rays when it hits an object
 this alternative can be used, for example, for area lights

56

Examples of distributed ray tracing
 distribute the samples for a pixel over the pixel area

 get random (or jittered) super-sampling
 used for anti-aliasing

 distribute the rays going to a light source over some area
 allows area light sources in addition to point and directional light sources
 produces soft shadows with penumbrae

 distribute the camera position over some area
 allows simulation of a camera with a finite aperture lens
 produces depth of field effects

 distribute the samples in time
 produces motion blur effects on any moving objects

57

Anti-aliasing

one sample per pixel multiple samples per pixel

58

Area vs point light source

an area light source produces soft shadows a point light source produces hard shadows

59Finite aperture

1, 120

left, a pinhole camera

below, a finite aperture camera

below left, 12 samples per pixel

below right, 120 samples per pixel

note the depth of field blur: only objects
at the correct distance are in focus

60

Computer Graphics & Image Processing
Background
Rendering
Graphics pipeline

 Polygonal mesh models
 Transformations using matrices in 2D and 3D
 Homogeneous coordinates
 Projection: orthographic and perspective

Rasterization
Graphics hardware and modern OpenGL
Human vision and colour & tone mapping

Unfortunately…
Ray tracing is computationally expensive

 used for super-high visual quality
Video games and user interfaces need something faster
Most real-time applications rely on rasterization

 Model surfaces as polyhedra – meshes of polygons
 Use composition to build scenes
 Apply perspective transformation

and project into plane of screen
 Work out which surface was closest
 Fill pixels with colour of nearest visible polygon

Modern graphics cards have hardware to support this
Ray tracing starts to appear in real-time rendering

 The latest generation of GPUs offers accelerated ray-tracing
 But it still not as efficient as rasterization

61

Three-dimensional objects
 Polyhedral surfaces are made up from

meshes of multiple connected polygons

 Polygonal meshes
 open or closed
 manifold or non-manifold

 Curved surfaces
 must be converted to polygons to be drawn

62

63

Surfaces in 3D: polygons
Easier to consider planar polygons

 3 vertices (triangle) must be planar
 > 3 vertices, not necessarily planar

this vertex is in
front of the other

three, which are all
in the same plane

a non-planar
“polygon” rotate the polygon

about the vertical axis

should the result be this
or this?

64

Splitting polygons into triangles
 Most Graphics Processing Units (GPUs) are optimised to

draw triangles
 Split polygons with more than three vertices into triangles

which is preferable?

?

65

2D transformations
 scale

 rotate

 translate

 (shear)

why?
 it is extremely useful to be

able to transform predefined
objects to an arbitrary
location, orientation, and size

 any reasonable graphics
package will include
transforms
 2D Postscript
 3D OpenGL

[FCG 6]

66

Basic 2D transformations
 scale

 about origin
 by factor m

 rotate
 about origin
 by angle

 translate
 along vector (xo,yo)

 shear
 parallel to x axis
 by factor a

x mx
y my
'
'

x x y
y x y
' cos sin
' sin cos

x x x
y y y

o

o

'
'

x x ay
y y
'
'

67

Matrix representation of transformations
 scale

 about origin, factor m

 do nothing
 identity

x
y

m
m

x
y

'
'

0

0

x
y

x
y

'
'

1 0
0 1

x
y

a x
y

'
'

1
0 1

 rotate
 about origin, angle

 shear
 parallel to x axis, factor a

x
y

x
y

'
'

cos sin
sin cos

68

Homogeneous 2D co-ordinates
 translations cannot be represented using simple 2D matrix

multiplication on 2D vectors, so we switch to
homogeneous co-ordinates

 an infinite number of homogeneous co-ordinates map to
every 2D point

 w=0 represents a point at infinity
 usually take the inverse transform to be:

 (, ,) ,x y w x
w

y
w

(,) (, ,)x y x y 1

[FCG 6.3]

69

Matrices in homogeneous co-ordinates
 scale

 about origin, factor m

 do nothing
 identity

x
y
w

m
m

x
y
w

'
'
'

0 0
0 0
0 0 1

 rotate
 about origin, angle

 shear
 parallel to x axis, factor a

x
y
w

x
y
w

'
'
'

cos sin
sin cos

0
0

0 0 1

x
y
w

a x
y
w

'
'
'

1 0
0 1 0
0 0 1

x
y
w

x
y
w

'
'
'

1 0 0
0 1 0
0 0 1

70

Translation by matrix algebra

x
y
w

x
y

x
y
w

o'
'
'

1 0
0 1
0 0 1

0

w w'y y wyo' x x wxo'

x
w

x
w

x'
'
 0 0'

' y
w
y

w
y

In conventional coordinates

In homogeneous coordinates

71

Concatenating transformations
 often necessary to perform more than one transformation on the

same object
 can concatenate transformations by multiplying their matrices

e.g. a shear followed by a scaling:

x
y
w

m
m

x
y
w

x
y
w

a x
y
w

' '
' '
' '

'
'
'

'
'
'

0 0
0 0
0 0 1

1 0
0 1 0
0 0 1

x
y
w

m
m

a x
y
w

m ma
m

x
y
w

' '
' '
' '

0 0
0 0
0 0 1

1 0
0 1 0
0 0 1

0
0 0
0 0 1

shearscale

shearscale both

72

Transformation are not commutative
be careful of the order in which you concatenate

transformations

rotate by 45°

scale by 2
along x axis

rotate by 45°

scale by 2
along x axis

2
2

2
2

1
2

1
2

2
2

1
2

2
2

1
2

1
2

1
2

1
2

1
2

0
0

0 0 1

2 0 0
0 1 0
0 0 1

0
0

0 0 1

0
0

0 0 1

scale

rotatescale then rotate

rotate then scale

73

Scaling about an arbitrary point
 scale by a factor m about point (xo,yo)

translate point (xo,yo) to the origin
scale by a factor m about the origin
translate the origin to (xo,yo)

(xo,yo)

(0,0)

x
y
w

x
y

x
y
w

o

o

'
'
'

1 0
0 1
0 0 1

x
y
w

m
m

x
y
w

' '
' '
' '

'
'
'

0 0
0 0
0 0 1

x
y
w

x
y

x
y
w

o

o

' ' '
' ' '
' ' '

' '
' '
' '

1 0
0 1
0 0 1

x
y
w

x
y

m
m

x
y

x
y
w

o

o

o

o

' ' '
' ' '
' ' '

1 0
0 1
0 0 1

0 0
0 0
0 0 1

1 0
0 1
0 0 1

Exercise: show how to
perform rotation about
an arbitrary point

74

3D transformations
 3D homogeneous co-ordinates

 3D transformation matrices

(, , ,) (, ,)x y z w x
w

y
w

z
w

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

m
m

m

x

y

z

0 0 0
0 0 0
0 0 0
0 0 0 1

1 0 0
0 1 0
0 0 1
0 0 0 1

t
t
t

x

y

z

cos sin
sin cos

0 0
0 0

0 0 1 0
0 0 0 1

1 0 0 0
0 0
0 0
0 0 0 1

cos sin
sin cos

cos sin

sin cos

0 0
0 1 0 0

0 0
0 0 0 1

translation identity

scale

rotation about x-axis

rotation about y-axisrotation about z-axis

75

3D transformations are not commutative

x

y
z

x

x
z

z

x

y
z

90° rotation
about z-axis

90° rotation
about x-axis

90° rotation
about z-axis

90° rotation
about x-axis

opposite
faces

76

Model transformation 1
 the graphics package Open Inventor defines a cylinder to be:

 centre at the origin, (0,0,0)
 radius 1 unit
 height 2 units, aligned along the y-axis

 this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations

 we want to draw a cylinder of:
 radius 2 units
 the centres of its two ends located at (1,2,3) and (2,4,5)

 its length is thus 3 units
 what transforms are required?

and in what order should they be applied?

x

y

2

2

Model transformation 2
order is important:

 scale first
 rotate
 translate last

scaling and translation are straightforward

77

x

y

2

2

x

y

3

4

1000
0200
005.10
0002

S

1000
4100
3010
5.1001

T

translate centre of
cylinder from (0,0,0) to
halfway between (1,2,3)

and (2,4,5)

scale from
size (2,2,2)

to size (4,3,4)

S

Model transformation 3
rotation is a multi-step process

 break the rotation into steps, each of which is rotation
about a principal axis

 work these out by taking the desired orientation back to
the original axis-aligned position

 the centres of its two ends located at (1,2,3) and (2,4,5)

 desired axis: (2,4,5)–(1,2,3) = (1,2,2)

 original axis: y-axis = (0,1,0)

78

Model transformation 4
 desired axis: (2,4,5)–(1,2,3) = (1,2,2)
 original axis: y-axis = (0,1,0)

 zero the z-coordinate by rotating about the x-axis

79

22

1

22
2arcsinθ

1000
0θcosθsin0
0θsinθcos0
0001

R

y

z

)2,2,1(

)0,8,1(

0,22,1 22

Model transformation 5

 then zero the x-coordinate by rotating about the z-axis
 we now have the object’s axis pointing along the y-axis

80

22

2

81

1arcsinφ

1000
0100
00φcosφsin
00φsinφcos

R

x

y
)0,8,1(

)0,3,0(

0,81,0
22

Model transformation 6
the overall transformation is:

 first scale
 then take the inverse of the rotation we just calculated
 finally translate to the correct position

81

w
z
y
x

w
z
y
x

SRRT 1
2

1
1

'
'
'
'

Application: display multiple instances
 transformations allow you to define an object at one

location and then place multiple instances in your scene

82

83

3D 2D projection
to make a picture

 3D world is projected to a 2D image
 like a camera taking a photograph
 the three dimensional world is projected onto a plane

The 3D world is described as a set
of (mathematical) objects

e.g. sphere radius (3.4)
centre (0,2,9)

e.g. box size (2,4,3)
centre (7, 2, 9)
orientation (27º, 156º)

84

Types of projection
parallel

 e.g.
 useful in CAD, architecture, etc
 looks unrealistic

perspective
 e.g.
 things get smaller as they get farther away
 looks realistic

 this is how cameras work

(, ,) (,)x y z x y

(, ,) (,)x y z x
z

y
z

85

Geometry of perspective projection

y

z

d

(, ,)x y z
(' , ' ,)x y d

x x d
z

y y d
z

'

'

(, ,)0 0 0

86

Projection as a matrix operation

x x d
z

y y d
z

'

'

10/100
/1000
0010
0001

/
/1 z

y
x

d
d

dz
d
y
x

z
z 1'

This is useful in the z-buffer
algorithm where we need to
interpolate 1/z values rather
than z values.

wz
wy
wx

w
z
y
x

/
/
/

 remember

87
Perspective projection

with an arbitrary camera
 we have assumed that:

 screen centre at (0,0,d)
 screen parallel to xy-plane
 z-axis into screen
 y-axis up and x-axis to the right
 eye (camera) at origin (0,0,0)

 for an arbitrary camera we can either:
 work out equations for projecting objects about an arbitrary point

onto an arbitrary plane
 transform all objects into our standard co-ordinate system (viewing

co-ordinates) and use the above assumptions

88

A variety of transformations

 the modelling transform and viewing transform can be multiplied together to
produce a single matrix taking an object directly from object co-ordinates into
viewing co-ordinates

 either or both of the modelling transform and viewing transform matrices can
be the identity matrix
 e.g. objects can be specified directly in viewing co-ordinates, or directly in

world co-ordinates
 this is a useful set of transforms, not a hard and fast model of how things

should be done

object in
world

co-ordinates

object in
viewing

co-ordinatesviewing
transform

object in
2D screen

co-ordinatesprojection

object in
object

co-ordinates modelling
transform

Model, View, Projection matrices

Object coordinates

Object centred at the
origin

World coordinates

Model
matrix

To position each
object in the scene.
Could be different
for each object.

89

Model, View, Projection matrices

World coordinates

View matrix

View (camera)
coordinates

Camera at the origin,
pointing at -z

To position all objects
relative to the camera

90

90

Model, View, Projection matrices

Projection
matrix

View (camera)
coordinates

Screen coordinates

x and y must be in the range
-1 and 1

To project 3D
coordinates to a 2D
plane. Note that z
coordinate is retained
for depth testing.

91

The default OpenGL
coordinate system is

right-handed

91

All together

3D world
vertex

coordinates

Screen
coordinates

xs/ws and
ys/ws must be

between
-1 and 1

Projection, view and
model matrices

92

92

93

Viewing transformation 1

the problem:
 to transform an arbitrary co-ordinate system to the

default viewing co-ordinate system

camera specification in world co-ordinates
 eye (camera) at (ex,ey,ez)
 look point (centre of screen) at (lx,ly,lz)
 up along vector (ux,uy,uz)

 perpendicular to

world
co-ordinates

viewing
co-ordinatesviewing

transform

u

e

l

el

94

Viewing transformation 2
 translate eye point, (ex,ey,ez), to origin, (0,0,0)

 scale so that eye point to look point distance, , is distance
from origin to screen centre, d

el

T

1 0 0
0 1 0
0 0 1
0 0 0 1

e
e
e

x

y

z

el S

el

el

el

() () ()l e l e l ex x y y z z

d

d

d
2 2 2

0 0 0
0 0 0
0 0 0
0 0 0 1

95

Viewing transformation 3
 need to align line with z-axis

 first transform e and l into new co-ordinate system

 then rotate e''l'' into yz-plane, rotating about y-axis

el

e S T e 0 l S T l'' ''

x

z

(' ' , ' ' , ' ')l l lx y z

 0 2 2, ' ' , ' ' ' 'l l ly x z

96

Viewing transformation 4
 having rotated the viewing vector onto the yz plane, rotate it

about the x-axis so that it aligns with the z-axis

22

2

''''''
'''arccosφ

1000
0φcosφsin0
0φsinφcos0
0001

zy

z

ll
l

R

y

z

(, ' ' ' , ' ' ')0 l ly z

 0 0

0 0

2 2, , ' ' ' ' ' '

(, ,)

l l

d
y z

l R l''' '' 1

97

Viewing transformation 5
 the final step is to ensure that the up vector actually points up,

i.e. along the positive y-axis
 actually need to rotate the up vector about the z-axis so that it lies in the

positive y half of the yz plane

u R R u'''' 2 1
why don’t we need to
multiply u by S or T?

u is a vector rather than
a point, vectors do not
get translated

scaling u by a uniform
scaling matrix would
make no difference to the
direction in which it
points

22

3

''''''''

''''
arccosψ

1000
0100
00ψcosψsin
00ψsinψcos

yx

y

uu

u

R

98

Viewing transformation 6

 we can now transform any point in world co-ordinates to the
equivalent point in viewing co-ordinate

 in particular:
 the matrices depend only on e, l, and u, so they can be pre-

multiplied together

world
co-ordinates

viewing
co-ordinatesviewing

transform

x
y
z
w

x
y
z
w

'
'
'
'

R R R S T3 2 1

e l (, ,) (, ,)0 0 0 0 0 d

M R R R S T 3 2 1

Transforming normal vectors
 Transformation by

a nonorthogonal matrix
does not preserve angles

 Since:

We can find that:
 Derivation shown on the visualizer

99

Normal transform

Vertex position
transformTransformed normal

and tangent vector

99

[FCG 6.2.2]

Scene construction
We will build a robot from

basic parts
Body transformation

Arm1 transformation

Arm 2 transformation

100

Body

Arm1
Arm2

Pa
rt

s

Fi
na

l s
ce

ne

Object
coordinates

World
coordinates

Scene construction
Body transformation

Arm1 transformation

Arm2 transformation

101

Body

Arm1
Arm2

Scene Graph
Scene can be drawn by

traversing a scene graph:

traverse(node, T_parent) {
M = T_parent * node.T * node.E
node.draw(M)
for each child {

traverse(child, T_parent * node.T)
}

}

102

[FCG 12.2]

Introduction to Computer Graphics

103

Background
Rendering
Graphics pipeline
Rasterization
Graphics hardware and modern OpenGL
Human vision and colour & tone mapping

Rasterization algorithm(*)

104

Set model, view and projection (MVP) transformations

FOR every triangle in the scene
transform its vertices using MVP matrices
IF the triangle is within a view frustum

clip the triangle to the screen border
FOR each fragment in the triangle

interpolate fragment position and attributes between vertices
compute fragment colour
IF the fragment is closer to the camera than any pixel drawn so far

update the screen pixel with the fragment colour
END IF ;

END FOR ;
END IF ;

END FOR ;

(*) simplified

fragment – a candidate
pixel in the triangle

Illumination & shading
 Drawing polygons with uniform colours gives poor results
 Interpolate colours across polygons

105

Rasterization
 Efficiently draw (thousands of) triangles

 Interpolate vertex attributes inside the triangle

106

 Homogenous
barycentric
coordinates are
used to
interpolate
colours, normals,
texture
coordinates and
other attributes
inside the triangle

[FCG 2.7]

Homogenous barycentric coordinates
 Find barycentric

coordinates of the point
(x,y)
 Given the coordinates of

the vertices
 Derivation in the lecture

107

್(௫,௬)್(௫ೌ,௬ೌ) ೌ (௫,௬)ೌ (௫್,௬್)
 is the implicit line

equation:𝑓 𝑥, 𝑦 = 𝑦 − 𝑦 𝑥 + 𝑥 − 𝑥 𝑦 + 𝑥𝑦 − 𝑥𝑦

Triangle rasterization

 Optimization: the barycentric coordinates will change by the
same amount when moving one pixel right (or one pixel down)
regardless of the position
 Precompute increments and use them instead of

computing barycentric coordinates when drawing pixels sequentially

108

for y=ymin to ymax do
for x=xmin to xmax do

if (and and) then
draw pixels (x,y) with colour c

Surface normal vector interpolation
 for a polygonal model, interpolate normal vector between the

vertices
 Calculate colour (Phong reflection model) for each pixel
 Diffuse component can be either interpolated or computed for each

pixel

 N.B. Phong’s approximation to
specular reflection ignores
(amongst other things) the
effects of glancing incidence
(the Fresnel term)

109

[(' , '), , (, ,),]x y z r g b1 1 1 1 1 1 1N

[(' , ') , ,
(, ,) ,]
x y z
r g b

2 2 2

2 2 2 2N

[(' , ') , , (, ,) ,]x y z r g b3 3 3 3 3 3 3N

Occlusions (hidden surfaces)

110

Simple case

More difficult cases

[FCG 8.2.3]

Z-Buffer - algorithm

 Initialize the depth buffer and image buffer for all pixels
colour(x, y) = Background_colour,
depth(x, y) = zmax // position of the far clipping plane

 For every triangle in a scene do
 For every fragment (x, y) in this triangle do

 Calculate z for current (x, y)
 if (z < depth(x, y)) and (z > zmin) then
 depth(x, y) = z
 colour(x, y) = fragment_colour(x, y)

111

Colour
buffer

Depth
buffer

View frustum
 Controlled by camera parameters: near-, far-clipping

planes and field-of-view

Far-clipping plane

FOV

Near-clipping plane

Z-buffer must store all
these values

112

Introduction to Computer Graphics

113

Background
Rendering
Graphics pipeline
Rasterization
Graphics hardware and modern OpenGL

 GPU & APIs
 OpenGL Rendering pipeline
 Example OpenGL code
 GLSL
 Textures
 Raster buffers

Human vision, colour & tone mapping

What is a GPU?
 Graphics Processing Unit
 Like CPU (Central

Processing Unit) but for
processing graphics

 Optimized for floating point
operations on large arrays
of data
 Vertices, normals, pixels, etc.

114

What does a GPU do
 Performs all low-level tasks & a lot of high-level tasks

 Clipping, rasterisation, hidden surface removal, …
 Essentially draws millions of triangles very efficiently

 Procedural shading, texturing, animation, simulation, …
 Video rendering, de- and encoding, deinterlacing, ...
 Physics engines

 Full programmability at several pipeline stages
 fully programmable
 but optimized for massively parallel operations

115

What makes GPU so fast?
 3D rendering can be very efficiently parallelized

 Millions of pixels
 Millions of triangles
 Many operations executed independently at the same time

 This is why modern GPUs
 Contain between hundreds and thousands of SIMD processors

 Single Instruction Multiple Data – operate on large arrays of data

 >>400 GB/s memory access
 This is much higher bandwidth than CPU
 But peak performance can be expected for very specific operations

116

GPU APIs
(Application Programming Interfaces)
OpenGL
 Multi-platform
 Open standard API
 Focus on general 3D

applications
 Open GL driver manages

the resources

DirectX
 Microsoft Windows / Xbox
 Proprietary API
 Focus on games

 Application manages
resources

117

One more API
 Vulkan – cross platform, open standard
 Low-overhead API for high performance 3D graphics
 Compared to OpenGL / DirectX

 Reduces CPU load
 Better support of multi-CPU-core architectures
 Finer control of GPU

 But
 The code for drawing a few primitives can take 1000s line of

code
 Intended for game engines and code that must be very well

optimized

118

And one more
 Metal (Apple iOS8)

 low-level, low-overhead 3D GFX and compute shaders API
 Support for Apple A7, Intel HD and Iris, AMD, Nvidia
 Similar design as modern APIs, such as Vulcan
 Swift or Objective-C API
 Used mostly on iOS

119

GPGPU - general purpose computing
 OpenGL and DirectX are not meant to be used for

general purpose computing
 Example: physical simulation, machine learning

 CUDA – Nvidia’s architecture for parallel computing
 C-like programming language
 With special API for parallel instructions
 Requires Nvidia GPU

 OpenCL – Similar to CUDA, but open standard
 Can run on both GPU and CPU
 Supported by AMD, Intel and NVidia, Qualcomm, Apple, …

120

GPU and mobile devices
 OpenGL ES 1.0-3.2

 Stripped version of OpenGL
 Removed functionality that is not strictly necessary on mobile

devices

 Devices
 iOS: iPhone, iPad
 Android phones
 PlayStation 3
 Nintendo 3DS
 and many more

OpenGL ES 2.0 rendering (iOS)

121

WebGL
 JavaScript library for 3D rendering in a web browser
 WebGL 1.0 - based on OpenGL ES 2.0
 WebGL 2.0 – based on OpenGL ES 3.0

 Chrome and Firefox (2017)

 Most modern browsers
support WebGL

 Potentially could be used to create
3D games in a browser
 and replace Adobe Flash

http://zygotebody.com/

122

OpenGL in Java
 Standard Java API does not include OpenGL interface
 But several wrapper libraries exist

 Java OpenGL – JOGL
 Lightweight Java Game Library - LWJGL

 We will use LWJGL 3
 Seems to be better maintained
 Access to other APIs (OpenCL, OpenAL, …)

 We also need a linear algebra library
 JOML – Java OpenGL Math Library
 Operations on 2, 3, 4-dimensional vectors and matrices

123

OpenGL History
 Proprietary library IRIS GL by SGI

 OpenGL 1.0 (1992)
 OpenGL 1.2 (1998)

 OpenGL 2.0 (2004)
 GLSL
 Non-power-of-two (NPOT)

textures

 OpenGL 3.0 (2008)
 Major overhaul of the API
 Many features from previous

versions depreciated

 OpenGL 3.2 (2009)
 Core and Compatibility profiles

 Geometry shaders

 OpenGL 4.0 (2010)
 Catching up with Direct3D 11

 OpenGL 4.5 (2014)
 OpenGL 4.6 (2017)

 SPIR-V shaders

124

How to learn OpenGL?
 Lectures – algorithms behind OpenGL, general principles
 Tick 2 – detailed tutorial, learning by doing
 References

 OpenGL Programming Guide: The Official Guide to Learning
OpenGL, Version 4.5 with SPIR-V by John Kessenich, Graham
Sellers, Dave Shreiner ISBN-10: 0134495497

 OpenGL quick reference guide
https://www.opengl.org/documentation/glsl/

 Google search: „man gl......”

125

OpenGL rendering pipeline

OpenGL programming model

CPU code GPU code

 gl* functions that
 Create OpenGL objects
 Copy data CPU<->GPU
 Modify OpenGL state
 Enqueue operations
 Synchronize CPU & GPU

 C99 library
 Wrappers in most

programming language

 Fragment shaders
 Vertex shaders
 and other shaders
 Written in GLSL

 Similar to C
 From OpenGL 4.6 could be

written in other language
and compiled to SPIR-V

127

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

ClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

128

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

ClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

Processing of vertices, normals,
uv texture coordinates.

129

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

ClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
setup[Optional] Create new

primitives by tessellating existing
primitives (patches).

130

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

ClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

[Optional] Operate on tessellated
geometry. Can create new primitives.

131

fur shadow volumes

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

ClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

Organizes vertices into
primitives and prepares them for

rendering.

132

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

ClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

Remove or modify vertices so
that they all lie within the
viewport (view frustum).

133

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

ClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

Generates fragments (pixels) to
be drawn for each primitive.

Interpolates vertex attributes.

scanlines

134

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

Clipping
Rasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

Computes colour per each fragment (pixel). Can lookup
colour in the texture. Can modify pixels’ depth value.

Also used for tone mapping.

135

Non-Photorealistic-Rendering
shader

Physically accurate
materials

Example:
preparing vertex data for a cube

136

Indices

0, 1, 2

…

Ind Positions Normals

0 0, 0, 0 0, 0, -1

… … …

Vertex attributes

Primitives (triangles)

Geometry objects in OpenGL (OO view)

137

GLSL - fundamentals

Shaders
 Shaders are small programs executed on a GPU

 Executed for each vertex, each pixel (fragment), etc.

 They are written in GLSL (OpenGL Shading Language)
 Similar to C and Java
 Primitive (int, float) and aggregate data types (ivec3, vec3)
 Structures and arrays
 Arithmetic operations on scalars, vectors and matrices
 Flow control: if, switch, for, while
 Functions

139

Example of a vertex shader
#version 330

in vec3 position; // vertex position in local space

in vec3 normal; // vertex normal in local space

out vec3 frag_normal; // fragment normal in world space

uniform mat4 mvp_matrix; // model-view-projection matrix

void main()

{

// Typicaly normal is transformed by the model matrix

// Since the model matrix is identity in our case, we do not modify normals

frag_normal = normal;

// The position is projected to the screen coordinates using mvp_matrix

gl_Position = mvp_matrix * vec4(position, 1.0);

}
Why is this piece
of code needed?

140

Data types
 Basic types

 float, double, int, uint, bool

 Aggregate types
 float: vec2, vec3, vec4; mat2, mat3, mat4
 double: dvec2, dvec3, dvec4; dmat2, dmat3, dmat4
 int: ivec2, ivec3, ivec4
 uint: uvec2, uvec3, uvec4
 bool: bvec2, bvec3, bvec4

vec3 V = vec3(1.0, 2.0, 3.0); mat3 M = mat3(1.0, 2.0, 3.0,
4.0, 5.0, 6.0,
7.0, 8.0, 9.0);

141

Indexing components in aggregate types
 Subscripts: rgba, xyzw, stpq (work exactly the same)

 float red = color.r;
 float v_y = velocity.y;
but also
 float red = color.x;
 float v_y = velocity.g;

 With 0-base index:
 float red = color[0];
 float m22 = M[1][1]; // second row and column

// of matrix M

142

Swizzling
You can select the elements of the aggregate type:
vec4 rgba_color(1.0, 1.0, 0.0, 1.0);
vec3 rgb_color = rgba_color.rgb;
vec3 bgr_color = rgba_color.bgr;
vec3 luma = rgba_color.ggg;

143

Arrays
 Similar to C
float lut[5] = float[5](1.0, 1.42, 1.73, 2.0, 2.23);

 Size can be checked with “length()”
for(int i = 0; i < lut.length(); i++) {

lut[i] *= 2;
}

144

Storage qualifiers
 const – read-only, fixed at compile time
 in – input to the shader
 out – output from the shader
 uniform – parameter passed from the application (Java),

constant for the primitive
 buffer – shared with the application
 shared – shared with local work group (compute

shaders only)

 Example: const float pi=3.14;

145

Shader inputs and outputs

Vertex
shader

Fragment
shader

out vec3
frag_normal

in vec3 frag_normal

Vertex attribute
interpolation

in vec3 position

in vec3 normal

out vec3 colour

ArrayBuffer (vertices)

ArrayBuffer (normals)glGetAttribLocation
glBindBuffer
glVertexAttribPointer
glEnableVertexAttribArray

FrameBuffer (pixels)
[optional]
glBindFragDataLocation
or
layout(location=?) in GLSL

146

GLSL Operators
 Arithmetic: + - ++ --

 Multiplication:
 vec3 * vec3 – element-wise
 mat4 * vec4 – matrix multiplication (with a column vector)

 Bitwise (integer): <<, >>, &, |, ^
 Logical (bool): &&, ||, ^^
 Assignment:
float a=0;
a += 2.0; // Equivalent to a = a + 2.0

 See the quick reference guide at:
https://www.opengl.org/documentation/glsl/

147

GLSL Math
 Trigonometric:

 radians(deg), degrees(rad), sin, cos, tan,
asin, acos, atan, sinh, cosh, tanh, asinh,
acosh, atanh

 Exponential:
 pow, exp, log, exp2, log2, sqrt, inversesqrt

 Common functions:
 abs, round, floor, ceil, min, max, clamp, …

 And many more

 See the quick reference guide at:
https://www.opengl.org/documentation/glsl/

148

GLSL flow control
if(bool) {

// true
} else {

// false
}

switch(int_value) {
case n:

// statements
break;

case m:
// statements
break;

default:

}
for(int i = 0; i<10; i++) {

...
}

while(n < 10) {
...

}

do {
...

} while (n < 10)

149

Simple OpenGL application - flow
 Initialize rendering window & OpenGL

context

 Send the geometry (vertices, triangles,
normals) to the GPU

 Load and compile Shaders

Initialize OpenGL

Set up inputs

Draw a frame

 Clear the screen buffer

 Set the model-view-projection matrix
 Render geometry

 Flip the screen buffers

Free resources

150

Rendering geometry
 To render a single object with OpenGL
1. glUseProgram() – to activate vertex & fragment shaders
2. glVertexAttribPointer() – to indicate which Buffers
with vertices and normal should be input to fragment shader
3. glUniform*() – to set uniforms (parameters of the
fragment/vertex shader)
4. glBindTexture() – to bind the texture
5. glBindVertexArray() – to bind the vertex array
6. glDrawElements() – to queue drawing the geometry
7. Unbind all objects
 OpenGL API is designed around the idea of a state-machine –

set the state & queue drawing command
151

Textures

(Most important) OpenGL texture types

1D
s0 1

2D
s

t

0 1
0

1

s

t

p

3D

Texture can have any size but the
sizes that are powers of two (POT, 2n)
may give better performance.

CUBE_MAP Used for environment
mapping

0

0

1
1

1

0

Texel

153

Texture mapping
 1. Define your texture

function (image) T(u,v)
 (u,v) are texture

coordinates

154

0 1
0

1

Texture mapping
 2. Define the correspondence

between the vertices on the
3D object and the texture
coordinates

155

Texture mapping
 3. When rendering, for every surface point compute

texture coordinates. Use the texture function to get
texture value. Use as color or reflectance.

156

Sampling

Up-sampling
More pixels than texels
Values need to be interpolated

Down-sampling
Fewer pixels than texels
Values need to be averaged
over an area of the texture
(usually using a mipmap)

Texturev

u

157

Nearest neighbor vs.
bilinear interpolation (upsampling)

A B

C DX

Interpolate first along
x-axis between AB
and CD, then along
y-axis between the
interpolated points.

158

A B

C DX

N
ea

re
st

 n
ei

gh
bo

ur

Bi
lin

ea
r

in
te

rp
ol

at
io

n

Pick the nearest
texel: D

Texel

159

Texture mapping examples

nearest-
neighbour

bilinear

u

v

160

Up-sampling

nearest-
neighbour

blocky
artefacts

bilinear

blurry
artefacts

u

v

 if one pixel in the texture map
covers several pixels in the final
image, you get visible artefacts

 only practical way to prevent this
is to ensure that texture map is of
sufficiently high resolution that it
does not happen

161

Down-sampling

 if the pixel covers quite a large area
of the texture, then it will be
necessary to average the texture
across that area, not just take a
sample in the middle of the area

Mipmap
 Textures are often stored at multiple

resolutions as a mipmap
 Each level of the pyramid is half the size of

the lower level
 Mipmap resolution is always power-of-two

(1024, 512, 256, 128, ...)

 It provides pre-filtered texture (area-
averaged) when screen pixels are larger
than the full resolution texels

 Mipmap requires just an additional 1/3 of
the original texture size to store

 OpenGL can generate a mipmap with
glGenerateMipmap(GL_TEXTURE_2D)

162

This image is an illustration showing only
1/3 increase in storeage. Mipmaps are
stored differently in the GPU memory.

Down-sampling
without area averaging with area averaging

163

Texture tiling
 Repetitive patterns can be represented as texture tiles.
 The texture folds over, so that

 T(u=1.1, v=0) = T(u=0.1, v=0)

164

Multi-surface UV maps
 A single texture is often used for multiple surfaces and

objects

Example from:
http://awshub.com/blog/blog/2011/11/01/hi-poly-vs-
low-poly/

165

Bump (normal) mapping
 Special kind of texture that

modifies surface normal
 Surface normal is a vector

that is perpendicular to a
surface

 The surface is still flat but
shading appears as on an
uneven surface

 Easily done in fragment
shaders

166

Displacement mapping
 Texture that modifies surface
 Better results than bump

mapping since the surface is
not flat

 Requires geometry shaders

167

Environment mapping
 To show environment

reflected by an object

168

Environment mapping
 Environment cube
 Each face captures

environment in that
direction

169

Texture objects in OpenGL

170

Texture parameters
//Setup filtering, i.e. how OpenGL will interpolate the pixels
when scaling up or down
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_NEAREST);

//Setup wrap mode, i.e. how OpenGL will handle pixels outside of
the expected range
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);

How to
interpolate in

2D

How to interpolate
between mipmap

levels

171

Raster buffers (colour, depth, stencil)

Render buffers in OpenGL

GL_FRONT GL_BACKColour:

Depth:

GL_FRONT_LEFT GL_FRONT_RIGHT

GL_BACK_LEFT GL_BACK_RIGHT

DEPTH

Stencil: STENCIL

In stereo:

Four components:
RGBA

Typically 8 bits per
component

To block rendering selected pixels
Single component, usually 8 bits.

To resolve occlusions (see Z-buffer algorithm)
Single component, usually >8 bits

173

Double buffering
 To avoid flicker, tearing
 Use two buffers (rasters):

 Front buffer – what is shown on the screen
 Back buffer – not shown, GPU draws into that buffer

 When drawing is finished, swap front- and back-buffers
Front buffer – display
Back buffer - draw

1st buffer
2nd buffer

time

174

Triple buffering
 Do not wait for swapping to start drawing the next

frame

 Shortcomings
 More memory needed
 Higher delay between drawing and displaying a frame

Front buffer – display
Back buffer - draw

1st buffer
2nd buffer

time

Front buffer – display
Back buffer - draw

time

3rd buffer

Double buffering

Get rid of these gaps

Triple buffering

175

Vertical Synchronization: V-Sync
 Pixels are copied from colour buffer to monitor row-by-row
 If front & back buffer are swapped during this process:

 Upper part of the screen contains previous frame
 Lower part of the screen contains current frame
 Result: tearing artefact

 Solution: When V-Sync is enabled
 glwfSwapInterval(1);

glSwapBuffers() waits until
the last raw is copied to the display.

176

No V-Sync vs. V-Sync

177

N
o

V-
Sy

nc
V-

Sy
nc

FreeSync (AMD) & G-Sync (Nvidia)
 Adaptive sync

 Graphics card controls timing of the frames on the display
 Can save power for 30fps video of when the screen is static
 Can reduce lag for real-time graphics

178

Vision, colour and colour spaces

179

180

The workings of the human visual
system
 to understand the requirements of displays (resolution,

quantisation and colour) we need to know how the
human eye works...

The lens of the eye forms
an image of the world on
the retina: the back
surface of the eye

181

Structure of the human eye
 the retina is an array of

light detection cells
 the fovea is the high

resolution area of the
retina

 the optic nerve takes
signals from the retina
to the visual cortex in
the brain

 cornea and lens focus
the light on the retina

 pupil shrinks and
expands to control the
amount of light

See Animagraffs web page for an animated visualization
https://animagraffs.com/human-eye/

Retina, cones and rods
 2 classes of photoreceptors

 Cones are responsible for day-
light vision and colour
perception
 Three types of cones: sensitive

to short, medium and long
wavelengths

 Rods are responsible for night
vison

182

Fovea, distribution of photoreceptors

183

 the fovea is a densely packed region in the centre of the
macula
 contains the highest density of cones
 provides the highest resolution vision

Electromagnetic
spectrum
 Visible light

 Electromagnetic waves of
wavelength in the range 380nm
to 730nm

 Earth’s atmosphere lets through
a lot of light in this wavelength
band

 Higher in energy than thermal
infrared, so heat does not
interfere with vision

184

Colour
 There is no physical definition of colour – colour is the

result of our perception

 For emissive displays / objects

colour = perception(spectral_emission)

 For reflective displays / objects

colour = perception(illumination * reflectance)

185

Reflectance
 Most of the light we see is reflected from objects
 These objects absorb a certain part of the light spectrum

Spectral reflectance of ceramic tiles

Why not
red?

186

Reflected light

 Reflected light = illumination reflectance

The same object may appear to have
different color under different
illumination.

187

)()()(RIL

Colour vision
 Cones are the

photreceptors responsible
for color vision
 Only daylight, we see no

colors when there is not
enough light

 Three types of cones
 S – sensitive to short

wavelengths
 M – sensitive to medium

wavelengths
 L – sensitive to long

wavelengths

Sensitivity curves – probability that a
photon of that wavelengths will be
absorbed by a photoreceptor. S,M
and L curves are normalized in this
plot.

188

Perceived light
 cone response = sum(sensitivity reflected light)

Although there is an infinite number of
wavelengths, we have only three
photoreceptor types to sense
differences between light spectra

730

380

)()(dLSR SS

Formally

189 Index S for S-cones

Metamers
 Even if two light spectra are different, they may appear to

have the same colour
 The light spectra that appear to have the same colour are

called metamers
 Example:

*

*

= [L1, M1, S1]

= [L2, M2, S2]

=

190

Practical application of metamerism
 Displays do not emit the same light spectra as real-world

objects
 Yet, the colours on a display look almost identical

On the display

In real world

*

*

=

= [L1, M1, S1]

= [L2, M2, S2]

191

 Observation
 Any colour can be matched

using three linear independent
reference colours

 May require “negative”
contribution to test colour

 Matching curves describe the
value for matching mono-
chromatic spectral colours of
equal intensity
 With respect to a certain

set of primary colours

192

Tristimulus Colour Representation

Standard Colour Space CIE-XYZ
 CIE Experiments [Guild and Wright, 1931]

 Colour matching experiments
 Group ~12 people with „normal“ colour vision
 2 degree visual field (fovea only)

 CIE 2006 XYZ
 Derived from LMS color matching functions by Stockman & Sharpe
 S-cone response differs the most from CIE 1931

 CIE-XYZ Colour Space
 Goals

 Abstract from concrete primaries used in experiment
 All matching functions are positive
 Primary „Y” is roughly proportionally to light intensity (luminance)

193

Standard Colour Space CIE-XYZ
 Standardized imaginary primaries

CIE XYZ (1931)
 Could match all physically realizable

colour stimuli
 Y is roughly equivalent to luminance

 Shape similar to luminous efficiency
curve

 Monochromatic spectral colours
form a curve in 3D XYZ-space

Cone sensitivity curves can be
obtained by a linear
transformation of CIE XYZ

194

CIE chromaticity diagram
 chromaticity values are defined in terms of x, y, z

 ignores luminance
 can be plotted as a 2D function

 pure colours (single wavelength)
lie along the outer curve

 all other colours are a mix of
pure colours and hence lie
inside the curve

 points outside the curve do not
exist as colours

195

x X
X Y Z

y Y
X Y Z

z Z
X Y Z

x y z

 , , 1

FvDFH Fig 13.24
Colour plate 2

580n
m

600n
m

700n
m

560n
m

540n
m

520n
m

500n
m

490n
m

510n
m

480n
m

460n
m 410n

m

Achromatic/chromatic vision
mechanisms

200

Light spectra

Rods

Cao et al. (2008). Vision
Research, 48(26), 2586–92.

Luminous efficiency function
(weighting)

Light spectrum (radiance)

Luminance
 Luminance – measure of light weighted by the response

of the achromatic mechanism. Units: cd/m2

Luminance

201

ଷହ

 All physically possible and visible
colours form a solid in XYZ space

 Each display device can reproduce a
subspace of that space

 A chromacity diagram is a slice
taken from a 3D solid in XYZ space

 Colour Gamut – the solid in a
colour space
 Usually defined in XYZ to be device-

independent

202

Visible vs. displayable colours

 HDR cameras/formats/displays attempt
capture/represent/reproduce (almost)
all visible colours
 They represent scene colours and

therefore we often call this representation
scene-referred

 SDR cameras/formats/devices attempt
to capture/represent/reproduce only
colours of a standard sRGB colour
gamut, mimicking the capabilities of
CRTs monitors
 They represent display colours and

therefore we often call this representation
display-referred

 203

Standard vs. High Dynamic Range

From rendering to display

206

Display encoding for SDR:
gamma correction
 Gamma correction is often used to encode luminance or

tri-stimulus color values (RGB) in imaging systems
(displays, printers, cameras, etc.)

Luma
Digital signal (0-1)

(relative) Luminance
Physical signal

Gamma
(usually =2.2)

Gain

Inverse:

Colour: the same equation
applied to red, green and blue
colour channels.

207

୧୬ ௨௧ ଵఊ

Why is gamma needed?

 Gamma-corrected pixel values give a scale of brightness
levels that is more perceptually uniform

 At least 12 bits (instead of 8) would be needed to encode
each color channel without gamma correction

 And accidentally it was also the response of the CRT gun

<- Pixel value (luma)
<- Luminance

208

Luma – gray-scale pixel value
 Luma - pixel brightness in gamma corrected units

 , are gamma-corrected colour values
 Prime symbol denotes gamma corrected
 Used in image/video coding

 Note that relative luminance if often approximated with

 , and are linear colour values
 Luma and luminace are different quantities despite similar

formulas

209

Standards for display encoding
Display type Colour space EOTF Bit depth

Standard Dynamic Range ITU-R 709 2.2 gamma / sRGB 8 to 10

High Dynamic Range ITU-R 2020 ITU-R 2100 (PQ/HLG) 10 to 12

210

Colour space
What is the colour of “pure” red,

green and blue

Electro-Optical Transfer Function
How to efficiently encode each primary

colour

How to transform between
RGB colour spaces?

 From ITU-R 709 RGB to XYZ:

211

RGB
ITU-R 709

RGB
ITU-R 2020

XYZ

SDR HDRDevice-independent

Relative XYZ
of the red
primary

Relative XYZ
of the green

primary

Relative XYZ
of the blue

primary

How to transform between
RGB colour spaces?
 From ITU-R 709 RGB to ITU-R 2020 RGB:

 From ITU-R 2020 RGB to ITU-R 709 RGB:

 Where:

ோଽ௧ and ௧ோଽ ோଽ௧ିଵ
ோଶଶ௧ and ௧ோଶଶ ோଶଶ௧ିଵ
212

Representing colour
 We need a mechanism which allows us to represent

colour in the computer by some set of numbers
 A) preferably a small set of numbers which can be quantised to

a fairly small number of bits each
 Linear and gamma corrected RGB, sRGB

 B) a set of numbers that are easy to interpret
 Munsell’s artists’ scheme
 HSV, HLS

 C) a set of numbers in a 3D space so that the (Euclidean)
distance in that space corresponds to approximately
perceptually uniform colour differences
 CIE Lab, CIE Luv

213

RGB space
 Most display devices that output light mix red, green and

blue lights to make colour
 televisions, CRT monitors, LCD screens

 Nominally, RGB space is a cube
 The device puts physical limitations on:

 the range of colours which can be displayed
 the brightest colour which can be displayed
 the darkest colour which can be displayed

214

RGB in XYZ space
 CRTs and LCDs mix red, green, and blue to make all

other colours
 the red, green, and blue primaries each map to a point

in CIE xy space
 any colour within the resulting

triangle can be displayed
 any colour outside the triangle

cannot be displayed
 for example: CRTs cannot display

very saturated purple, turquoise,
or yellow

215

FvDFH Figs 13.26, 13.27

CMY space
 printers make colour by mixing coloured inks
 the important difference between inks (CMY) and lights

(RGB) is that, while lights emit light, inks absorb light
 cyan absorbs red, reflects blue and green
 magenta absorbs green, reflects red and blue
 yellow absorbs blue, reflects green and red

 CMY is, at its simplest, the inverse of RGB
 CMY space is nominally a cube

216

217

CMYK space

 in real printing we use black
(key) as well as CMY

 why use black?
 inks are not perfect absorbers
 mixing C + M + Y gives a muddy

grey, not black
 lots of text is printed in black:

trying to align C, M and Y perfectly
for black text would be a
nightmare

218

Munsell’s colour classification system
 three axes

 hue the dominant colour
 value bright colours/dark colours
 chroma vivid colours/dull colours

 can represent this as a 3D graph

219

Munsell’s colour classification system
 any two adjacent colours are a standard “perceptual”

distance apart
 worked out by testing it on people
 a highly irregular space

 e.g. vivid yellow is much brighter than vivid blue

invented by Albert H. Munsell, an American artist, in 1905 in an attempt to systematically classify colours

220

Colour spaces for user-interfaces
 RGB and CMY are based on the physical devices which

produce the coloured output
 RGB and CMY are difficult for humans to use for

selecting colours
 Munsell’s colour system is much more intuitive:

 hue — what is the principal colour?
 value — how light or dark is it?
 chroma — how vivid or dull is it?

 computer interface designers have developed basic
transformations of RGB which resemble Munsell’s human-
friendly system

221

HSV: hue saturation value

 three axes, as with Munsell
 hue and value have same meaning
 the term “saturation” replaces

the term “chroma”

 designed by Alvy Ray Smith in
1978

 algorithm to convert HSV to RGB
and back can be found in Foley et
al., Figs 13.33 and 13.34

222

HLS: hue lightness saturation
a simple variation of HSV

 hue and saturation have same
meaning

 the term “lightness” replaces the
term “value”

designed to address the
complaint that HSV has all pure
colours having the same
lightness/value as white
 designed by Metrick in 1979
 algorithm to convert HLS to RGB

and back can be found in Foley et
al., Figs 13.36 and 13.37

Perceptually uniformity
 MacAdam ellipses & visually indistinguishable colours

223

In CIE xy chromatic coordinates In CIE u’v’ chromatic coordinates

CIE L*u*v* and u’v’

224

sRGB in CIE L*u*v*

 Approximately perceptually uniform
 u’v’ chromacity

 CIE LUV

 Hue and chroma

Lightness

Chromacity
coordinates

Colours less
distinguishable

when dark

CIE L*a*b* colour space
 Another approximately perceptually

uniform colour space

 Chroma and hue

225

Trichromatic
values of the

white point, e.g.

226

Lab space
 this visualization shows

those colours in Lab space
which a human can perceive

 again we see that human
perception of colour is not
uniform
 perception of colour

diminishes at the white and
black ends of the L axis

 the maximum perceivable
chroma differs for different
hues

Colour - references
 Chapters „Light” and „Colour” in

 Shirley, P. & Marschner, S., Fundamentals of Computer Graphics

 Textbook on colour appearance
 Fairchild, M. D. (2005). Color Appearance Models (second.). John

Wiley & Sons.

227

Tone-mapping problem

luminance range [cd/m2]

conventional display

simultaneouslyhuman vision
adapted

Tone mapping

228

Why do we need tone mapping?
 To reduce dynamic range
 To customize the look (colour grading)
 To simulate human vision (for example night vision)
 To simulate a camera (for example motion blur)
 To adapt displayed images to a display and viewing

conditions
 To make rendered images look more realistic
 To map from scene- to display-referred colours

 Different tone mapping operators achieve different goals
229

From scene- to display-referred colours
 The primary purpose of tone mapping is to transform an

image from scene-referred to display-referred colours

230

scene-referred,
linear, float

Tone mapping and display encoding
 Tone mapping is often combined with display encoding

 Display encoding can model the display and account for
 Display contrast (dynamic range), brightness and ambient light

levels
231

Rendered HDR
image

Tone mapping
Display encoding
(inverse display

model)

SDR raster
buffer

Different for SDR
and HDR displays

display-referred,
linear, float

display-referred,
encoded, int

sRGB textures and display coding
 OpenGL offers sRGB textures to automate

RGB to/from sRGB conversion
 sRGB textures store data in gamma-corrected space
 sRGB convered to (linear) RGB on texture look-up (and

filtering)
 Inverse display coding

 RGB to sRGB conversion when writing to sRGB texture
 with glEnable(GL_FRAMEBUFFER_SRGB)
 Forward display coding

232

Basic tone-mapping and display coding
 The simplest form of tone-mapping is the

exposure/brightness adjustment:

 R for red, the same for green and blue
 No contrast compression, only for a moderate dynamic range

 The simplest form of display coding is the “gamma”

 For SDR displays only

Prime (‘) denotes a
gamma-corrected value Typically =2.2

233

Display-referred red value

Scene-referred

Scene-referred
luminance of white

Tone-curve

Image histogram

The „best” tone-
mapping is the

one which does
not do anything,
i.e. slope of the
tone-mapping
curves is equal

to 1.

234

Tone-curve

But in practice
contrast (slope)
must be limited
due to display

limitations.

235

Tone-curve

Global tone-
mapping is a
compromise

between clipping
and contrast
compression.

236

Sigmoidal tone-curves
 Very common in

digital cameras
 Mimic the response

of analog film
 Analog film has been

engineered over many
years to produce
good tone-reproduction

 Fast to compute

237

Sigmoidal tone mapping
 Simple formula for a sigmoidal tone-curve:

where is the geometric mean (or mean of logarithms):

 (௫,௬)
and is the luminance of the pixel .

238

Sigmoidal tone mapping example

a=0.25

a=1

a=4

b=0.5 b=1 b=2
239

Glare Illusion

“Alan Wake” © Remedy Entertainment

240

Glare Illusion

PaintingPhotography

Computer Graphics
HDR rendering in games

241

Scattering of the light in the eye

From: Sekuler, R., and Blake, R. Perception, second ed. McGraw- Hill, New York, 1990

242

Point Spread Function of the eye
 What portion of

the light is
scattered
towards a certain
visual angle

 To simulate:
 construct a

digital filter
 convolve the

image with that
filter

Green – daytime (photopic)
Red – night time (scotopic)

From: Spencer, G. et al. 1995. Proc. of
SIGGRAPH. (1995)

243

Selective application of glare
 A) Glare applied to the

entire image
 Reduces image

contrast and sharpness

B) Glare applied only to
the clipped pixels ௗ ௗ
where ௗ
Better image quality

Glare kernel
(PSF)

244

Selective application of glare

Original image

A) Glare applied to
the entire image

B) Glare applied to
clipped pixels only

245

Glare (or bloom) in games
 Convolution with large, non-separable filters is too slow
 The effect is approximated by a combination of Gaussian

filters
 Each filter with different “sigma”

 The effect is meant to look good, not be be accurate
model of light scattering

 Some games simulate
a camera rather than the eye

246

References: Tone-mapping
 Tone-mapping

 REINHARD, E., HEIDRICH, W., DEBEVEC, P., PATTANAIK, S., WARD, G., AND

MYSZKOWSKI, K. 2010. High Dynamic Range Imaging: Acquisition, Display, and Image-
Based Lighting. Morgan Kaufmann.

 MANTIUK, R.K., MYSZKOWSKI, K., AND SEIDEL, H. 2015. High Dynamic Range
Imaging. In: Wiley Encyclopedia of Electrical and Electronics Engineering. John Wiley &
Sons, Inc., Hoboken, NJ, USA, 1–42.
 http://www.cl.cam.ac.uk/~rkm38/pdfs/mantiuk15hdri.pdf (Chapter 5)

247

