Foundations of Computer Science
Lecture #9: Sequences, or Lazy Lists

Dr Amanda Prorok & Dr Anil Madhavapeddy
2019-2020

Slides

https://proroklab.org/teaching/FCS LectureX.pdf

Posted online immediately after lecture.

https://proroklab.org/teaching/FCS_LectureX.pdf

‘ Warm-Up I

Question 1: What is the type of this function?
let cf yv x = vy;;

Out: val cf : 'a -=> 'b => 'a = <fun>

Question 2: What does cf y return?

It returns a constant function.

Question 3: We have the following: let add a b = a + b;;
Use a partial application of add to define an increment function:
In : let increment = ?22?7?

In : let increment = add 1;;

‘ Warm-Up I
What is the type of £?

let £ xy 2 =x 2z (y 2) Step 1: analyze the right-hand side expression

{umﬁ:&mmé‘/

Step 2: what are the unknown types?

type (z) : a

return-type (y) : 'b

return-type (x) : 'C Step 3: set those types.
input-type (y) : 'q Step 4: infer the input types.
input-type (x) : a->'b

type (y) : a->'b Step 5: infer all types.

type (x) : a->'b->'c

type (z) : a

let £ xy 2 =x 2 (y 2);; Step®6: infer function type.

val £ : ('a -=> 'b -=> '¢) -=> ('a -> 'b) -> 'a -> 'c

‘ Warm-Up I

Question 4: Is this function tail-recursive? Why?

let rec exists p = function

| []1 -> false

| x::xs -> (p x) || exists p xs
It is...

let rec exists p = function

| [] -> false

| x::xs -> (p X) || ((exists[@ocaml.tailcall]) p xs)

‘Data Streams - IntroI
An example:

perception-action loops (basic building block of autonomy)

m

decision-making and control W interaction with the world

while(true)
get sensor data
act upon sensor data
repeat

‘Data Streams - IntroI

Sequential programs - examples include: “fully-detined”
J

e Exhaustive search
e search a book for a keyword
e search a graph for the optimal path
e Data processing
e image processing (enhance / compress)
e outlier removal / de-noise

Reactive programs - examples include: “evenlt-triggered”
e Control tasks “interactive”
* flying a plane “closed-loop”

* robot navigation (obstacle avoidance)
* Resource allocation

* computer processor

* Mobility-on-Demand (e.g. Uber)

Producer

‘A PipelineI

— | Filter | = --- — | Filter | —

Produce sequence of items
Filter sequence In stages

Consume results as needed

Lazy lists join the stages together

Consumer

‘Lazy Lists — or StreamsI

Lists of possibly INFINITE length
® clements computed upon demand
® avoids waste if there are many solutions

® Infinite objects are a useful abstraction

In OCaml: implement laziness by delaying evaluation of the tail

In OCamil: ‘streams’ reserved for input/output channels, so
we use term ‘sequences’

Lazy Lists in OCamII

The type unit has one element: empty tuple ()

Uses:

e Can appear in data-structures (e.g., unit-valued dictionary)

e Can be the argument of a function

 Can be the argument or result of a procedure (seen later in course)

Behaves as a tuple, is a constructor, and allowed in pattern matching:

let £ () = .. let £ = function
O -

Expression E not evaluated until the function is applied:
fun () -> E

Lﬁfuy\ notakion enables d@i&j@d evaluakion!

‘Lazy Lists in OCamII

type 'a seq =
| Nil
| Cons of 'a * (unit -> 'a seq)

let head (Cons (x,)) = X

let tail (Cons (_, xf)) = xf ()

‘9

apply xf to () to evaluate

@ons (x, xf9 has head x and tail function x f

The Infinite Sequence, &, k+1, k+2, ...

let rec from k = Cons (k, fun () -> from (k + 1));;
val from : int -> int seq = <fun>

let it from 1;;
val it : int seq = Cons (1, <fun>)

let it = tail it;;
val it : int seq = Cons (2, <fun>)

tail 1it;;
- : 1nt seq = Cons (3, <fun>)

Recall:

let tail (Cons(_, xf)) = xf ();; $0r€e.ﬁke.avalua&uumh
> val tail : 'a seq -> 'a seq

‘Consuming a Sequence'

let rec get n s =
if n = 0 then []

else
match s with
| Nil -> []
| Cons (x, xf) -> x ::

Get the first n elements as a list

Xt () forces evaluation

force the List

L

get (n - 1) (xf ())

‘Sample EvaluationI

get 2 (from 6)
= get 2 (Cons (6, fun () -> from (6 + 1)))

= 6 :: get 1 (f’rwom‘ (6 + 1))

= 6 :: gei;l (Cons (7, fun () -> from (7 + 1)))

= 6 :: 7 :: get O (frpm (7 + 1))

= 6 :: 7 :: get 0 (Cons (8, fun () -> from (8 + 1)))
= 6 2 7 2 []
= [6; 7] T

‘Joining Two Sequences'

let rec appendqg xq yq =
match xg with
| Nil -> yg
| Cons (x, xf) ->
Cons (X, fun () -> appendqg (Xf ()) vq)

A fair alternative. ..
let rec interleave xgq yqg =
match xg with
| Nil -> yq
| Cons (x, xf) ->
Cons (x, fun () -> interleave yqg (Xf ()))

‘Functionals for Lazy ListsI

filtering

let rec filterqg p = function
| Nil -> Nil
| Cons (x, xf) ->
1f p x then
Cons (x, fun () -> filterq p (xf ()))
else

filterq p (xf ()W whak happams here?

The infinite sequence x, f(x), f(f(x)),...

let rec iterates f x
Cons (x, fun () -> iterates f (f x))

val filterg : ('a -> bool) -> 'a seq -> 'a seq = <fun>

val iterates : ('a -> 'a) -> 'a -> 'a seq = <fun>

‘Functionals for Lazy ListsI

Example:

val filterq

val iterates ('a ->
> let myseq = iterates
val myseq int seq =

> filterqg (fun x -> X
- : 1nt seq =
> filterq (fun x -> x

- : 1nt seq =

> filterqg (fun x -> X

('a -> bool)

Cons (1,

Cons (100,

-> 'a seq -> 'a seq
‘a) -> 'a -> 'a seq
(fun x -> x + 1) 1;;
Cons (1, <fun>)
= 1) myseq;;
<fun>)

= 100) myseq;;
<fun>)

= 0) myseq;;

‘Reusing Functionals for Lazy Lists'

Same Examples, but with no new functions:

> succ;;

- : int -> int = <fun>

> succ 1;; W/Ac&cm\g 1 has a builk-in function!
—: 2 = int

> (=) 1 2

- ¢ bool = false

> let myseq = iterates succ 1;;

val myseq : int seq = Cons (1, <fun>)

> filterq ((=) 1) myseq;;

- : 1nt seq = Cons (1, <fun>)

> filterqg ((=) 100) myseq;;

- : int seq = 100, <fun>)
> filterqg ((=) 0) myseq;; Ww_w

=" function, partially applied

‘Functionals for Lazy ListsI

Example:
val filterg : ('a -> bool) -> 'a seq -> 'a seq
val iterates : ('a -> 'a) -> 'a -> 'a seq

val get : int -> 'a seq -> 'a list

> val myseq = iterates (fun x -> x + 1) 1;;

val myseq : int seq Cons (1, <fun>)

> let it = filterqg (fun x -> x mod 2 = 0) myseq;;
val 1t : i1nt seq = Cons (2, <fun>)

> get 5 it;;

- : 1int list = [2; 4; 6; 8; 10]

‘Numerical Computations on Infinite Sequences'
%E,MC& SQT’EZ(.OT?/_, N
let next a x;= (a /. x +. x) /. 2.0

Close enough?

let rec within eps = function
| Cons (x, xf) ->
match xf () with
| Cons (Y, Yf) -~
if abs float (x -. y) <= eps then y

else within eps (Cons f . el
s ((¥, ¥1)) Xo @ thitial quess

Square Roots! /

let root a = within le-6 (iterates (next a) 1.0)

@;F’simm sequence

> root 3.0;;
- ¢ float = 1.73205080756887719

‘Numerical Computations on Infinite Sequences'

Aside: Newton-Raphson Method

Series is: So if we want to find sgrt(k) we use:
_ f(@o) 0 _

L1 = Lo — (20) x“=k
_ g S x)=x*—k

L9 = I f’(wl) f()

T3 = 5 J(x) =2x

L4 =

