Dictionaries

• A dictionary attaches **values** to identifiers (known as **keys**).

• Define the **operations** we want over the dictionary:

 • **lookup**: find an item in the dictionary

 • **update** / **insert**: replace / store an item in the dictionary

 • **delete**: remove an item from the dictionary

 • **empty**: the null dictionary with no keys

 • **Missing**: exception for errors in lookup and delete
Implementing a dictionary

- Simplest representation for a dictionary is an association list (a list of key/value tuples).

```ocaml
# exception Missing
exception Missing
```
Implementing a dictionary

- Simplest representation for a dictionary is an association list (a list of key/value tuples).

```ocaml
# exception Missing
exception Missing

# let rec lookup = function
| [], a -> raise Missing
| (x, y) :: pairs, a ->
  if a = x then
    y
  else
    lookup (pairs, a)
val lookup : ('a * 'b) list * 'a -> 'b = <fun>
```
Implementing a dictionary

• Simplest representation for a dictionary is an **association list** (a list of key/value tuples).

```ocaml
# exception Missing
exception Missing

# let rec lookup = function
  | [], a -> raise Missing
  | (x, y) :: pairs, a ->
    if a = x then
      y
    else
      lookup (pairs, a)
val lookup : ('a * 'b) list * 'a -> 'b = <fun>

# let update (l, b, y) = (b, y) :: l
val update : ('a * 'b) list * 'a * 'b -> ('a * 'b) list = <fun>
```
Implementing a dictionary

- Simplest representation for a dictionary is an association list (a list of key/value tuples).

```ocaml
# exception Missing
exception Missing

# let rec lookup = function
| [], a -> raise Missing
| (x, y) :: pairs, a ->
  if a = x then
    y
  else
    lookup (pairs, a)
val lookup : ('a * 'b) list * 'a -> 'b = <fun>

# let update (l, b, y) = (b, y) :: l
val update : ('a * 'b) list * 'a * 'b -> ('a * 'b) list = <fun>
```

Lookup is O(n)
Implementing a dictionary

- Simplest representation for a dictionary is an **association list** (a list of key/value tuples).

```ocaml
# exception Missing
exception Missing

# let rec lookup = function
| [], a -> raise Missing
| (x, y) :: pairs, a ->
  if a = x then
    y
  else
    lookup (pairs, a)
val lookup : ('a * 'b) list * 'a -> 'b = <fun>

# let update (l, b, y) = (b, y) :: l
val update : ('a * 'b) list * 'a * 'b -> ('a * 'b) list = <fun>
```

- Lookup is \(O(n)\)
- Update is \(O(1)\)
Implementing a dictionary

- Simplest representation for a dictionary is an **association list** (a list of key/value tuples).

```ocaml
# exception Missing
exception Missing

# let rec lookup = function
    | [], a -> raise Missing
    | (x, y) :: pairs, a ->
      if a = x then
        y
      else
        lookup (pairs, a)
val lookup : ('a * 'b) list * 'a -> 'b = <fun>

# let update (l, b, y) = (b, y) :: l
val update : ('a * 'b) list * 'a * 'b -> ('a * 'b) list = <fun>
```

Lookup is O(n)

Update is O(1)

But what is the space usage?
Binary Search Trees

• Use **binary trees** as a more efficient representation than a list to get a better lookup complexity.

```
# type 'a tree =
    Lf
  | Br of 'a * 'a tree * 'a tree
```
Binary Search Trees

- Use **binary trees** as a more efficient representation than a list to get a better lookup complexity.
Binary Search Trees

- Use **binary trees** as a more efficient representation than a list to get a better lookup complexity.

- Each node holds a *(key, value)* with a total ordering for the keys.

- The *left* subtree holds smaller keys and the *right* subtree holds larger keys.
Binary Search Trees

- Use **binary trees** as a more efficient representation than a list to get a better lookup complexity.

- If *balanced* then lookup is $O(\log n)$

- If *unbalanced* then lookup can be $O(n)$
Binary Search Trees

exception Missing of string

exception Missing of string

let rec lookup = function
| Br ((a, x), t1, t2), b ->
 if b < a then
 lookup (t1, b)
 else if a < b then
 lookup (t2, b)
 else
 x
| Lf, b -> raise (Missing b)

val lookup : (string * 'a) tree * string -> 'a = <fun>
Binary Search Trees

```ocaml
# exception Missing of string
exception Missing of string

# let rec lookup = function
    | Br ((a, x), t1, t2), b ->
        if b < a then
            lookup (t1, b)
        else if a < b then
            lookup (t2, b)
        else
            x
    | Lf, b -> raise (Missing b)
val lookup : (string * 'a) tree * string -> 'a = <fun>
```
Binary Search Trees

exception Missing of string
exception Missing of string

let rec lookup = function
 | Br ((a, x), t1, t2), b ->
 if b < a then
 lookup (t1, b)
 else if a < b then
 lookup (t2, b)
 else
 x
 | Lf, b -> raise (Missing b)

val lookup : (string * 'a) tree * string -> 'a = <fun>

O(log n) if the tree is balanced
let rec update k v = function
| Lf -> Br ((k, v), Lf, Lf)
| Br ((a, x), t1, t2) ->
 if k < a then
 Br ((a, x), update k v t1, t2)
 else if a < k then
 Br ((a, x), t1, update k v t2)
 else (* a = k *)
 Br ((a, v), t1, t2)

val update : 'a -> 'b -> ('a * 'b) tree -> ('a * 'b) tree = <fun>
Binary Search Trees

```ocaml
# let rec update k v = function
  | Lf -> Br ((k, v), Lf, Lf)
  | Br ((a, x), t1, t2) ->
      if k < a then
        Br ((a, x), update k v t1, t2)
      else if a < k then
        Br ((a, x), t1, update k v t2)
      else (* a = k *)
        Br ((a, v), t1, t2)

val update : 'a -> 'b -> ('a * 'b) tree -> ('a * 'b) tree = <fun>
```

Diagram:
- James, 5
- Gordon, 4
- Lf
- Lf
Binary Search Trees

```ocaml
# let rec update k v = function
  | Lf -> Br ((k, v), Lf, Lf)
  | Br ((a, x), t1, t2) ->
    if k < a then
      Br ((a, x), update k v t1, t2)
    else if a < k then
      Br ((a, x), t1, update k v t2)
    else (* a = k *)
      Br ((a, v), t1, t2)

val update : 'a -> 'b -> ('a * 'b) tree -> ('a * 'b) tree = <fun>
```

Diagram:
- **James, 5**
 - **Gordon, 4**
 - Lf
 - Lf
 - Lf
 - Lf
Binary Search Trees

```ocaml
# let rec update k v = function
  | Lf -> Br ((k, v), Lf, Lf)
  | Br ((a, x), t1, t2) ->
    if k < a then
      Br ((a, x), update k v t1, t2)
    else if a < k then
      Br ((a, x), t1, update k v t2)
    else (* a = k *)
      Br ((a, v), t1, t2)

val update : 'a -> 'b -> ('a * 'b) tree -> ('a * 'b) tree = <fun>
```
let rec update k v = function
| Lf -> Br ((k, v), Lf, Lf)
| Br ((a, x), t1, t2) ->
 if k < a then
 Br ((a, x), update k v t1, t2)
 else if a < k then
 Br ((a, x), t1, update k v t2)
 else (* a = k *)
 Br ((a, v), t1, t2)

val update : 'a -> 'b -> ('a * 'b) tree -> ('a * 'b) tree = <fun>
Binary Search Trees

```ocaml
# let rec update k v = function
  | Lf -> Br ((k, v), Lf, Lf)
  | Br ((a, x), t1, t2) ->
    if k < a then
      Br ((a, x), update k v t1, t2)
    else if a < k then
      Br ((a, x), t1, update k v t2)
    else (* a = k *)
      Br ((a, v), t1, t2)

val update : 'a -> 'b -> ('a * 'b) tree -> ('a * 'b) tree = <fun>
```

![Binary Search Tree Diagram](image_url)

```
- James, 5
  - Lf
  - James, 10
    - Lf
    - Lf
```
Binary Search Trees

```ocaml
# let rec update k v = function
  | Lf -> Br ((k, v), Lf, Lf)
  | Br ((a, x), t1, t2) ->
    if k < a then
      Br ((a, x), update k v t1, t2)
    else if a < k then
      Br ((a, x), t1, update k v t2)
    else (* a = k *)
      Br ((a, v), t1, t2)

val update : 'a -> 'b -> ('a * 'b) tree -> ('a * 'b) tree = <fun>
```

![Binary Search Tree Diagram](Diagram.png)
We reconstruct the part of the structure that has changed and return the updated version.

OCaml shares the original structure, and values pointing to the original remain unchanged.

This is also known as a persistent data structure.
Traversing Trees

Tree traversal refers to visiting the nodes of each tree in a well-defined order.

- **preorder** visits the label first (ABDECFG)
- **inorder** visits the label midway (DBEAFCG)
- **postorder** visits the label last (DEBFGCA)
Traversing Trees: preorder

- `preorder` visits the label first (ABDECFG)

```ocaml
# let rec preorder = function
 | Lf -> []
 | Br (v, t1, t2) ->
   [v] @ preorder t1 @ preorder t2

val preorder : 'a tree -> 'a list = <fun>
```
Traversing Trees: inorder

- **inorder** visits the label midway (DBEAFCG)

```ocaml
# let rec inorder = function
  | Lf -> []
  | Br (v, t1, t2) ->
    inorder t1 @ [v] @ inorder t2

val inorder : 'a tree -> 'a list = <fun>
```
Traversing Trees: inorder

- **inorder** visits the label midway (DBEAFCG)

```ocaml
# let rec inorder = function
| Lf -> []
| Br (v, t1, t2) ->
  inorder t1 @ [v] @ inorder t2

val inorder : 'a tree -> 'a list = <fun>
```

For binary search trees, this order respects the sorting constraint (left key < right key)

Also imaginatively known as a treesort.
Traversing Trees: postorder

- **postorder** visits the label last (DEBFGCA)

```
# let rec postorder = function
| Lf -> []
| Br (v, t1, t2) ->
  postorder t1 @ postorder t2 @ [v]
val postorder : 'a tree -> 'a list = <fun>
```
Traversing Trees: postorder

- **postorder** visits the label last (DEBFGCA)

```
# let rec postorder = function
| Lf -> []
| Br (v, t1, t2) ->
    postorder t1 @ postorder t2 @ [v]

val postorder : 'a tree -> 'a list = <fun>
```

FGC
Traversing Trees: postorder

• **postorder** visits the label last (DEBFGCA)

```ocaml
# let rec postorder = function
| Lf -> []
| Br (v, t1, t2) ->
  postorder t1 @ postorder t2 @ [v]

val postorder : 'a tree -> 'a list = <fun>
```

![Tree Diagram](image)
Traversing Trees: postorder

- **postorder** visits the label last (DEBFGCA)

```ocaml
# let rec postorder = function
| Lf -> []
| Br (v, t1, t2) ->
    postorder t1 @ postorder t2 @ [v]

val postorder : 'a tree -> 'a list = <fun>
```
Traversing Trees

Tree traversal refers to visiting the nodes of each tree in a well-defined order.

- preorder, inorder and postorder are depth-first traversal algorithms.
- The other possibility is breadth-first by going across the levels of the tree.
Arrays

Arrays are an indexed storage area for values

- Very common data structure alongside lists and trees in most languages.
- Arrays are usually updated *in-place* and are *imperative* or *mutable* data structures.
- Are used in many classic algorithms such as the original Hoare in-place partition-sort.
Arrays

Arrays are an indexed storage area for values

- Elements of a list can only be reached by counting from the head of the list.

- Elements of a tree can be reached by following a path from the root.

- Elements of an array are uniformly designated by number (the "subscript").
Functional Arrays

Arrays are an indexed storage area for values

Let's first consider an immutable array

• This is known as a functional array that is a finite map from integers to data.

• Updating implies copying the array to return a new version, but pointers to old copies remain.

• Can updates be efficient?
Functional Trees

The path to element i follows the **binary code** for i (the "subscript")

- The numbers above are not the values, but the positions of array elements.
- Complexity of access to this is always $O(\log n)$ as the tree is always balanced.
The path to element i follows the **binary code** for i (the "subscript")

```ocaml
# exception Subscript

# let rec sub = function
| Lf, _ -> raise Subscript
| Br (v, t1, t2), k ->
  if k = 1 then v
  else if k mod 2 = 0 then
    sub (t1, k / 2)
  else
    sub (t2, k / 2)
```
Functional Trees

The path to element \(i \) follows the **binary code** for \(i \) (the "subscript")

```
# exception Subscript

# let rec sub = function
  | Lf, _                               -> raise Subscript
  | Br (v, t1, t2), 1                   -> v
  | Br (v, t1, t2), k when k mod 2 = 0  -> sub (t1, k / 2)
  | Br (v, t1, t2), k                   -> sub (t2, k / 2)
```
Functional Trees

The path to element i follows the **binary code** for i (the "subscript")

```ocaml
# let rec update = function
    | Lf, k, w ->
        if k = 1 then
            Br (w, Lf, Lf)
        else
            raise Subscript (* Gap in tree *)
    | Br (v, t1, t2), k, w ->
        if k = 1 then
            Br (w, t1, t2)
        else if k mod 2 = 0 then
            Br (v, update (t1, k / 2, w), t2)
        else
            Br (v, t1, update (t2, k / 2, w))
```
Functional Trees

The path to element \(i \) follows the binary code for \(i \) (the "subscript")

```ocaml
# let rec update = function
| Lf, k, w ->
  if k = 1 then
    Br (w, Lf, Lf)
  else
    raise Subscript (* Gap in tree *)
| Br (v, t1, t2), k, w ->
  if k = 1 then
    Br (w, t1, t2)
  else if k mod 2 = 0 then
    Br (v, update (t1, k / 2, w), t2)
  else
    Br (v, t1, update (t2, k / 2, w))
```

\(O(\log n) \) if the tree is balanced
Functional Trees

The path to element i follows the binary code for i (the "subscript")

15 = 0b1111
12 = 0b1100
11 = 0b1011
Complexity of Dictionary Data Structures

- **Linear search**: Most general, needing only equality on keys, but inefficient (linear time).

- **Binary search**: Needs an ordering on keys. \(O(\log n) \) in the average case, binary search trees are \(O(n) \) in the worst case.

- **Array subscripting**: Least general, requiring keys to be integers, but even worst-case time is \(O(\log n) \).