
Foundations of Computer Science:
Datatypes and Trees

Lecture 6
Anil Madhavapeddy and Amanda Prorok

23rd October 2019

GET INVOLVED HAVE A SAy

BE A VOICE

START A CHANGE

SSCoF NOMINATIONS
Take Whe chance Wo become Whe Yoice of feedback Wo Whe depaUWmenW b\ VWanding Wo
be on Whe SSCoF commiWWee. We aUe looking foU one UepUeVenWaWiYe fUom each of
Whe folloZing \eaUV Wo UepUeVenW WheiU \eaU gUoXp :

PaUW IA NST, PaUW IA CST, PaUW IB, PaUW II, PaUW III/MPhil, PhD

ApplicaWionV mXVW be VXbmiWWed b\ Friday 25th October
MeeWingV Wo be held WZice WeUml\ on a WedneVda\ lXnchWime, ZiWh lXnch pUoYided.

FoU moUe info oU Wo collecW a nominaWion foUm, pleaVe aVk aW Whe SWXdenW
AdminiVWUaWion haWch.

Custom Types

Exceptions

Recursive Types

Custom Types

Custom Types
• So far, our types have been basic: int, float

or bool types that are built into OCaml.

• In this lecture we introduce one of the coolest
features of ML-style languages in the form of
custom datatypes!

• We continue to improve the abstraction of
our data away from the details of its
representation.

Let’s describe a vehicle
let number_of_wheels = function
 “bike” -> 2
 | “motorbike” -> 2
 | “car” -> 4
 | “lorry” -> 18

Let’s describe a vehicle
let number_of_wheels = function
 “bike” -> 2
 | “motorbike” -> 2
 | “car” -> 4
 | “lorry” -> 18

number_of_wheels “bike”
- : int = 2

number_of_wheels “motorbke”
???

Let’s describe a vehicle
let number_of_wheels = function
 “bike” -> 2
 | “motorbike” -> 2
 | “car” -> 4
 | “lorry” -> 18

number_of_wheels “bike”
- : int = 2

number_of_wheels “Motorbike”
???

Let’s describe a vehicle
let number_of_wheels = function
 “bike” -> 2
 | “motorbike” -> 2
 | “car” -> 4
 | “lorry” -> 18

number_of_wheels “bike”
- : int = 2

number_of_wheels “motorbke”
???

How can we make illegal
states unrepresentable?

An Enumeration Type
type vehicle =
 Bike
 | Motorbike
 | Car
 | Lorry

An Enumeration Type
type vehicle =
 Bike
 | Motorbike
 | Car
 | Lorry

• We have declared a new type vehicle

• Instead of representing any string, it can only contain the
four constants defined.

• These four constants become the constructors of the
vehicle type

An Enumeration Type
type vehicle =
 Bike
 | Motorbike
 | Car
 | Lorry

• The representation in memory is more efficient than using
strings.

• Adding new types of vehicles is straightforward by
extending the definitions.

• Different custom types cannot be intermixed, unlike strings
or integers.

Declaring functions on vehicles
let wheels = function
 | Bike -> 2
 | Motorbike -> 2
 | Car -> 4
 | Lorry -> 18
val wheels : vehicle -> int = <fun>

Declaring functions on vehicles
let wheels = function
 | Bike -> 2
 | Motorbike -> 2
 | Car -> 4
 | Lorry -> 18
val wheels : vehicle -> int = <fun>

let wheels = function
 | “bike” -> 2
 | “motorbike” -> 2
 | “car” -> 4
 | “lorry” -> 18
val wheels : string -> int = <fun>

• The representation in memory is more efficient than using strings.

• Different custom types cannot be intermixed, unlike strings or
integers.

Declaring functions on vehicles
let wheels = function
 | Bike -> 2
 | Motorbike -> 2
 | Car -> 4
 | Lorry -> 18
val wheels : vehicle -> int = <fun>

• Adding new types of vehicles is straightforward by
extending the definitions and fixing warnings.

let wheels = function
 | Bike -> 2
 | Motorbike -> 2
 | Car -> 4
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Orange
val wheels : vehicle -> int = <fun>

Declaring functions on vehicles
type vehicle = Bike
 | Motorbike of int
 | Car of bool
 | Lorry of int

• OCaml generalises the notion of enumeration types to
allow data to be stored alongside each variant.

• Even though they have different data, they are all of type
vehicle when wrapped by the constructor.

Bike
Motorbike 250
Car true
Lorry 500

Declaring functions on vehicles
type vehicle = Bike
 | Motorbike of int
 | Car of bool
 | Lorry of int

• OCaml generalises the notion of enumeration types to
allow data to be stored alongside each variant.

• Even though they have different data, they are all of type
vehicle when wrapped by the constructor.

type vehicle = Bike
 | Motorbike of int (* engine size in CCs *)
 | Car of bool (* true if a Reliant Robin *)
 | Lorry of int (* number of wheels *)

Declaring functions on vehicles
type vehicle = Bike
 | Motorbike of int
 | Car of bool
 | Lorry of int

• OCaml generalises the notion of enumeration types to
allow data to be stored alongside each variant.

• Even though they have different data, they are all of type
vehicle when wrapped by the constructor.

[Bike; Car true; Motorbike 450]
- : vehicle list

A finer wheel computation
let wheels = function
 | Bike -> 2
 | Motorbike _ -> 2
 | Car robin -> if robin then 3 else 4
 | Lorry w -> w

• A Bike has two wheels.

• A Motorbike has two wheels.

• A Reliant Robin has three wheels; all other
cars have four.

• A Lorry has the number of wheels stored with
its constructor.

Exceptions

Exceptions
• During a computation, what if something goes wrong?

• Division by zero

• Pattern matching failure

• Exception handling allows us to recover from these:

• Raising an exception abandons the current expression

• Handling the exception attempts an alternative

• Raising and handling can be separated in the source code

Exceptions
exception Failure
exception Failure

exception NoChange of int
exception NoChange of int

raise Failure
Exception: Failure.

• Each exception declaration introduces a distinct type of
exception that can be handled separately.

• Exceptions are like enumerations and can have data
attached to them.

Exceptions
try
 print_endline "pre exception";
 raise (NoChange 1);
 print_endline "post exception";
 with
 | NoChange _ ->
 print_endline "handled a NoChange exception"
Line 3, characters 5-23:
Warning 21: this statement never returns (or has an unsound type.)
pre exception
handled a NoChange exception
- : unit = ()

• raise dynamically jumps to the nearest try/with
handler that matches that exception

• Unlike some languages, OCaml does not mark a function
to indicate that an exception might be raised.

Exceptions
try
 print_endline "pre exception";
 raise (NoChange 1);
 print_endline "post exception";
 with
 | NoChange _ ->
 print_endline "handled a NoChange exception"
Line 3, characters 5-23:
Warning 21: this statement never returns (or has an unsound type.)
pre exception
handled a NoChange exception
- : unit = ()

• raise dynamically jumps to the nearest try/with
handler that matches that exception

• Unlike some languages, OCaml does not mark a function
to indicate that an exception might be raised.

Install
exception
handler for
enclosing

block

Exceptions
try
 print_endline "pre exception";
 raise (NoChange 1);
 print_endline "post exception";
 with
 | NoChange _ ->
 print_endline "handled a NoChange exception"
Line 3, characters 5-23:
Warning 21: this statement never returns (or has an unsound type.)
pre exception
handled a NoChange exception
- : unit = ()

• raise dynamically jumps to the nearest try/with
handler that matches that exception

• Unlike some languages, OCaml does not mark a function
to indicate that an exception might be raised.

Exceptions
try
 print_endline "pre exception";
 raise (NoChange 1);
 print_endline "post exception";
 with
 | NoChange _ ->
 print_endline "handled a NoChange exception"
Line 3, characters 5-23:
Warning 21: this statement never returns (or has an unsound type.)
pre exception
handled a NoChange exception
- : unit = ()

• raise dynamically jumps to the nearest try/with
handler that matches that exception

• Unlike some languages, OCaml does not mark a function
to indicate that an exception might be raised.

Change with backtracking
exception Change
 let rec change till amt =
 if amt = 0 then
 []
 else
 match till with
 | [] ->
 raise Change
 | c::till ->
 if amt < 0 then
 raise Change
 else
 try
 c :: change (c::till) (amt - c)
 with Change ->
 change till amt
exception Change
val change : int list -> int -> int list = <fun>

Change with backtracking
exception Change
 let rec change till amt =
 if amt = 0 then
 []
 else
 match till with
 | [] ->
 raise Change
 | c::till ->
 if amt < 0 then
 raise Change
 else
 try
 c :: change (c::till) (amt - c)
 with Change ->
 change till amt
exception Change
val change : int list -> int -> int list = <fun>

Backtrack

Backtrack

Change with backtracking
exception Change
 let rec change till amt =
 if amt = 0 then
 []
 else
 match till with
 | [] ->
 raise Change
 | c::till ->
 if amt < 0 then
 raise Change
 else
 try
 c :: change (c::till) (amt - c)
 with Change ->
 change till amt
exception Change
val change : int list -> int -> int list = <fun>

Change with backtracking
exception Change
 let rec change till amt =
 if amt = 0 then
 []
 else
 match till with
 | [] ->
 raise Change
 | c::till ->
 if amt < 0 then
 raise Change
 else
 try
 c :: change (c::till) (amt - c)
 with Change ->
 change till amt
exception Change
val change : int list -> int -> int list = <fun>

Attempt the
solution

Remove
some change

and retry if
stuck

Change with backtracking
exception Change
 let rec change till amt =
 if amt = 0 then
 []
 else
 match till with
 | [] ->
 raise Change
 | c::till ->
 if amt < 0 then
 raise Change
 else
 try
 c :: change (c::till) (amt - c)
 with Change ->
 change till amt
exception Change
val change : int list -> int -> int list = <fun>

change [5; 2] 6
 ⇒ 5::change [5; 2] 1 with C -> change [2] 6
 ⇒ 5::(5::change [5; 2] -4) with C -> change [2] 1
 with C -> change [2] 6
 ⇒ 5::(change [2] 1) with C -> change [2] 6
 ⇒ 5::(2::change [2] -1) with Chang -> change [] 1
 with C -> change [2] 6
 ⇒ 5::(change [] 1) with C -> change [2] 6
 ⇒ change [2] 6
 ⇒ 2::(change [2] 4) with C -> change [] 6
 ⇒ 2::(2::change [2] 2) with C -> change [] 4
 with C -> change [] 6
 ⇒ 2::(2::(2::change [2] 0)) with C -> change [] 2
 with C -> change [] 4
 with C -> change [] 6
 ⇒ 2::(2::[2]) with C -> change [] 4
 with C -> change [] 6
 ⇒ 2::[2; 2] with C -> change [] 6
 ⇒ [2; 2; 2]

Recursive Types

Binary Trees
type 'a tree =
 Lf
 | Br of 'a * 'a tree * 'a tree

Binary Trees
type 'a tree =
 Lf
 | Br of 'a * 'a tree * 'a tree

• A data structure with multiple branching is called a tree.

• Trees are nearly as fundamental a structure as lists.

• Each node is either a leaf (empty) or a branch with a label
and two subtrees.

Binary Trees
type 'a tree =
 Lf
 | Br of 'a * 'a tree * 'a tree

“Polymorphic”
type

Binary Trees
type 'a tree =
 Lf
 | Br of 'a * 'a tree * 'a tree

Br(1, Br(2, Br(4, Lf, Lf),
 Br(5, Lf, Lf)),
 Br(3, Lf, Lf))

int tree

“Polymorphic”
type

Binary Trees & Lists
type 'a tree =
 Lf
 | Br of 'a * 'a tree * 'a tree

type 'a mylist =
| Nil
| Cons of 'a * 'a mylist

Cons (1, Cons (2, Cons (3, Nil)))
- : int mylist

Polymorphism & Recursion
type 'a tree =
 Lf
 | Br of 'a * 'a tree * 'a tree

type shape =
| Null
| Join of shape * shape

type 'a option =
| None
| Some of 'a

Polymorphic
and Recursive

Recursive

Polymorphic

Simple Operations on Trees
(* number of branch nodes *)
let rec count = function
 | Lf -> 0
 | Br (v, t1, t2) -> 1 + count t1 + count t2
val count : 'a tree -> int = <fun>

(* length of longest path *)
let rec depth = function
 | Lf -> 0
 | Br (v, t1, t2) -> 1 + max (depth t1) (depth t2)
val depth : 'a tree -> int = <fun>

• Use pattern matching to build expressions over trees

• The invariant holds abovecount(t) ≤ 2depth(t) − 1

