
Foundations of Computer Science
Lecture #3: Lists

Dr. Amanda Prorok & Dr. Anil Madhavapeddy

2019-2020

 Warm-Up Warm-Up

In: 3 + -0.2;;

Question 2: What is the complexity of matrix addition, given
a square matrix of size n?

Question 1: What does this return?

Out: Error: This expression has type float but an expression
 was expected of type int
 Line 1, characters 2-3: Hint: Did you mean to use `+.'?

O(n2)

Question 3: What do we call a function whose computation

 does not nest?

Iterative or tail-recursive

 Lists Lists

• A list is a finite sequence of elements

• The elements may have any type

• All elements must have same type

[3; 5; 9] : int list

[[3.1]; []; [5.7; -0.6]] : (float list) list

In[1]: let it = [3; 5; 9];;
Out[1]: val it : int list = [3; 5; 9]

In[2]: it @ [2; 10];;
Out[2]: - : int list = [3; 5; 9; 2; 10]

In[3]: List.rev [(1, “one"); (2, "two")];;
Out[3]: - : (int * string) list = [(2, "two"); (1, "one")]

 Lists Lists

append

reverse

• We build a list using two primitives
[]

::

The list [3; 5; 9] is constructed as:

9::[] = [9]
5::[9] = [5; 9]
3::[5; 9] = [3; 5; 9]

 The List Primitives The List Primitives

 The List Primitives The List Primitives

a’ :: a’ list
head :: tail

III Foundations of Computer Science 29

Slide 302

The List Primitives

The two kinds of list

nil or [] is the empty list

x::l is the list with head x and tail l

List notation

[x1, x2, . . . , xn] ≡ x1

head

:: (x2 :: · · · (xn :: nil))
︸ ︷︷ ︸

tail

The operator ::, called cons (for ‘construct’), puts a new element on to the head
of an existing list. While we should not be too preoccupied with implementation
details, it is essential to know that :: is an O(1) operation. It uses constant time and
space, regardless of the length of the resulting list. Lists are represented internally
with a linked structure; adding a new element to a list merely hooks the new element
to the front of the existing structure. Moreover, that structure continues to denote
the same list as it did before; to see the new list, one must look at the new :: node
(or cons cell) just created.

Here we see the element 1 being consed to the front of the list [3,5,9]:

:: → · · · :: → :: → :: → nil

↓ ↓ ↓ ↓
1 3 5 9

Given a list, taking its first element (its head) or its list of remaining elements (its
tail) also takes constant time. Each operation just follows a link. In the diagram
above, the first ↓ arrow leads to the head and the leftmost → arrow leads to the tail.
Once we have the tail, its head is the second element of the original list, etc.

The tail is not the last element; it is the list of all elements other than the head!

 The List Primitives The List Primitives

• Internally: linked structure

III Foundations of Computer Science 29

Slide 302

The List Primitives

The two kinds of list

nil or [] is the empty list

x::l is the list with head x and tail l

List notation

[x1, x2, . . . , xn] ≡ x1

head

:: (x2 :: · · · (xn :: nil))
︸ ︷︷ ︸

tail

The operator ::, called cons (for ‘construct’), puts a new element on to the head
of an existing list. While we should not be too preoccupied with implementation
details, it is essential to know that :: is an O(1) operation. It uses constant time and
space, regardless of the length of the resulting list. Lists are represented internally
with a linked structure; adding a new element to a list merely hooks the new element
to the front of the existing structure. Moreover, that structure continues to denote
the same list as it did before; to see the new list, one must look at the new :: node
(or cons cell) just created.

Here we see the element 1 being consed to the front of the list [3,5,9]:

:: → · · · :: → :: → :: → nil

↓ ↓ ↓ ↓
1 3 5 9

Given a list, taking its first element (its head) or its list of remaining elements (its
tail) also takes constant time. Each operation just follows a link. In the diagram
above, the first ↓ arrow leads to the head and the leftmost → arrow leads to the tail.
Once we have the tail, its head is the second element of the original list, etc.

The tail is not the last element; it is the list of all elements other than the head!

head

Note that :: is an O(1) operation

Taking a list’s head or tail takes constant time

tail

[]

 The List Primitives The List Primitives

let rec up_to m n =
 if m > n then []
 else
 m :: up_to (m + 1) n;;

val up_to : int -> int -> int list = <fun>

up_to 2 5;;
- : int list = [2; 3; 4; 5]

In:

Out:

In:
Out:

let null = function
| [] -> true
| _::_ -> false;;

val null : 'a list -> bool = <fun>

Getting at the Head and Tail Getting at the Head and Tail

1st case
2nd case

pattern-matching:

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
[]
val hd : 'a list -> 'a = <fun>
 

List.tl [7; 6; 5];;
- : int list = [6; 5]

In:

Out:

In:

Out:

In:
Out:

let hd (x::_) = x;;

Getting at the Head and Tail Getting at the Head and Tail

III Foundations of Computer Science 30

Slide 303

Getting at the Head and Tail

fun null [] = true

| null (x::l) = false;

> val null = fn : 'a list -> bool

fun hd (x::l) = x;

> Warning: pattern matching is not exhaustive

> val hd = fn : 'a list -> 'a

tl [7,6,5];

> val it = [6, 5] : int list

The empty list has neither head nor tail. Applying hd or tl to nil is an error—
strictly speaking, an exception. The function null can be used to check for the
empty list beforehand. Taking a list apart using combinations of hd and tl is hard
to get right. Fortunately, it is seldom necessary because of pattern-matching.

The declaration of null above has two clauses: one for the empty list (for which
it returns true) and one for non-empty lists (for which it returns false).

The declaration of hd above has only one clause, for non-empty lists. They have
the form x::l and the function returns x, which is the head. ML prints a warning to
tell us that calling the function could raise exception Match, which indicates failure
of pattern-matching. The declaration of tl is similar to hd.

These three primitive functions are polymorphic, allowing flexibility in the
types of their arguments and results. Note their types!

null : 'a list -> bool is a list empty?
hd : 'a list -> 'a head of a non-empty list
tl : 'a list -> 'a list tail of a non-empty list

Symbols ’a, ’b, . . . are called type variables and stand for any types. Code written
using these functions is checked for type correctness at compile time. And this
guarantees strong properties at run time, for example that the elements of any list
all have the same type.

These functions are polymorphic because they do nothing to list elements but
copy them. Note that ML does all type checking at compile time. This is very
different from “dynamically typed” languages such as Python or Scheme, where
values are tagged with their types at runtime and checked only then.

Note that these three functions are polymorphic

alpha type: type variable

 ⇒ 1 + (1 + nlength [c])
 ⇒ 1 + (1 + (1 + nlength []))

Computing the Length of a List Computing the Length of a List

What is the time and space complexity of this function?

let rec nlength = function
| [] -> 0
| _ :: xs -> 1 + nlength xs;;

val nlength : 'a list -> int = <fun>

nlength [3; 5; 9] is constructed as:

nlength [a; b; c] ⇒ 1 + nlength [b; c]

In:

Out:

base case!

⇒ 1 + (1 + (1 + 0)
 ⇒ … ⇒ 3

addlen(0,[a; b; c]) ⇒ addlen (1,[b; c])
 ⇒ addlen (2,[c])
 ⇒ addlen (3,[])
 ⇒ 3

let rec addlen = function
| (n,[]) -> n
| (n,_::xs) -> addlen (n + 1, xs);;

val addlen : int * ‘a list -> int = <fun>

Efficiently Computing the Length of a List Efficiently Computing the Length of a List

What is the time and space complexity of this function?

base case!

In:

Out:

accumulator

 In: let length xs = addlen (0, xs);;
 
Out: val length : 'a list -> int = <fun>

Efficiently Computing the Length of a List Efficiently Computing the Length of a List

append([1; 2; 3],[4])⇒ 1 :: append ([2; 3],[4])
 ⇒ 1 :: (2 :: append ([3],[4]))
 ⇒ 1 :: (2 :: (3 :: append ([],[4])))
 ⇒ 1 :: (2 :: (3 :: [4]))
 ⇒ [1; 2; 3; 4]

 Append: List Concatenation Append: List Concatenation

@

base case!

What is the time and space complexity of this function?

let rec append = function
 | ([], ys) -> ys
 | (x::xs, ys) -> x :: append (xs, ys)

val append : 'a list * 'a list -> 'a list = <fun>

In:

Out:

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
 ⇒ (nrev [c] @ [b]) @ [a]
 ⇒ ((nrev [] @ [c]) @ [b]) @ [a]
 ⇒ ([] @ [c]) @ [b]) @ [a] ⇒ … ⇒ [c; b; a]

 Reversing a List in O(n2) Reversing a List in O(n2)

base case: [] is tail!

What is the time and space complexity of this function?

let rec nrev = function
| [] -> []
| x::xs -> (nrev xs) @ [x];;  

val nrev : 'a list-> 'a list = <fun>

In:

Out:

nrev [a; b; c] ⇒ nrev [b; c] @ [a]
 ⇒ (nrev [c] @ [b]) @ [a]
 ⇒ ((nrev [] @ [c]) @ [b]) @ [a]
 ⇒ ([] @ [c]) @ [b]) @ [a] ⇒ … ⇒ [c; b; a]

 Reversing a List in O(n2) Reversing a List in O(n2)

let rec nrev = function
| [] -> []
| x::xs -> (nrev xs) @ [x];;  

val nrev : 'a list-> 'a list = <fun>

In:

Out:

Recall: append is O(n), and we have n(n+1) / 2 conses, which is O(n2)

1 +2 +3

let rec rev_app = function
 | ([], ys) -> ys
 | (x::xs, ys) -> rev_app (xs, x::ys);;

val rev_app : 'a list * 'a list -> 'a list = <fun>

 Reversing a List in O(n2) Reversing a List in O(n)

accumulator

What is the time complexity of this function?

rev_app ([a; b; c], []) ⇒ rev_app ([b; c], [a])
 ⇒ rev_app ([c], [b; a])
 ⇒ rev_app ([], [c; b; a])
 ⇒ [c; b; a]

In:

Out:

 Reversing a List in O(n2) Reversing a List in O(n)

let rev xs = rev_app (xs, [])

val rev : 'a list -> 'a list = <fun>

In:

Out:

 Lists, Strings, and Characters Lists, Strings, and Characters

Also:

The operators < <= > >= work for strings and yield lexicographic order

In: ’a' < ‘b';;
Out: - : bool = true

