Foundations of Computer Science
Lecture #3: Lists

Dr. Amanda Prorok & Dr. Anil Madhavapeddy
2019-2020



‘ Warm-Up I

Question 1;: What does this return?

In: 3 + -0.2;;

Out: Error: This expression has type float but an expression
was expected of type int
Line 1, characters 2-3: Hint: Did you mean to use +.'?

Question 2: What is the complexity of matrix addition, given
a square matrix of size n?

O(n2)

Question 3: What do we call a function whose computation
does not nest?

Iterative or tail-recursive



‘ Lists I

e Alistis a finite sequence of elements
* The elements may have any type

* All elements must have same type

[3; 5; 9] : int 1list

[[3.1]; [1; [5.7; -0.6]] : (float list) 1list



‘ Lists I

In[1]: let 1t = [3; 5; 9];;
Out[l]: wval it : int list = [3; 5; 9]

appe_md _—
In[2]: it @ [2; 10];;
Out[2]: - : int list = [3; 5; 9; 2; 10]

reverse "'*%

In[3]: List.rev [(1, “one"); (2, "two")];;
Out[3]: - : (int * string) list = [(2, "two"); (1, "one")]



‘ The List Primitives I

 We build a list using two primitives

[ ]

Thelist [3; 5; 9] Is constructed as:

::[9] = [5; 9]
3::[5; 9] = [3; 5; 9]

Ol




‘ The List Primitives I

The two kinds of list
[ ] 1s the empty list

2 : : [ is the list with head x and tail [

List notation
STn] = T (T2 (Th i []))
—

head tail

a’ o o’ Listk

head @ Ekail



‘ The List Primitives I

e Internally: linked structure

EO\EL\

head L= > == ]

—l I I
1 3 5 9

Note that :: is an O(1) operation

Taking a list’s head or tail takes constant time



‘ The List Primitives I

In: let rec up tomn =
1f m > n then []
else

m :: up to (m + 1) nj;;

Out: val up to : int -> int -> int list = <fun>

In: up to 2 5;;
Out: - ¢ 1int list = [2; 3; 4; 5]



In:

Out:

In:
Out:

In:

Out:

‘ Getting at the Head and Talil I

let hd (x:: ) = xX;;

8: this pattern-matching is not exhaustive.
Here is an example of a case that 1s not matched:

[ ]

val hd : 'a list -> 'a = <fun>

List.tl [7; 6; 5];;
- : int list = [6; 5]

Pa&&@;rm“ma%tmsrxgz
let null = function - 18k cose
| [ -> true | |

| 2nd ca
| :: -> false;; 4 . o<
val null : 'a list -> bool = <fun>



‘ Getting at the Head and Talil I

Note that these three functions are polymorphic

null : '"a list -> bool 1s a list empty?

hd : 'a list -> 'a head of a non-empty list

tl : 'a list -> 'a list tail of a non-empty list
A

alpha type: bype variable



‘ Computing the Length of a List I

In: let rec nlength = function
| ] -> 0
|  :: xs -> 1 + nlength xs;;

out: val nlength : 'a list -> int = <fun>

nlength [3; 5; 9] is constructed as:

nlength [a; b; ¢] = 1 + nlength [b; c]
= 1 + (1 + nlength [c])
= 1 + (1 + (1 + nlength []))
= 1+ (1 + (1 + 0) R\
= . = 3 base case!

What is the time and space complexity of this function?



‘ Efficiently Computing the Length of a List I

In: let rec addlen = function

‘ (nl[]) -> N4
| (n, ::xs) -> addlen (n + 1, xs);;

accumnmulator

Out: val addlen : int * ‘a list -> int = <fun>

addlen(l,[a; b; ¢c]) = addlen (1,[b; c])
= addlen (2,[c])

= addlen (3,[]) base case'

= 3

What is the time and space complexity of this function?



‘ Efficiently Computing the Length of a List I

In: let length xs = addlen (0, xs);;

Out: wval length : 'a list -> int = <fun>



‘ Append: List Concatenation I

@

In: let rec append = function

| ([]I YS) -> ¥S
| (x::xs, ys) -> x :: append (Xs, ys)

Out: wval append : 'a list * 'a list -> 'a list = <fun>

append([1l; 2; 3],[4])= 1 :: append ([2; 3],[4])
= 1 :: (2 :: append ([3]1,[4]1))
= 1 22 (2 :: (3 :: append ([1,[41]1)))
= 1 22 (2 22 (3 22 [4])) base case!

= [1; 2; 3; 4]

What is the time and space complexity of this function?



‘ Reversing a List in O(n?) I

In: let rec nrev = function

| [ -> []

| x::xs -> (nrev xs) @ [x];;

Out: val nrev : 'a list-> 'a list = <fun>

nrev [a; b; c] = nrev [b; c] @ [a]

= (nrev [c] @ [b]) @ [a]
_ base case: [] is kail!
= ((nrev [] @ [c]) @ [b]) @ [a]

= ([1 €@ [c]) @ [b]) @ [a] = .. = [c; b; a]

What is the time and space complexity of this function?



‘ Reversing a List in O(n?) I

In: let rec nrev = function

| [ -> []

| x::xs -> (nrev xs) @ [x];;

Out: val nrev : 'a list-> 'a list = <fun>

nrev [a; b; c] = nrev [b; c] @ [a]
= (nrev [c] @ [b]) @ [a]
= ((nrev [] @ [c]) @ [b]) €@ [a]
= ([]1 @ [c]) @ [b]) @ [a] = .. = [c; b; a]

1 +2 +3

Recall: append is O(n), and we have n(n+1) /2 conses, which is O(n2)



‘ Reversing a List in O(n) I

In: let rec rev_app = function - —accumnmulator

| ([1, ys) -> ys 4
| (x::xs, ys) -> rev app (Xs, X::yYS);;

Out: wval rev app : 'a list * 'a list -> 'a list = <fun>

rev_app ([a; b; c], []) = rev_app ([b; c], [a])

= rev_app ([c], [b; a])

= rev_app ([1, [c; b; a])

= [c; b; al

What is the time complexity of this function?



‘ Reversing a List in O(n) I

In: let rev xs = rev _app (xs, [])

out: val rev : 'a list -> 'a list = <fun>



‘ Lists, Strings, and Characters I

character constants 'al ot

string constants nw o wpw"  "Oh  no!"

String.length s number of chars in string s

S17 89 concatenation of strings s; and s»

Also:
The operators < <= >>= work for strings and yield lexicographic order

In: a' < 'b';;
Out: - : bool = true






