Expression Evaluation

\[E_0 \rightarrow E_1 \rightarrow \ldots \rightarrow E_n \rightarrow v \]
Expression Evaluation

\[E_0 \rightarrow E_1 \rightarrow \ldots \rightarrow E_n \rightarrow \nu \]

Focus on expressions; ignore side-effects for now.

This discipline of separating expression from effects is often known as *functional programming*.

We will return to side effects later in the course to make useful programs!
Expression Evaluation

$E_0 \rightarrow E_1 \rightarrow \ldots \rightarrow E_n \rightarrow v$

```ocaml
# let rec power x n =  
  if n = 1 then x  
  else if even n then  
    power (x *. x) (n / 2)  
  else  
    x *. power (x *. x) (n / 2)
```
Expression Evaluation

\[E_0 \rightarrow E_1 \rightarrow \ldots \rightarrow E_n \rightarrow v \]

let rec power x n =
 if n = 1 then x
 else if even n then
 power (x *. x) (n / 2)
 else
 x *. power (x *. x) (n / 2)

power(2, 12) ⇒
power(4, 6) ⇒
power(16, 3) ⇒
16 × power(256, 1) ⇒
16 × 256 ⇒
4096
Summing first n integers

```ocaml
# let rec nsum n =
  if n = 0 then
    0
  else
    n + nsum (n - 1)
```

$nsum\ 3 \Rightarrow 3 + (nsum\ 2)$

$\Rightarrow 3 + (2 + (nsum\ 1))$

$\Rightarrow 3 + (2 + (1 + nsum\ 0))$

$\Rightarrow 3 + (2 + (1 + 0))$
Summing first n integers

```ocaml
# let rec nsum n =
  if n = 0 then
    0
  else
    n + nsum (n - 1)
```

$nsum\ 3 \Rightarrow 3 + (nsum\ 2)$

$\Rightarrow 3 + (2 + (nsum\ 1))$

$\Rightarrow 3 + (2 + (1 + nsum\ 0))$

$\Rightarrow 3 + (2 + (1 + 0))$

Nothing can progress until the final expression is calculated!
Summing first n integers

```ocaml
# let rec nsum n =  
  if n = 0 then
    0
  else
    n + nsum (n - 1)

nsum 3 ⇒ 3 + (nsum 2)
⇒ 3 + (2 + (nsum 1))
⇒ 3 + (2 + (1 + nsum 0))
⇒ 3 + (2 + (1 + 0))
```

Intermediate results are stored in the program stack which is usually of limited size.

Nothing can progress until the final expression is calculated!
Iteratively summing

```ocaml
# let rec summing n total =
  if n = 0 then
    total
  else
    summing (n - 1) (n + total)
```

```ocaml
# let rec nsum n =
  if n = 0 then
    0
  else
    n + nsum (n - 1)
```
Iteratively summing

```ocaml
# let rec summing n total =  
  if n = 0 then      
    total           
  else             
    summing (n - 1) (n + total)

summing 3 0 ⇒ summing 2 3
  ⇒ summing 1 5
  ⇒ summing 0 6
  ⇒ 6

# let rec nsum n =     
  if n = 0 then         
    0                   
  else                  
    n + nsum (n - 1)

nsum 3 ⇒ 3 + (nsum 2)
  ⇒ 3 + (2 + (nsum 1))
  ⇒ 3 + (2 + (1 + nsum 0))
  ⇒ 3 + (2 + (1 + 0))
```
Iteratively summing

let rec summing n total =
if n = 0 then
 total
else
 summing (n - 1) (n + total)

Extra argument total acts as the *accumulator* to keep track explicitly instead of using the stack

Algorithms like this are known as *iterative* or *tail recursive*
Recursion vs iteration

- Why two terms *iterative* and *tail recursive*?
 - “Iterative” normally refers to a loop: e.g. coded using `while`.
 - “Tail-recursion” involves the recursive function call being the last thing that expression does.

- Tail-recursion is efficient only if the compiler detects it.
 - Mainly it saves space, though iterative code can run faster.

- Do not make programs iterative unless you determine the gain is significant.
How can we analyse our programs for efficiency?
Silly summing first n integers

```ocaml
# let rec sillySum n =
  if n = 0 then
    0
  else
    n + (sillySum (n-1) + sillySum (n-1)) / 2
```

Recursively calls itself twice for every invocation.
Silly summing first n integers

```ocaml
# let rec sillySum n =  
  if n = 0 then  
    0  
  else  
    n + (sillySum (n-1) + sillySum (n-1)) / 2
```

Recursively calls itself twice for every invocation

Should **assign** the result to a local variable to prevent evaluating it twice

```ocaml
# let x = 2.0 in
let y = Float.pow x 20.0 in
y *. (x /. y)
```
Asymptotic complexity refers to how program costs grow with increasing inputs. Usually space or time, with the latter usually being larger than the former.

Question: if we double our processing power, how much does our computation capability increase?
Time Complexity

<table>
<thead>
<tr>
<th>complexity</th>
<th>1 second</th>
<th>1 minute</th>
<th>1 hour</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1000</td>
<td>60,000</td>
<td>3,600,000</td>
<td>$\times 60$</td>
</tr>
<tr>
<td>$n \lg n$</td>
<td>140</td>
<td>4,893</td>
<td>200,000</td>
<td>$\times 41$</td>
</tr>
<tr>
<td>n^2</td>
<td>31</td>
<td>244</td>
<td>1,897</td>
<td>$\times 8$</td>
</tr>
<tr>
<td>n^3</td>
<td>10</td>
<td>39</td>
<td>153</td>
<td>$\times 4$</td>
</tr>
<tr>
<td>2^n</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td>$+6$</td>
</tr>
</tbody>
</table>

complexity = milliseconds of runtime given an input of size n
Comparing Algorithms with $O(n)$

Formally, define $f(n) = O(g(n))$ provided that $|f(n)| \leq c |g(n)|$
Comparing Algorithms with $O(n)$

Formally, define \(f(n) = O(g(n)) \)
provided that \(|f(n)| \leq c |g(n)| \)

Intuitively, consider the most significant term and ignore constant or smaller factors.

E.g. simplify \(3n^2 + 34n + 433 \) → \(n^2 \)
Facts about O notation

\[O(2g(n)) \text{ is the same as } O(g(n)) \]
\[O(\log_{10} n) \text{ is the same as } O(\ln n) \]
\[O(n^2 + 50n + 36) \text{ is the same as } O(n^2) \]
\[O(n^2) \text{ is contained in } O(n^3) \]
\[O(2^n) \text{ is contained in } O(3^n) \]
\[O(\log n) \text{ is contained in } O(\sqrt{n}) \]
Common complexity classes

$O(1)$ constant
$O(\log n)$ logarithmic
$O(n)$ linear
$O(n \log n)$ quasi-linear
$O(n^2)$ quadratic
$O(n^3)$ cubic
$O(a^n)$ exponential (for fixed a)
Sample costs in O-notation

<table>
<thead>
<tr>
<th>function</th>
<th>time</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>npower, nsum</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>summing</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>$n(n + 1)/2$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>power</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>stupSum</td>
<td>$O(2^n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Simple recurrence relations

\[T(n) \]: a cost we want to bound using \(O \) notation

Typical base case: \(T(1) = 1 \)

Some recurrences:

\[T(n + 1) = T(n) + 1 \quad O(n) \]

\[T(n + 1) = T(n) + n \quad O(n^2) \]

\[T(n) = T(n/2) + 1 \quad O(\log n) \]

\[T(n) = 2T(n/2) + n \quad O(n \log n) \]
Mapping this to OCaml

```ocaml
# let rec nsum n =  
  if n = 0 then
    0
  else
    n + nsum (n - 1)

Given (n+1), does a constant amount of work

Then calls itself with n
```
Mapping this to OCaml

```ocaml
# let rec nsum n =
    if n = 0 then
      0
    else
      n + nsum (n - 1)
```

Given \((n+1)\), does a constant amount of work

Then calls itself with \(n\)

Therefore, recurrence relations are:

\[
T(0) = 1 \\
T(n + 1) = T(n) + 1
\]
Mapping this to OCaml

```ocaml
# let rec nsum n =  
  if n = 0 then 0  
  else n + nsum (n - 1)
```

Given \((n+1)\), does a constant amount of work

Then calls itself with \(n\)

Therefore, recurrence relations are:

\[
T(0) = 1 \\
T(n + 1) = T(n) + 1 \\
O(n)
\]
Mapping this to OCaml

```ocaml
# let rec nsumsum n =  
  if n = 0 then
    0
  else
    nsum n + nsumsum (n - 1)
```

Calls itself recursively once

Calls `nsum` which takes O(n)
Mapping this to OCaml

```ocaml
# let rec nsumsum n =  
    if n = 0 then  
        0  
    else  
        nsum n + nsumsum (n - 1)
```

Calls itself recursively once

Calls nsum which takes $O(n)$

Therefore, recurrence relations are:

$$T(0) = 1$$

$$T(n + 1) = T(n) + n$$
Mapping this to OCaml

```ocaml
# let rec nsumsum n =
  if n = 0 then
    0
  else
    nsum n + nsumsum (n - 1)
```

Calls iteself recursively once

Calls nsum which takes $O(n)$

Therefore, recurrence relations are:

$$T(0) = 1$$

$$T(n + 1) = T(n) + n$$

$O(n^2)$
Mapping this to OCaml

let rec power x n =
 if n = 1 then x
 else if even n then
 power (x *. x) (n / 2)
 else
 x *. power (x *. x) (n / 2)

Calls itself recursively once

Always divides iteration count by 2
Mapping this to OCaml

```ocaml
# let rec power x n =  
   if n = 1 then x  
   else if even n then  
       power (x *. x) (n / 2)  
   else  
       x *. power (x *. x) (n / 2)
```

Calls itself recursively once

Always divides iteration count by 2

Therefore, recurrence relations are:

$$T(0) = 1$$

$$T(n) = T(n/2) + 1$$
Mapping this to OCaml

```ocaml
# let rec power x n =
  if n = 1 then x
  else if even n then
    power (x *. x) (n / 2)
  else
    x *. power (x *. x) (n / 2)
```

Calls itself recursively once

Always divides iteration count by 2

Therefore, recurrence relations are:

\[
T(0) = 1 \\
T(n) = T(n/2) + 1
\]

\(O(\log n)\)